## Motor driver for CD-ROMs BA6665FM

The BA6665FM is a CD-ROM spindle motor driver supporting reverse-rotation preventing circuit. It incorporates power save circuit, thermal shut down circuit, FG output, hall bias, etc. The 3-phasefall-wave pseudo linear driving system achieves high-performance and multi-function.

## - Applications

CD-ROM / RW, DVD-ROM

## -Features

1) 3-phase, full-wave pseudo linear driving system
2) Built in power save
3) Built in thermal shut down circuit
4) Built in current limit circuit
5) Built in Hall Bias circuit
6) Built in FG-output ( 3 phase parallel output )
7) With switching function of regular / reverse rotations

- Absolute maximum ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Limits | Unit |
| :--- | :---: | :---: | :---: |
| Supply voltage | $\mathrm{V}_{\mathrm{cc}}$ | 7 | V |
| Supply voltage | $\mathrm{V}_{\mathrm{M}}$ | 15 | V |
| Power dissipation | Pd | $2200 * 1$ | mW |
| Operate.temp.range | Topr | $-20 \sim+75$ | ${ }^{\circ} \mathrm{C}$ |
| Strage.temp.range | Tstg | $-55 \sim+150$ | ${ }^{\circ} \mathrm{C}$ |
| Juncition temp. | Tjmax | 150 | ${ }^{\circ} \mathrm{C}$ |
| Maximum o.current | lout | $1300 * 2$ | mA |

$70 \mathrm{~mm} \times 70 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ glass epoxy board.
*1 Derating in done at $17.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operating above $\mathrm{Ta}=25^{\circ} \mathrm{C}$.
*2 Do not, however exceed Pd, ASO and $\mathrm{Tj}=150^{\circ} \mathrm{C}$.
$\bullet$ Recommended operating conditions $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Operating supply voltage <br> range | $\mathrm{V}_{\mathrm{cc}}$ | 4.5 | - | 5.5 | V |
|  | $\mathrm{~V}_{M}$ | 3.0 | - | 14.0 |  |

## -Block diagram



Optical disc ICs

- Pin descriptions

| Pin No. | Pin Name | Function |
| :---: | :---: | :---: |
| 1 | N.C. | N.C. |
| 2 | N.C. | N.C. |
| 3 | $\mathrm{A}_{3}$ | Output3 for motor |
| 4 | N.C. | N.C. |
| 5 | A2 | Output2 for motor |
| 6 | N.C. | N.C. |
| 7 | $\mathrm{A}_{1}$ | Output1 for motor |
| 8 | GND | GND |
| 9 | $\mathrm{H}_{1}{ }^{+}$ | Hall input Amp1. positive input |
| 10 | $\mathrm{H}_{1}{ }^{-}$ | Hall input Amp1. negative input |
| 11 | $\mathrm{H}_{2}{ }^{+}$ | Hall input Amp2. positive input |
| 12 | $\mathrm{H}_{2}{ }^{-}$ | Hall input Amp2. negative input |
| 13 | $\mathrm{H}_{3}{ }^{+}$ | Hall input Amp3. positive input |
| 14 | $\mathrm{H}_{3}{ }^{-}$ | Hall input Amp3. negative input |
| 15 | N.C. | N.C. |
| 16 | FG3 | FG3 signal output terminal |
| 17 | FG2 | FG2 signal output terminal |
| 18 | FG1 | FG1 signal output terminal |
| 19 | $\mathrm{V}_{\mathrm{H}}$ | Hall bias |
| 20 | $\mathrm{CNF}^{\text {N }}$ | Capacitor connection pin for phase compensation |
| 21 | Ecr | Torque control standard voltage input terminal |
| 22 | Ec | Torque control voltage input terminal |
| 23 | PS | START / STOP switch |
| 24 | Rev | Reverse terminal |
| 25 | Vcc | Power supply for signal division |
| 26 | N.C. | N.C. |
| 27 | Vm | Power supply for driver |
| 28 | RNF | Terminal connection for current sensing resistor |
| FIN | FIN | GND |

Optical disc ICs
－Electrical characteristics（unless otherwise noted， $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VcC}=5 \mathrm{~V}, \mathrm{VM}=12 \mathrm{~V}$ ）

| Parameter | Symbol | Min． | Typ． | Max． | Unit | Conditions | Test Circuit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 〈TOTAL〉 |  |  |  |  |  |  |  |
| Circuit current1 | Icc1 | － | 0 | 0.2 | mA | At power save ON | Fig． 1 |
| Circuit current2 | Icc2 | － | 4.7 | 7.1 | mA | At power save OFF | Fig． 1 |
| 〈POWER SAVE〉 |  |  |  |  |  |  |  |
| ON voltage range | Vpson | 2.5 | － | － | V |  | Fig． 2 |
| OFF voltage range | Vpsoff | － | － | 1.0 | V |  | Fig． 2 |
| ＜HALL BIAS＞ |  |  |  |  |  |  |  |
| Hall bias voltage | Vнв | 0.5 | 0.9 | 1.5 | V | $\mathrm{I} \mathrm{H}=10 \mathrm{~mA}$ |  |
| 〈HALL AMP＞ |  |  |  |  |  |  |  |
| Input bias current | IHa | － | 0.7 | 3.0 | $\mu \mathrm{A}$ |  | Fig． 3 |
| In－phase input voltage range | Vhar | 1.5 | － | 4.0 | V |  | Fig． 3 |
| Minimum input level | Vinh | 50 | － | － | mVpp |  | Fig． 3 |
| $\mathrm{H}_{3}$ hysteresis level | Vhys | 10 | 20 | 40 | mV |  | Fig． 6 |
| 〈TORQUE CONTROL〉 |  |  |  |  |  |  |  |
| Input voltage range | Ec，Ecr | 0 | － | 5 | V | Ec ，Ecr＝0．5V $\sim 3.3 \mathrm{~V}$ |  |
| Offset voltage－ | Ecoff－ | －70 | －40 | －10 | mV | $\mathrm{EcR}_{\text {c }} 1.65 \mathrm{~V}$ | Fig． 5 |
| Offset voltage＋ | Ecoff＋ | 10 | 40 | 70 | mV | Ecr＝1．65V | Fig． 5 |
| Input current | Ecin | － | 0.5 | 2.0 | $\mu \mathrm{A}$ | $\mathrm{Ec}_{\text {c }} \mathrm{EcR}=1.65 \mathrm{~V}$ |  |
| Input－output Gain | Gec | 0.56 | 0.7 | 0.84 | A／V | $\begin{aligned} & \mathrm{Ec}=1.3,1.5 \mathrm{~V} \quad 1.8,2.0 \mathrm{~V} \\ & \mathrm{RNF}=0.5 \Omega \end{aligned}$ | Fig． 5 |
| 〈FG〉 |  |  |  |  |  |  |  |
| FG output voltage H | Vfgh | 4.5 | 4.9 | 5.0 | V | Ifg $=-20 \mu \mathrm{~A}$ | Fig． 6 |
| FG output voltage L | Vfgl | 0 | 0.25 | 0.4 | V | $\mathrm{IFG}_{\text {F }}=3 \mathrm{~mA}$ | Fig． 6 |
| 〈OUTPUT＞ |  |  |  |  |  |  |  |
| Saturation voltage H | Vor | － | 1.0 | 1.5 | V | $\mathrm{l}=-600 \mathrm{~mA}$ | Fig． 4 |
| Saturation voltage L | Vol | － | 0.4 | 0.8 | V | $1 \mathrm{l}=600 \mathrm{~mA}$ | Fig． 4 |
| Pre－drive current | Ivmp | － | 35 | 70 | mA | $\mathrm{Ec}=5 \mathrm{~V}$ output open | Fig． 6 |
| Torque limit current | ITL | 560 | 700 | 840 | mA | $\mathrm{R}_{\mathrm{NF}}=0.5 \Omega$ | Fig． 2 |
| 〈REVERSE〉 |  |  |  |  |  |  |  |
| ON voltage range | Vrson | 2.5 | － | － | V |  |  |
| OFF voltage range | VRSOFF | － | － | 1.0 | V |  |  |

## Optical disc ICs

- Measurement circuit


ICC1: Value of 'A1'
VPS=0 [V]
H1+~H3+=(1/2) $\times$ VCC +0.1 [V]
H1-~H3-=(1/2)×VCC [V]
ICC2 : Value of 'A1'
VPS=5 [V]
$\mathrm{H} 1+\sim \mathrm{H} 3+=(1 / 2) \times \mathrm{VCC}+0.1$ [V]
H1-~H3-=(1/2)×VCC [V]
VHB : Value of 'V2'
VPS=5 [V]
$\mathrm{IHB}=10[\mathrm{~mA}]$


VPSON : Range of 'VPS' that output pins become input-output table. (Input condition 1~6)
VPSOFF : Range of 'VPS' that output pins become open. (Input condition 1~6)
VRSON : Range of 'VREV' that output pins become input-output table. (Input condition 1~6) $\mathrm{VPS}=5[\mathrm{~V}] \quad \mathrm{EC}=0$ [V]
VRSOFF : Range of 'VREV' that output pins become open.
(Input condition 1~6)
$\mathrm{VPS}=5$ [V] $\quad \mathrm{EC}=0$ [V]
ITL : (Value of 'V1') / 0.5
$\mathrm{VPS}=5$ [V] $\mathrm{EC}=0$ [V] (Input condition 1~6)

Fig. $2 \begin{aligned} & \text { REV ON/OFF range } \\ & \text { Torque limit current }\end{aligned}$ Test Circuit

Optical disc ICs

Input-output table

| Input conditions |  |  |  |  |  |  | Output |  |  |  |  |  | Test point (Regular) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | Regular |  |  | Reverse |  |  |  |
| Pin No. | 9 | 10 | 11 | 12 | 13 | 14 | 7 | 5 | 3 | 7 | 5 | 3 |  |
|  | H1+ | H1- | H2+ | H2- | H3+ | H3- | A1 | A2 | A3 | A1 | A2 | A3 |  |
| Condition 1 | L | M | H | M | M | M | H | L | L | L | H | H | 7 pin HI |
| Condition 2 | H | M | L | M | M | M | L | H | H | H | L | L | 7pin Low |
| Condition 3 | M | M | L | M | H | M | L | H | L | H | L | H | 5 pin HI |
| Condition 4 | M | M | H | M | L | M | H | L | H | L | H | L | 5pin Low |
| Condition 5 | H | M | M | M | L | M | L | L | H | H | H | L | 3 pin HI |
| Condition 6 | L | M | M | M | H | M | H | H | L | L | L | H | 3pin Low |

Cautions 1 : Regular EC<ECR REV = L, EC>ECR REV=H
Reverse EC<ECR REV = L,
Input voltage : $\mathrm{Hi}=2.6 \mathrm{~V}$
Mid $=2.5 \mathrm{~V}$
Low $=2.4 \mathrm{~V}$


IHA : Value of ' $\mathrm{A1'}^{\prime}\left(\mathrm{Hn}^{+}=4.0 \mathrm{~V}, \mathrm{Hn}^{-}=2.5 \mathrm{~V}\right)$
Value of 'A2' $\left(\mathrm{Hn}^{+}=2.5 \mathrm{~V}, \mathrm{Hn}^{-}=4.0 \mathrm{~V}\right)$

$$
n=1,2,3
$$

VHAR : Hall voltage range that output pins become input-output table.

VINH : Hall input level that output pins
become input-output table.

$$
\left|\mathrm{Hn}^{+}-\mathrm{Hn}^{-}\right| \quad \mathrm{Hn}^{-}=2.5 \mathrm{~V} \quad(\mathrm{n}=1,2,3)
$$

Input bias current
Fig. 3 In-phase input voltage range Test Circuit Hall minimum input level


VOH : In case output measurement pin='H' by input condition and $\mathrm{IO}=-600 \mathrm{~mA}$, value of 'VOH'. (VM-RNF short)

VOL : In case output measurement pin='L' by input condition and $\mathrm{IO}=600 \mathrm{~mA}$, value of 'VOL'.
$\left.\begin{array}{cc}\text { Fig. } 4 & \text { Output saturation voltage } H \\ \text { Output saturation voltage } L\end{array}\right)$ Test Circuit


EC : Torque control operating. range.
ECOFF+, ECOFF- : Offset voltage at ECR=1.65V that value of ' $V$ ' become 3 mV .

ECIN : Value of 'A' at $\mathrm{EC}=\mathrm{ECR}=2.5 \mathrm{~V}$
GEC : Value of 'V' at EC=1.3V $\rightarrow \mathrm{V} 1$
Value of ' $V$ ' at $E C=1.5 \mathrm{~V} \rightarrow \mathrm{~V} 2$
Value of ' V ' at $\mathrm{EC}=1.8 \mathrm{~V} \rightarrow \mathrm{~V} 3$
Value of ' $V$ ' at $\mathrm{EC}=2.0 \mathrm{~V} \rightarrow \mathrm{~V} 4$
$\mathrm{GEC}=\{(\mathrm{V} 1-\mathrm{V} 2) /(1.5-1.3)\} / R N F$
GEC $=\{(\mathrm{V} 4-\mathrm{V} 3) /(2.0-1.8)\} /$ RNF $R N F=0.5 \Omega$

Fig. $\left.5 \begin{array}{l}\text { Torque offset voltage } \\ \text { Input-output gain }\end{array}\right)$ Test Circuit


VHYS : Difference $\mathrm{Hn}^{+}$from $\mathrm{Hn}^{-}$that
FG1 / FG2 / FG3 voltage change. ( $\mathrm{n}=1,2,3$ ) $\mathrm{EC}=\mathrm{ECR}=1.65 \mathrm{~V}$

IVMp : value of 'A'
Output open
(Input condition 1~6)
$\mathrm{EC}=5 \mathrm{~V}, \mathrm{ECR}=2.5 \mathrm{~V}$
VFGL : Value of 'FG-OUTPUT-VOLTAGE'
at $\mathrm{IFG}=3 \mathrm{~mA}\left(\mathrm{Hn}^{+}=\mathrm{L}\right)$
VFGH : Value of 'FG-OUTPUT-VOLTAGE' at $\mathrm{IFG}=-20 \mu \mathrm{~A}\left(\mathrm{Hn}^{+}=\mathrm{H}\right)$

## - Electrical characteristic curves



SUPPLY VOLTAGE : Vcc (V)
Fig. 7 Circuit Current


PS VOLTAGE : VPs (V)
Fig. 8 PS Threshold voltage


OFFSET VOLTAGE ; Ec-Ecr (mV)
Fig. 11 Torque Control Offset voltage


HALL BIAS CURRENT : Ivн (mA)
Fig. 9 Hall Bias voltage

Fig. 10 H3 Hysteresis Level



Fig. 12 Torque Limit Current

OUTPUT CURRENT : lo (A)
Fig. 14 Output Saturation voltage Low

Fig. 13 Output Saturation voltage HI

Fig. 15 Predrive Current

- External dimensions (Units : mm)



## Notes

No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.

- The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document use silicon as a basic material.

Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

## About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.
In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

