
Ethernet модуль Laurent-112

Руководство пользователя

Версия 1.01 07 мая 2015

История документа:

Версия	Дата	Описание	
1.01	07 Мая 2015	Исходная версия документа	

Содержание

1.	Введение	4
2.	Общее описание	
3.	Отличительные особенности	
4.	Настройки модуля по умолчанию	8
5.	Аппаратные ресурсы	
6.	Электрические характеристики	
7.	Габаритные размеры	
8.	Назначение выводов	11
9.	Подготовка модуля к работе	12
9.		12
9.		
9.	3 Подключение модуля к сети	15
10.	Web интерфейс управления	16
11.	Управление прямыми НТТР запросами	18
12.	Командный интерфейс управления	20
12	2.1 Использование программы KeTerm	
12	2.2 Использование программы HyperTerminal	22
13.	Аппаратные ресурсы	24
	13.1.1 Аппаратный сброс модуля	24
	13.1.2 Реле	24
	13.1.3 Энергонезависимая память	25
14.	Правила и условия эксплуатации	26

1. Введение

Данная редакция документа соответствует модулю Laurent-112 со следующими характеристиками:

Версия программного обеспечения ("прошивка")	 LR02
Версия Web-интерфейса	 LR112_W1.1
Версия платы:	 Rev.C

2. Общее описание

Модуль **Laurent-112** (произноситься как "Лоран-112") предназначен для управления различными электронными приборами и цепями с помощью двенадцати мощных электромагнитных реле через Ethernet с помощью встроенного Web-интерфейса или открытыми командами управления через TCP сокет. Laurent-112 представляет собой плату с установленными реле, клеммными контактами и разъемом Ethernet.

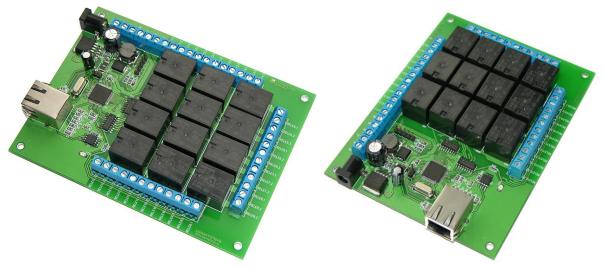
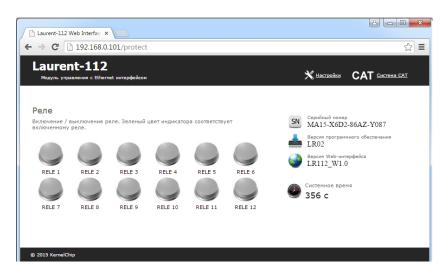



Рис.1. Общий вид модуля Laurent-112

Управление модулем может осуществляется несколькими способами:

- через встроенную Web-страницу
- прямыми НТТР запросами
- набором текстовых команд управления по через ТСР сокет (открытый АРІ)
- автономное управление аппаратными ресурсами при возникновении событий (система CAT)

Модуль имеет встроенную Web-страницу управления. Достаточно запустить любой браузер, ввести IP адрес модуля (по умолчанию 192.168.0.101), указать логин / пароль и вы получаете удобный визуализированный интерфейс для управления реле модуля и мониторинга его параметров в режиме реального времени.

Laurent-112 поддерживает возможность управления прямыми HTTP запросами в виде гипертекстовых ссылок. Управление производится обращением к определенной HTTP странице с различными параметрами, определяющими действие, которое нужно выполнить. Например, если выполнить запрос как показано ниже, то будет включено реле под номером 4:

http://192.168.0.101/cmd.cgi?cmd=REL,4,1

Помимо Web-интерфейса, модуль поддерживает набор текстовых команд управления, которыми можно обмениваться с модулем по протоколу TCP/IP (открытый командный интерфейс управления). Текстовая команда отправляется по сетевому соединению по указанному IP адресу (по умолчанию 192.168.0.101) на фиксированный TCP порт (2424), процессор модуля декодирует ее, выполняет необходимую операцию и отправляет обратно ответ в текстовом формате о статусе выполненной задачи или другую необходимую информацию, специфичную для конкретной команды. Как и в случае Web-интерфейса, необходимо ввести пароль для защиты модуля от несанкционированного доступа.

Применение текстовых команд позволяет в общем случае взаимодействовать с модулем через любую терминальную программу, способную передавать данные через сетевое соединение, например *HyperTerminal* входящую в состав ОС Windows XP или программу *KeTerm* от KernelChip которая может быть использована под ОС Windows XP и Windows 7, 8.

Вы можете разрабатывать собственные программы управления модулем на любом языке программирования, позволяющем реализовывать передачу данных по сети. Подробное описание команд управления доступно в отдельном документе "Ethernet модуль Laurent-112. TCP/IP команды управления".

С помощью интерфейса системы САТ можно настроить реакцию модуля на определенные события, а именно:

- по таймеру
- при отсутствии ответа удаленного сетевого устройства по команде PING.

Например, можно запрограммировать модуль таким образом, чтобы реле переключало свое состояние с определенным периодом или проводилось кратковременное срабатывание реле в случае отсутствия PING некоторого сетевого устройства. Таким образом можно быстро настроить систему мониторинга и аварийного сброса питания для сервера. Система САТ позволяет запрограммировать модуль и использовать его автономно без постоянного подключения по сети.

3. Отличительные особенности

- модуль управления с Ethernet (LAN) интерфейсом
- не требует дополнительных схемных элементов сразу готов к работе
- аппаратные ресурсы доступны на клеммных разъемах
- 12 х реле для управления высоковольтными цепями и нагрузками
- набор готовых текстовых команд управления высокого уровня (КЕ команды) по TCP/IP протоколу (открытый командный интерфейс)
- индикационные светодиоды сетевой активности и статуса модуля
- каждый модуль имеет уникальный серийный номер
- встроенный Web-сервер для управления и мониторинга
- управление прямыми НТТР запросами
- возможность обновления прошивки пользователем по сети
- ВОЗМОЖНОСТЬ ПОДКЛЮЧЕНИЯ НЕСКОЛЬКИХ МОДУЛЕЙ К ОДНОЙ СЕТИ (необходимо изменение IP/MAC адресов)
- возможность изменения сетевых настроек модуля (IP, MAC, Default Gateway, Subnet Mask)
- доступ к Web-странице управления и командному интерфейсу защищен паролем
- возможность сохранения и последующего восстановления состояний реле после отключения питания
- система CAT автоматическое управление реле при отсутствии ответа по PING или по таймеру

4. Настройки модуля по умолчанию

ІР адрес	 192.168.0.101
МАС адрес	 00-04-A3-00-00-0B
Основной шлюз (Default GateWay)	 192.168.0.1
Маска подсети (Subnet Mask)	 255.255.255.0
TCP порт для управления KE командами	 2424
TCP порт для доступа к встроенной Web странице	 80
Пароль/логин для доступа к Web- интерфейсу управления	 Логин: admin Пароль: Laurent
Пароль для разблокировки доступа к ТСР портам управления	 Laurent

- Все реле находятся в выключенном состоянии
- Система САТ неактивна
- Режим сохранения значений аппаратных ресурсов (команда \$KE,SAV) выключен

5. Аппаратные ресурсы

Электромагнитные реле 12 шт

6. Электрические характеристики

Рекомендуемое напряжение питания модуля (постоянное напряжение)	 12 B
Ток потребления при питании 12 B, все реле выключены	 0.05 A
Ток потребления при питании 12 B, все реле включены	 0.4 A
Реле: максимальное коммутируемое постоянное напряжение	 48 B
Реле: максимальный коммутируемый постоянный ток	 7 A
Реле: максимальное коммутируемое переменное напряжение	 230 B
Реле: максимальный коммутируемый переменный ток	 7 A

7. Габаритные размеры

Габаритные размеры модуля Laurent-112 показаны на рисунке ниже. Laurent-112 имеет 100% совместимость по габаритам и крепежным отверстиям с платой Laurent-2.

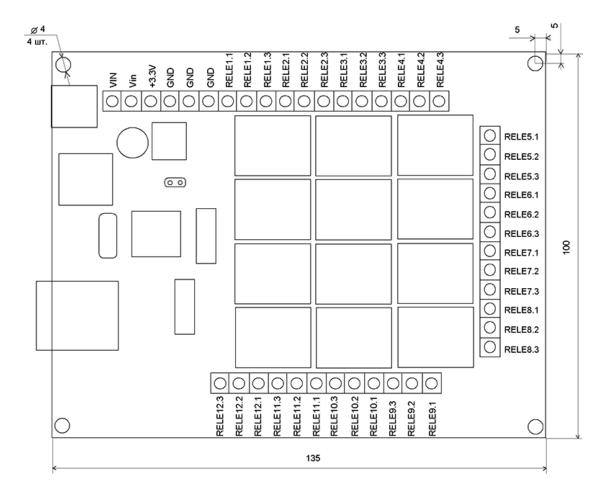
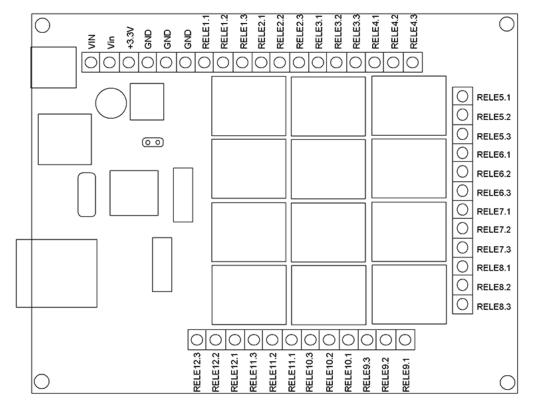



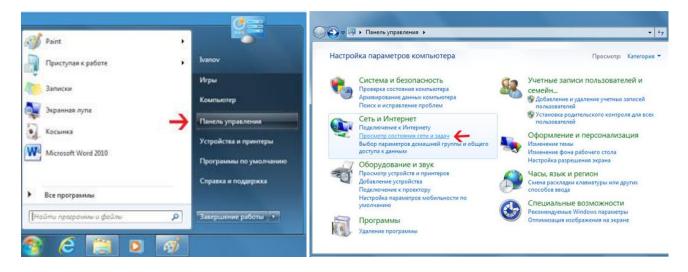
Рис.7.1 Габаритные размеры модуля Laurent-112

8. Назначение выводов

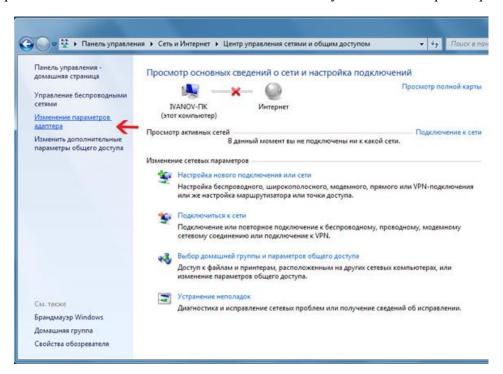
Аппаратные ресурсы модуля и служебные линии (питание, земля) доступны на колодке клеммных разъемов расположенной по краям платы. Название контактов в явном виде присутствует на лицевой стороне платы модуля.

Puc.8.1 Расположение и наименование клеммных разъемов модуля Laurent-112

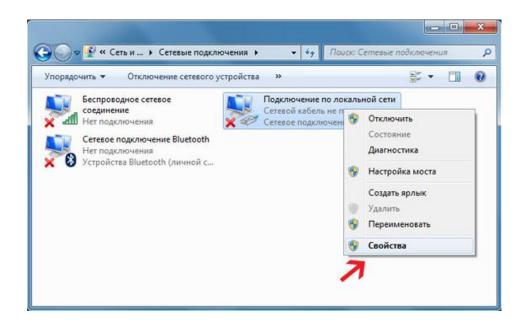
Подробное описание контактов модуля приведено в таблицах ниже.

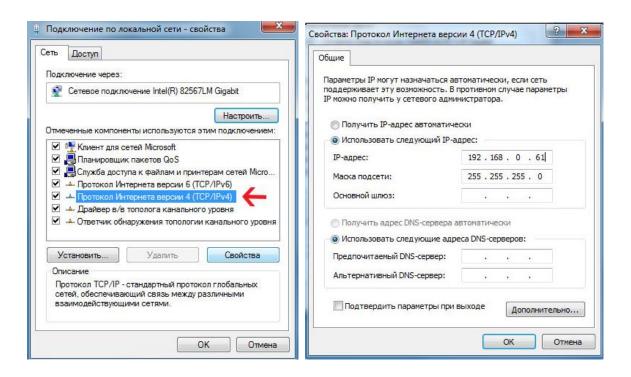

Обозначение вывода	Вход / Выход	Описание
Vin	IN	Внешнее питающее напряжение величиной 12 В
Vin	IN	Внешнее питающее напряжение величиной 12 В
+3.3V	OUT	Фиксированное напряжение +3.3 В от стабилизатора напряжения на плате (относительно GND). Можно использовать для питания внешних цепей и устройств. Нагрузочная способность: не более 0.5 А.
GND	_	Земля
GND	_	Земля
GND	_	Земля
RELEx.1	OUT	1-ый контакт реле под номером х (1 - 12)
RELEx.2	OUT	2-ой контакт реле под номером х (1 - 12)
RELEx.3	OUT	3-ий контакт реле под номером х (1 - 12)

9. Подготовка модуля к работе


Для того чтобы начать работу с модулем с помощью прямого соединения модуль – компьютер по сети, необходимо произвести ряд подготовительных операций, а именно произвести настройку сетевого соединения.

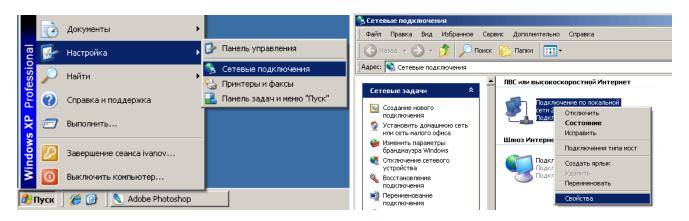
9.1 Настройка сетевого соединения для Windows 7


Для начала процесса подключения зайдите в раздел $\Pi y c \kappa \to \Pi a h e n b$ управления (см. рисунок ниже). В разделе Cemb и Uhmephem нажмите ссылку $\Pi poc mom p$ состояния cemu и sadau:

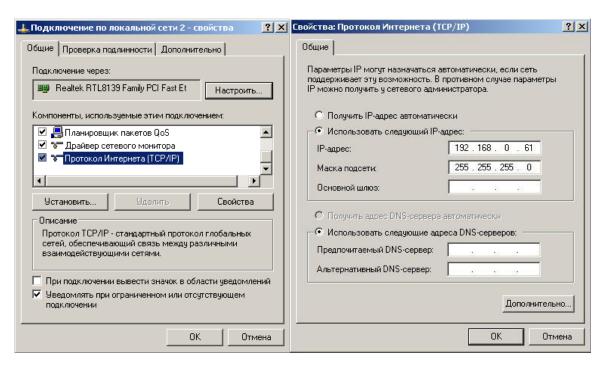

В открывшемся окне на панели слева нажмите ссылку Изменение параметров адаптеров:

Нажмите правой кнопкой мыши на иконке сетевого соединения, ассоциированного с той сетевой картой компьютера, к которой вы планируете подключать модуль. Откройте раздел "Свойства".

В появившемся списке выберите раздел "*Протокол Интернета версии 4 (TCP/IPv4)*" и нажмите кнопку "Свойства". Установите флажки и значения IP адресов так как показано на рисунке ниже:



В данном случае IP адрес компьютера установлен как 192.168.0.61 — вы можете установить любой другой адрес, главное, что бы он был в одной подсети с модулем и не совпадал с адресом какого-либо другого устройства, уже подключенного к сети.


Нажмите кнопку "ОК". На этом подготовительные настройки можно считать законченными.

9.2 Настройка сетевого соединения для Windows XP

Для начала процесса подключения зайдите в раздел $\Pi y c \kappa \to Hacmpoй \kappa a \to Cemeвыe$ $nod \kappa nouvehus$ (см. рисунок ниже). Нажмите правой кнопкой мыши на иконке сетевого соединения, ассоциированного с той сетевой картой компьютера, к которой вы планируете подключать модуль. Откройте раздел "Свойства".

В появившемся списке выберите раздел "Протокол Интернета (TCP/IP)" и нажмите кнопку "Свойства". Установите флажки и значения IP адресов так как показано на рисунке ниже:

В данном случае IP адрес компьютера установлен как 192.168.0.61 — вы можете установить любой другой адрес, главное, что бы он был в одной подсети с модулем и не совпадал с адресом какого-либо другого устройства, уже подключенного к сети.

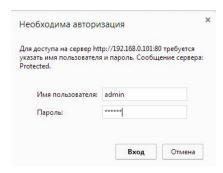
Нажмите кнопку "ОК". На этом подготовительные настройки можно считать законченными.

9.3 Подключение модуля к сети

Далее необходимо соединить модуль и компьютер с помощью сетевого кабеля (витая пара). В случае прямого соединения модуль – компьютер следует использовать cross-кабель. В случае подключения через хаб / шлюз – можно использовать как cross, так и прямой кабель.

Имеется возможность одновременного подключения нескольких модулей *Laurent-112* к одной сети. Для обеспечения такого режима необходимо для каждого модуля установить различные IP и MAC адреса (см. описание команд управления \$KE,IP,SET и \$KE,MAC,SET).

Следующим шагом необходимо подать питающее напряжение на модуль. Для этого следует подключить "+" источника питания к клемме **Vin** а "-" к любой из клемм **GND** (земля) в случае использования клемм. Питающее напряжение можно также подать через установленный на плате разъем для штекерного сетевого источника питания. Рекомендуемое напряжение питания: 12 В.



После подачи питания на несколько секунд в панели задач может появится иконка установки сетевого адреса. В случае успешного запуска модуля, на верхней поверхности платы должен замигать информационный светодиод зеленого цвета (частота мигания 1 Гц), сигнализируя тем самым об успешном запуске программы модуля.

В работоспособности модуля и успешности установки сетевого соединения можно убедиться с помощью встроенной Web-страницы управления модулем или подключившись к командному интерфейсу через TCP порт 2424.

10. Web интерфейс управления

Для доступа к web-интерфейсу, откройте любой браузер. Введите в адресной строке адрес http://192.168.0.101 (по умолчанию). Нажмите ссылку для входа. Доступ к интерфейсу защищен паролем. По умолчанию логин: admin, пароль: Laurent (при желании, вы можете изменить пароль с помощью web-страницы управления или KE команды \$KE,PSW,NEW). Введите логин/пароль и нажмите кнопку OK.

Визуально система управления выглядит, так как на рисунке ниже.

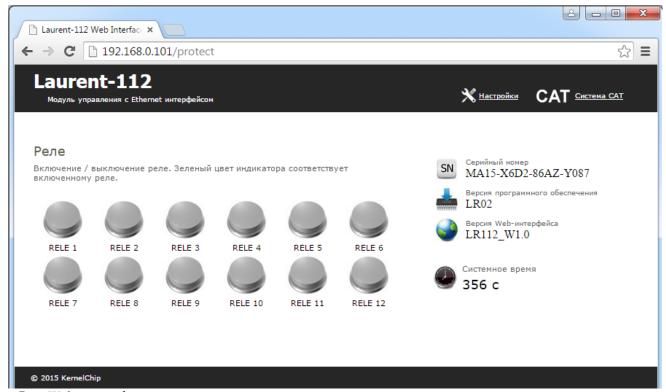


Рис. Web-интерфейс управления, главная панель.

Информация на странице обновляется в режиме реального времени. Система управления позволяет визуально наблюдать следующие параметры:

- серийный номер модуля
- версия программного обеспечения модуля (версия прошивки)
- системное время
- состояния реле (включено / выключено)

Web-система управления позволяет управлять (изменять) следующие параметры:

• включать / выключать реле

В системе Web-интерфейса предусмотрена возможность управления различными настройками модуля, включая пароль доступа, сетевые настройки (IP и MAC адреса).

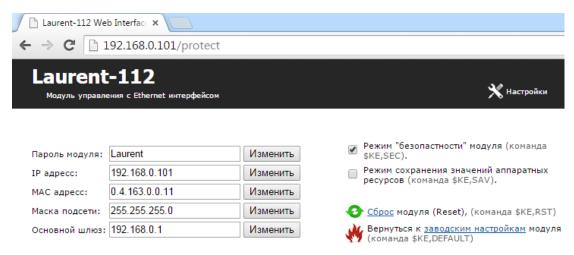


Рис. Панель настроек Web-интерфейса модуля Laurent-112

Web-интерфейс поддерживает возможность управления работой системы CAT – задавать и управлять автономной логикой работы модуля при возникновении различных событий, а именно:

- по таймеру
- отсутствие ответа от удаленного сетевого устройства по команде PING

Система САТ может обслуживать до 20 событий одновременно. Соответственно, для каждого из доступных элементов САТ отображается тип события и его характеристики, реакция при возникновении события, текущее состояние (включено / выключено) и счетчик срабатываний.

Настройки САТ событий сохраняются в энергонезависимой памяти и восстанавливаются автоматически в случае сброса питания.

В случае сбоя соединения с модулем, выводится соответствующее информационное сообщение, блокирующие доступ к элементам управления интерфейса до тех пор, пока соединение не будет восстановлено.

Модуль Laurent позволяет организовывать одно соединение с Web-интерфейсом с один момент времени, т.е. к Web-интерфейсу может быть подключен только один клиент.

11. Управление прямыми НТТР запросами

Модуль поддерживает возможность управления прямыми HTTP запросами в виде гипертекстовых ссылок. Управление производится обращением к определенной HTTP странице с различными параметрами, определяющими действие, которое нужно выполнить. Например, если выполнить запрос как показано ниже, то реле под номером 4 (RELE_4) будет включено:

http://192.168.0.101/cmd.cgi?cmd=REL,4,1

Командный интерфейс HTTP запросов поддерживает управление следующими аппаратными ресурсами:

реле

Управление с помощью HTTP запросов поддерживается только в случае выключенной системы безопасности модуля (команда \$KE,SEC).

В ответ на запрос модуль выдает сообщение о статусе выполнения запрошенной команды:

Управление прямыми НТТР запросами заблокировано, поскольку режим безопасности модуля включен. Следует выключить безопасность для возможности работы с прямыми запросами (команда \$КЕ,SEС или через Web-интерфейс)
 ВАД – Некорректный синтаксис команды
 DONE – Команда успешно выполнена

Ниже дано описание синтаксиса команд управления прямым НТТР запросом к модулю:

Команда REL

Команда позволяет включить или выключить реле.

http://adpec_мodyля/cmd.cgi?cmd=REL,<ReleNumber>,<State>

Параметры:

 ReleNumber
 –
 номер реле. Может быть в пределах от 1 до 4 включительно.

 State
 –
 1 – включить, 0 – выключить.

Пример:

Выключим реле RELE_2:

http://192.168.0.101/cmd.cgi?cmd=REL,2,1

Для того чтобы запросить текущий статус аппаратных ресурсов модуля следует обратиться к следующему ресурсу:

http://адрес модуля/state.xml

В ответ получим сводную информацию в формате XML:

<response>
<systime>10348</systime>
<rele>000000010011</rele>
</response>

<rele>

Поля в ответе XML имеют следующее значение:

<systime> — текущее системное время модуля в секундах

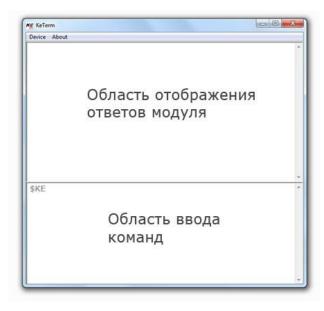
состояние реле модуля в виде сводной строки данных. Первому символу

- в строке соответствует реле номер 1, второму символу реле номер 2 и

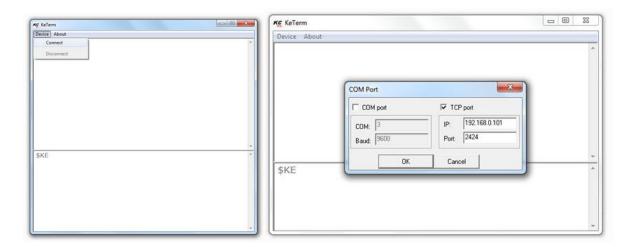
т.д. 1 – реле включено, 0 – выключено

12. Командный интерфейс управления

Помимо управления модулем через встроенный Web-интерфейс, Laurent-112 поддерживает набор текстовых команд управления (открытый протокол), которыми можно обмениваться с модулем по протоколу TCP/IP. Сформированная текстовая команда отправляется по сетевому соединению по указанному IP адресу (по умолчанию 192.168.0.101) на фиксированный TCP порт (2424), процессор модуля декодирует ее, выполняет необходимую операцию и отправляет обратно ответ в текстовом формате о статусе выполненной задачи или другую необходимую информацию, специфичную для конкретной команды. Как и в случае Web-интерфейса, необходимо ввести пароль для защиты модуля от несанкционированного доступа в общедоступной сети.


Благодаря открытому командному интерфейсу имеется возможность разработки и написания программы управления модулем по сети на любом языке программирования, поддерживающим механизм сокетов. Подробное описание команд управления доступно в отдельном документе "Ethernet модуль Laurent-112. TCP/IP команды управления".

Применение текстовых команд позволяет в общем случае обойтись без разработки дополнительного программного обеспечения. Достаточно использовать любую терминальную программу позволяющую передавать данные через сетевое соединение, например *HyperTerminal* входящую в состав ОС Windows XP или программу KeTerm от KernelChip совместимую с Windows XP и Windows 7.


12.1 Использование программы КеТегт

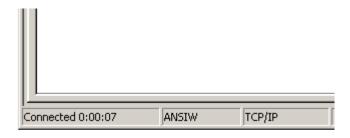
 $\it KeTerm$ представляет собой максимально простую и интуитивно понятную в использовании терминальную программу, позволяющую взаимодействовать с COM портами и сетевыми устройствами по TCP/IP протоколу. $\it KeTerm$ совместима как с Windows XP так и с Windows 7 / 8. Скачать программу можно на сайте $\it www.kernelchip.ru$

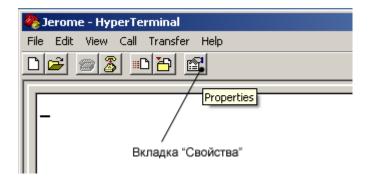
Рассмотрим пример взаимодействия с модулем Laurent-112 через TCP порт 2424 с помощью программы *KeTerm*. Окно программы разделено на две области – нижняя область предназначена для ввода команд модулю, верхняя область отображает информацию (ответы, данные) получаемые от модуля.

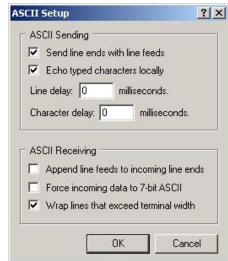
Для соединения с модулем необходимо открыть меню программы *Device* → *Connect*. В открывшемся окне следует выбрать способ подключения к TCP порту и указать сетевые реквизиты модуля, которые по умолчанию равны 192.168.0.101 (IP адрес) и 2424 (порт).

Теперь можно отправлять команды модулю и получать ответы. Чтобы отправить набранную команду модулю, необходимо нажать клавишу Enter. Интерфейс управления модуля защищен паролем. По умолчанию, пароль доступа *Laurent* (вы имеете возможность установить свой собственный пароль с помощью команды \$KE,PSW,NEW или с помощью Web-интерфейса). Пока пароль не введен, командный интерфейс заблокирован (кроме команды \$KE и \$KE,INF).

12.2 Использование программы HyperTerminal


Данная программа поставляется в составе OC Windows XP. Для Windows 7/8 она не включается в поставку по умолчанию. Для ее запуска под Windows XP выберите $\Pi yck \to \Pi poгpammы \to Cmandapmhыe \to Cвязь \to HyperTerminal$. Тотчас же запуститься мастер создания нового соединения с предложением указать имя соединения. Укажите, например, имя Laurent, нажмите "OK".




Следующим шагом, необходимо выбрать тип соединения — *TCP/IP* (*Winsock*) и указать IP адрес и порт модуля. По умолчанию IP адрес модуля равен 192.168.0.101 (вы имеете возможность изменить этот адрес с помощью KE команды \$KE,IP,SET). Порт модуля — 2424 (всегда постоянный, изменению не подлежит). Нажимаем "OK".

В случае успешного соединения, в нижнем левом углу программы должна появиться надпись "Connected" с величиной прошедшего времени с момента установления соединения.

Для того чтобы эффективно пользоваться программой при работе с модулем Laurent, необходимо установить ряд настроек. На лицевой панели программы расположена кнопка "Свойства". Нажмите ее. Перейдите во вкладку "Свойства" (Settings) и установите флажки, так как показано на рисунке ниже. Нажимаем "ОК".

Теперь можно отправлять команды модулю и получать ответы. Чтобы отправить набранную команду модулю, необходимо нажать клавишу Enter. Интерфейс управления модуля защищен паролем. По умолчанию, пароль доступа *Laurent* (вы имеете возможность установить свой собственный пароль с помощью команды \$KE,PSW,NEW или с помощью Web-интерфейса). Пока пароль не введен, командный интерфейс заблокирован (кроме команды \$KE и \$KE,INF).

13. Аппаратные ресурсы

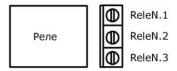
В составе модуля Laurent-112 имеется богатый набор различных аппаратных ресурсов, позволяющих реализовывать широкий спектр различных измерительных, управляющих и следящих систем с Ethernet интерфейсом.

13.1.1 Аппаратный сброс модуля

Для аппаратного сброса настроек, сохраненных в энергонезависимой памяти модуля, предназначен специальный джампер (перемычка). На этапе загрузки (по факту подачи питания на модуль), производится проверка состояния джампера. Если джампер не установлен — выполняется сброс сохраненных настроек в значения по умолчанию (заводские настройки). Возможность аппаратного сброса модуля может потребоваться в случае неверно указанного IP и/или МАС адреса, при которых модуль становится не доступным по сети.

Алгоритм действий для сброса аппаратных настроек с помощью джампера сброса:

- Отключить модуль от питания
- Удалить джампер
- Подать питание, дождаться запуска модуля (мигание зеленого светодиода на лицевой стороне платы является достаточным условием)
- Установить джампер обратно


Процесс стирания настроек сопровождается частым миганием светодиода на лицевой стороне платы в течение 2 секунд.

13.1.2 Реле

В составе модуля Laurent-112 имеется двенадцать двухпозиционных реле, позволяющих коммутировать цепи как постоянного, так и переменного тока. Характеристики реле представлены в таблице ниже:

Реле: максимальное коммутируемое постоянное напряжение	 48 B
Реле: максимальный коммутируемый постоянный ток	 7 A
Реле: максимальное коммутируемое переменное напряжение	 230 B
Реле: максимальный коммутируемый переменный ток	 7 A
Время срабатывания/отпускания	 10 / 5 мс
Время жизни (количество включений)	 10^{7}

Каждое реле имеет три контакта, выведенных на клеммный разъем и именуемых как ReleN.1, ReleN.2 и ReleN.3, где N – номер реле (от 1 до 4).

По умолчанию, в исходном состоянии после подачи питания на модуль контакты каждого из реле ReleN.1 и ReleN.2 замкнуты (управляющее напряжение на реле отсутствует). Путем подачи КЕ команды \$КЕ,REL или через Web-интерфейс управления можно переключить состояние реле. Таблица ниже показывает соответствие между положениями контактов реле и поданных КЕ-команд.

Описание	Состояние реле
Исходное состояние реле после подключения модуля к источнику питания (реле выключено, напряжение на реле не подано).	ReleN.1 ReleN.3 Реле ReleN.2
Для переключения состояния реле необходимо подать KE-команду \$KE,REL или воспользоваться Web-интерфейсом управления. В качестве примера произведем включение 2-го реле с помощью KE-команды. Подаем команду: \$KE,REL,2,1	ReleN.1 ReleN.3
Контакты реле будут переключены (реле включено, на него подано напряжение).	Reien.2
Чтобы вернуть реле в исходное состояние необходимо подать команду: \$KE,REL,2,0	ReleN.1 ReleN.3 Реле ReleN.2

13.1.3 Энергонезависимая память

Интерфейс модуля предоставляет доступ к внутренней энергонезависимой памяти. Т.о. имеется возможность сохранять произвольные данные в этой памяти и извлекать их обратно. Память является энергонезависимой, поэтому записанные в нее данные сохраняются в случае отключения питания.

Объем предоставляемой памяти – 255 байт. Для доступа к памяти предназначена Ке команда \$КЕ, UDT позволяющая считывать или записывать блоки данных по указанному адресу длиной от 1 до 32 байт.

14. Правила и условия эксплуатации

Распаковать модуль из упаковки. Убедиться в отсутствии видимых механических повреждений которые могут возникнуть во время транспортировки модуля. В случае обнаружения таковых сообщить об этом в *KernelChip*. Убедиться в отсутствии посторонних предметов / объектов на плате, способных вызвать короткое замыкание или иное нарушение работоспособности изделия.

Подключить модуль к сетевому порту компьютера (сети) с помощью сетевого кабеля. Соответствующим образом настроить сетевое соединение (настройки сетевой карты компьютера). Подать внешнее питание величиной 12 В либо на розетку питания (штекер) либо на клеммы модуля Vin (+) / GND. "Минус" источника подключить к клемме GND. Убедиться в работоспособности модуля с помощью Web-интерфейса, доступного по умолчанию по адресу 192.168.0.101.

Превышение величины допустимого питающего напряжения как равно и неверная полярность может привести к необратимому выходу модуля из строя.

В исходном состоянии модуль потребляет ток порядка 50 мА при напряжении питания 12 В при отключенных нагрузках. Существенное превышение тока потребления в исходном состоянии (> 0.15 A) свидетельствует о возможной неисправности модуля.

Рекомендуемые условия эксплуатации:

- интервал температур от -30°C до 70°C
- относительная влажность воздуха до 80%

Если модуль транспортировался или эксплуатировался при температуре ниже 3° С а затем был перенесен в помещение с нормальной (комнатной) температурой, перед его включением рекомендуется выдержка в новых климатических условиях не менее 1 часа во избежание потенциального замыкания от конденсирующейся влаги.

© 2015 KERNELCHIP Компоненты и модули для управления, мониторинга и автоматизации

Россия, Москва http://www.kernelchip.ru