

1

1

CONTENTS

Chapter 1 SoCKit Development Kit .. 4

1.1 Package Contents.. 4

1.2 SoCKit System CD ... 5

1.3 Getting Help ... 5

Chapter 2 Introduction of the SoCKit Board ... 6

2.1 Layout and Components ... 6

2.2 Block Diagram of the SoCKit Board .. 9

Chapter 3 Using the SoCKit Board .. 10

3.1 Board Setup Components ... 10

3.1.1 JTAG Chain and Setup Switches ... 10

3.1.2 FPGA Configuration Mode Switch ... 12

3.1.3 HPS BOOTSEL and CLKSEL Setting Headers .. 13

3.1.4 HSMC VCCIO Voltage Level Setting Header... 15

3.2 Board Status Elements .. 16

3.3 Board Reset Elements ... 16

3.4 Programming the Quad-Serial Configuration Device .. 18

3.5 Clock Circuits ... 19

3.6 Interface on FPGA .. 20

3.6.1 User Push-buttons, Switches and LED on FPGA .. 20

3.6.2 HSMC connector ... 23

3.6.3 Audio CODEC... 26

3.6.4 VGA ... 27

3.6.5 IR Receiver .. 30

3.6.6 DDR3 Memory on FPGA .. 31

3.6.7 Temperature Sensor ... 34

2

3.7 Interface on Hard Processor System (HPS) .. 34

3.7.1 User Push-buttons, Switches and LED on HPS .. 35

3.7.2 Gigabit Ethernet ... 35

3.7.3 UART ... 37

3.7.4 DDR3 Memory on HPS ... 38

3.7.5 QSPI Flash ... 39

3.7.6 Micro SD ... 40

3.7.7 USB 2.0 OTG PHY ... 41

3.7.8 G-Sensor ... 42

3.7.9 128x64 Dots LCD .. 43

3.7.10 LTC Connector .. 44

Chapter 4 SoCKit System Builder .. 46

4.1 Introduction .. 46

4.2 General Design Flow .. 46

4.3 Using SoCKit System Builder .. 47

Chapter 5 Examples For FPGA ... 53

5.1 Audio Recording and Playing ... 53

5.2 A Karaoke Machine .. 56

5.3 DDR3 SDRAM Test ... 59

5.4 DDR3 SDRAM Test by Nios II .. 61

5.5 IR Receiver Demonstration .. 63

5.6 Temperature Demonstration ... 68

Chapter 6 Examples for HPS SoC ... 71

6.1 Hello Program .. 71

6.2 Users LED, Switch and Button .. 73

6.3 I2C Interfaced G-sensor ... 81

6.4 SPI Interfaced Graphic LCD .. 84

Chapter 7 Steps of Programming the Quad Serial Configuration Device 88

3

Chapter 8 Appendix .. 96

8.1 Revision History ... 96

8.2 Copyright Statement ... 96

4

Chapter 1

SoCKit Development Kit

The SoCKit Development Kit presents a robust hardware design platform built around the Altera

System-on-Chip (SoC) FPGA, which combines the latest dual-core Cortex-A9 embedded cores

with industry-leading programmable logic for ultimate design flexibility. Users can now leverage

the power of tremendous re-configurability paired with a high-performance, low-power processor

system. Altera’s SoC integrates an ARM-based hard processor system (HPS) consisting of processor,

peripherals and memory interfaces tied seamlessly with the FPGA fabric using a high-bandwidth

interconnect backbone. The SoCKit development board includes hardware such as high-speed

DDR3 memory, video and audio capabilities, Ethernet networking, and much more. In addition, an

on-board HSMC connector with high-speed transceivers allows for an even greater array of

hardware setups. By leveraging all of these capabilities, the SoCKit is the perfect solution for

showcasing, evaluating, and prototyping the true potential of the Altera SoC.

The SoCKit Development Kit contains all components needed to use the board in conjunction with

a computer that runs the Microsoft Windows XP or later.

11..11 PPaacckkaaggee CCoonntteennttss

Figure 1-1 shows a photograph of the SoCKit package.

Figure 1-1 The SoCKit package contents

5

The SoCKit package includes:

 The SoCKit development board

 USB Cable for FPGA programming and control

 Ethernet Cable

 12V DC power adapter

11..22 SSooCCKKiitt SSyysstteemm CCDD

The SoCKit System CD containing the SoCKit documentation and supporting materials, including

the User Manual, System Builder, reference designs and device datasheets. User can download this

System CD form the link : http:/sockit_support.terasic.com.

11..33 GGeettttiinngg HHeellpp

For discussion, support, and reference designs, please go to:

 RocketBoards.org

 Arrow SoCKit Evaluation Board

 Arrow SoCKIT Evaluation Board - How to Boot Linux

Here are the addresses where you can get help if you encounter any problem:

 Terasic Technologies

Taiwan/ 9F, No.176, Sec.2, Gongdao 5th Rd, East Dist, Hsinchu City, Taiwan 300-70

Email: support@terasic.com

Tel.: +886-3-5750-880

Web: http://sockit.terasic.com

http://sockit_support.terasic.com/
http://www.rocketboards.org/foswiki/Documentation/ArrowSoCKitEvaluationBoard
http://www.rocketboards.org/foswiki/Documentation/ArrowSoCKitEvaluationBoard
http://www.rocketboards.org/foswiki/Documentation/ArrowSoCKITEvaluationBoardLinuxGettingStarted
mailto:support@terasic.com
http://sockit.terasic.com/

6

Chapter 2

Introduction of the SoCKit

Board

This chapter presents the features and design characteristics of the board.

22..11 LLaayyoouutt aanndd CCoommppoonneennttss

A photograph of the board is shown in Figure 2-1 and Figure 2-2. It depicts the layout of the board

and indicates the location of the connectors and key components.

Figure 2-1 Development Board (top view)

7

Figure 2-2 Development Board (bottom view)

The board has many features that allow users to implement a wide range of designed circuits, from

simple circuits to various multimedia projects.

The following hardware is provided on the board:

FFPPGGAA DDeevviiccee

 Cyclone V SoC 5CSXFC6D6F31 Device

 Dual-core ARM Cortex-A9 (HPS)

 110K Programmable Logic Elements

 5,140 Kbits embedded memory

 6 Fractional PLLs

 2 Hard Memory Controllers

 3.125G Transceivers

8

CCoonnffiigguurraattiioonn aanndd DDeebbuugg

 Quad Serial Configuration device – EPCQ256 on FPGA

 On-Board USB Blaster II (micro USB type B connector)

MMeemmoorryy DDeevviiccee

 1GB (2x256MBx16) DDR3 SDRAM on FPGA

 1GB (2x256MBx16) DDR3 SDRAM on HPS

 128MB QSPI Flash on HPS

 Micro SD Card Socket on HPS

CCoommmmuunniiccaattiioonn

 USB 2.0 OTG (ULPI interface with micro USB type AB connector)

 USB to UART (micro USB type B connector)

 10/100/1000 Ethernet

CCoonnnneeccttoorrss

 One HSMC (8-channel Transceivers, Configurable I/O standards 1.5/1.8/2.5/3.3V)

 One LTC connector (One Serial Peripheral Interface (SPI) Master ,one I2C and one GPIO

interface)

DDiissppllaayy

 24-bit VGA DAC

 128x64 dots LCD Module with Backlight

AAuuddiioo

 24-bit CODEC, Line-in, line-out, and microphone-in jacks

SSwwiittcchheess,, BBuuttttoonnss aanndd LLEEDDss

 8 User Keys (FPGA x4 ; HPS x 4)

 8 User Switches (FPGA x4 ; HPS x 4)

 8 User LEDs (FPGA x4 ; HPS x 4)

 2 HPS Reset Buttons (HPS_RSET_n and HPS_WARM_RST_n)

9

SSeennssoorrss

 G-Sensor on HPS

 Temperature Sensor on FPGA

PPoowweerr

 12V DC input

22..22 BBlloocckk DDiiaaggrraamm ooff tthhee SSooCCKKiitt BBooaarrdd

Figure 2-3 gives the block diagram of the board. To provide maximum flexibility for the user, all

connections are made through the Cyclone V SoC FPGA device. Thus, the user can configure the

FPGA to implement any system design.

Figure 2-3 Board Block Diagram

10

Chapter 3

Using the SoCKit Board

This chapter gives instructions for using the board and describes each of its peripherals.

33..11 BBooaarrdd SSeettuupp CCoommppoonneennttss

The SoCKit includes several jumpers, switches, etc. that control various system functions including

JTAG chain, HSMC I/O voltage control, HPS boot source select, and others. This section will

explain the settings and functions in detail.

33..11..11 JJTTAAGG CChhaaiinn aanndd SSeettuupp SSwwiittcchheess

The SoCKit allows users to access the FPGA, HPS debug, or other JTAG chain devices via the

on-board USB Blaster II. Figure 3-1 shows the JTAG chain. Users can control whether the HPS or

HSMC connector is included in the JTAG chain via SW4 (See Figure 3-2), where Table 3-1 lists

the configuration details

11

Figure 3-1 The JTAG chain on the board

Figure 3-2 JTAG Chain and Setup Switches

Table 3-1 SW4 JTAG Control DIP Switch

Board Reference Signal Name Description Default

SW4.1 JTAG_HPS_EN
On: Bypass HPS

Off: HPS In-chain
Off

SW4.2 JTAG_HSMC_EN
On: Bypass HSMC

Off: HSMC In-chain
On

12

33..11..22 FFPPGGAA CCoonnffiigguurraattiioonn MMooddee SSwwiittcchh

The Dipswitch SW6 (See Figure 3-3) can set the MSEL pins to decide the FPGA configuration

modes. Table 3-2 shows the switch controls and descriptions. Table 3-3 gives the MSEL pins

setting for each configuration scheme of Cyclone V devices. FPGA default works in ASx4 mode.

However, once the FPGA is in AS x4 mode, and after successfully configuring the FPGA via the

EPCQ256, the SoCKit will be unable to boot Linux from the SD card or other devices. Please

switch SW6 to another mode (e.g. MSEL[4:0] = 10000) to enable normal operations of Linux.

Figure 3-3 FPGA Configuration Mode Switch

Table 3-2 SW6 FPGA Configuration Mode Switch

Board Reference Signal Name Description Default

SW6.1 MSEL0

Sets the Cyclone V MSEL[4:0] pins.

Use these pins to set the configuration

scheme and POR delay.

On

SW6.2 MSEL1 Off

SW6.3 MSEL2 On

SW6.4 MSEL3 On

SW6.5 MSEL4 Off

SW6.6 N/A N/A N/A

Table 3-3 MSEL pin Settings for each Scheme of Cyclone V Device

Configuration

Scheme
Compression Feature

Design Security

Feature

POR Delay
Valid MSEL[4:0]

FPPx8
Disabled Disabled

Fast 10100

Standard 11000

Disabled Enabled Fast 10101

13

Standard 11001

Enabled Disabled
Fast 10110

Standard 11010

FPPx16

Disabled Enabled
Fast 00000

Standard 00100

Disabled Disabled
Fast 00001

Standard 00101

Enabled Enabled
Fast 00010

Standard 00110

PS Enabled/ Disabled Disabled
Fast 10000

Standard 10001

AS(X1 and X4) Enabled/ Disabled Enabled
Fast 10010

Standard 10011

33..11..33 HHPPSS BBOOOOTTSSEELL aanndd CCLLKKSSEELL SSeettttiinngg HHeeaaddeerrss

The processor in the HPS can be boot from many sources such as the SD card, QSPI Flash or FPGA.

Selecting the boot source for the HPS can be set using the BOOTSEL jumpers (J17~J19, See

Figure 3-4) and CLKSEL jumpers (J15~J16, See Figure 3-5). Table 3-4 lists BOOTSEL and

CLKSEL settings. Table 3-5 lists the settings for selecting a suitable boot source.

Figure 3-4 HPS BOOTSEL Setting Headers

14

Figure 3-5 HPS CLKSEL Setting Headers

Table 3-4 HPS BOOTSEL and CLKSEL Setting Headers

Board Reference Signal Name Setting Default

J17 BOOTSEL0
Short Pin 1 and 2: Logic 1

Short Pin 2 and 3: Logic 0
Short Pin 1 and 2

J19 BOOTSEL1
Short Pin 1 and 2: Logic 1

Short Pin 2 and 3: Logic 0
Short Pin 2 and 3

J18 BOOTSEL2
Short Pin 1 and 2: Logic 1

Short Pin 2 and 3: Logic 0
Short Pin 1 and 2

J15 CLKSEL0
Short Pin 1 and 2: Logic 1

Short Pin 2 and 3: Logic 0
Short Pin 2 and 3

J16 CLKSEL1
Short Pin 1 and 2: Logic 1

Short Pin 2 and 3: Logic 0
Short Pin 2 and 3

Table 3-5 BOOTSEL[2:0] Setting Values and Flash Device Selection

BOOTSEL[2:0] Setting Value Flash Device

000 Reserved

001 FPGA (HPS-to-FPGA bridge)

010 1.8 V NAND Flash memory (*1)

011 3.0 V NAND Flash memory(*1)

100 1.8 V SD/MMC Flash memory(*1)

101 3.0 V SD/MMC Flash memory

110 1.8 V SPI or quad SPI Flash memory(*1)

111 3.0 V SPI or quad SPI Flash memory

(*1) : Not supported on SoCKit board

15

33..11..44 HHSSMMCC VVCCCCIIOO VVoollttaaggee LLeevveell SSeettttiinngg HHeeaaddeerr

On the SoCKit, the I/O standards of the FPGA/HSMC pins can be adjusted via JP2 (See Figure

3-6). Adjustable standards allow even more flexibility and selection of daughter cards or

interconnect devices.

The HSMC connector’s default standard is 2.5V. Users must ensure that the voltage standards for

both the main board and daughter card are the same, or damage/incompatibility may occur.

Table 3-6 lists JP2 settings.

Figure 3-6 HSMC VCCIO Voltage Level Setting Header

Table 3-6 JP2 Header Setting for Different I/O Standard

JP2 Jumper Setting I/O Voltage of HSMC Connector

Short Pin 1 and 2 1.5V

Short Pin 3 and 4 1.8V

Short Pin 5 and 6 2.5V (Default)

Short Pin 7 and 8 3.3V

Note:

1. JP2 only allows for one jumper at one time.

2. If no jumper is attached on JP2, the voltage standard will default to 1.5V

16

33..22 BBooaarrdd SSttaattuuss EElleemmeennttss

The board includes status LEDs. Please refer to Table 3-7 for the status of the LED indicator.

Table 3-7 LED Indicators

Board Reference LED Name Description

D5 12-V Power Illuminates when 12-V power is active.

TXD UART TXD Illuminates when data from FT232R to USB Host.

RXD UART RXD
Illuminates when data from USB Host to FT232R.

D9 HSMC PSNTN
Illuminates when connecting a daughter card on HSMC

connector.

D1 JTAG_RX

Reserved D2 JTAG_TX

D3 SC_RX

D4 SC_TX

33..33 BBooaarrdd RReesseett EElleemmeennttss

The board equips two HPS reset circuits and one FPGA Device Clear button (See Figure 3-7).

Table 3-8 shows the buttons references and its descriptions. Figure 3-8 shows the reset tree on the

board.

17

Figure 3-7 Board Reset Elements

Table 3-8 Reset Elements

Board Reference Signal Name Description

KEY5 HPS_RESET_n

Cold reset to the HPS , Ethernet PHY, UART and USB OTG

device . Active low input that will reset all HPS logics that can

be reset. Places the HPS in a default state sufficient for

software to boot.

KEY6 HPS_WARM_RST_n
Warm reset to the HPS block. Active low input affects the

system reset domains which allows debugging to operate.

KEY4 FPGA_RESET_n
This signal connects to the Cyclone V DEV_CLRn pin. When

this pin is driven low, all the device registers are.

18

Figure 3-8 Reset Tree on the Development Board

33..44 PPrrooggrraammmmiinngg tthhee QQuuaadd--SSeerriiaall CCoonnffiigguurraattiioonn DDeevviiccee

 The board contains a quad serial configuration device (EPCQ256) that stores configuration data

for the Cyclone V SoC FPGA. This configuration data is automatically loaded from the quad

serial configuration device chip into the FPGA when the board is powered up.

 To program the configuration device, users will need to use a Serial Flash Loader (SFL)

function to program the quad serial configuration device via the JTAG interface. The

FPGA-based SFL is a soft intellectual property (IP) core within the FPGA that bridges the JTAG

and flash interfaces. The SFL mega-function is available from Quartus II software. Figure 3-9

shows the programming method when adopting a SFL solution

 Please refer to Chapter 6: Steps of Programming the Quad Serial Configuration Device for the

basic programming instruction on the serial configuration device

19

Figure 3-9 Programming a Quad Serial Configuration Device with the SFL Solution

Note: Before programming the quad serial configuration device, please set the FPGA

configuration mode switch (SW6) to ASx4 mode.

33..55 CClloocckk CCiirrccuuiittss

Figure 3-10 is a diagram showing the default frequencies of all of the external clocks going to the

Cyclone V SoC FPGA.

Figure 3-10 Block diagram of the clock distribution

20

33..66 IInntteerrffaaccee oonn FFPPGGAA

This section describes the interfaces to the FPGA. Users can control or monitor the different interfaces with user

logic on the FPGA.

3.6.1 User Push-buttons, Switches and LED on FPGA

The board provides four push-button switches connected to FPGA as shown in Figure 3-11. Each of

these switches is debounced using a Schmitt Trigger circuit, as indicated in Figure 3-12. The four

outputs called KEY0, KEY1, KEY2, and KEY3 of the Schmitt Trigger devices are connected

directly to the Cyclone V SoC FPGA. Each push-button switch provides a high logic level when it

is not pressed, and provides a low logic level when depressed. Since the push-button switches are

debounced, they are appropriate for using as clock or reset inputs in a circuit.

Figure 3-11 Connections between the push-button and Cyclone V SoC FPGA

Pushbutton releasedPushbutton depressed

Before

Debouncing

Schmitt Trigger

Debounced

Figure 3-12 Switch debouncing

21

There are four slide switches connected to FPGA on the board (See Figure 3-13). These switches

are not debounced, and are assumed for use as level-sensitive data inputs to a circuit. Each switch is

connected directly to a pin on the Cyclone V SoC FPGA. When the switch is in the DOWN position

(closest to the edge of the board), it provides a low logic level to the FPGA, and when the switch is

in the UP position it provides a high logic level.

Figure 3-13 Connections between the slide switches and Cyclone V SoC FPGA

There are also four user-controllable LEDs connected to FPGA on the board. Each LED is driven

directly by a pin on the Cyclone V SoC FPGA; driving its associated pin to a high logic level turns

the LED on, and driving the pin low turns it off. Figure 3-14 shows the connections between LEDs

and Cyclone V SoC FPGA. Table 3-9, Table 3-10 and Table 3-11 list the pin assignments of these

user interfaces.

22

Figure 3-14 Connections between the LEDs and Cyclone V SoC FPGA

Table 3-9 Pin Assignments for Slide Switches

Signal Name FPGA Pin No. Description I/O Standard

SW[0] PIN_W25 Slide Switch[0] 2.5V

SW[1] PIN_V25 Slide Switch[1] 2.5V

SW[2] PIN_AC28 Slide Switch[2] 2.5V

SW[3] PIN_AC29 Slide Switch[3] 2.5V

Table 3-10 Pin Assignments for Push-buttons

Signal Name FPGA Pin No. Description I/O Standard

KEY[0] PIN_AE9 Push-button[0] 3.3V

KEY[1] PIN_AE12 Push-button[1] 3.3V

KEY[2] PIN_AD9 Push-button[2] 3.3V

KEY[3] PIN_AD11 Push-button[3] 3.3V

Table 3-11 Pin Assignments for LEDs

Signal Name FPGA Pin No. Description I/O Standard

LED[0] PIN_AF10 LED [0] 3.3V

LED[1] PIN_AD10 LED [1] 3.3V

LED[2] PIN_AE11 LED [2] 3.3V

LED[3] PIN_AD7 LED [3] 3.3V

23

3.6.2 HSMC connector

The board contains a High Speed Mezzanine Card (HSMC) interface to provide a mechanism for

extending the peripheral-set of an FPGA host board by means of add-on daughter cards, which can

address today’s high speed signaling requirements as well as low-speed device interface support.

The HSMC interface support JTAG, clock outputs and inputs, high-speed serial I/O (transceivers),

and single-ended or differential signaling. Signals on the HSMC port are shown in Figure 3-15.

Table 3-12 shows the maximum power consumption of the daughter card that connects to HSMC

port.

Figure 3-15 HSMC Signal Bank Diagram

Table 3-12 Power Supply of the HSMC

Supplied Voltage Max. Current Limit

12V 1A

3.3V 1.5A

Table 3-13 Pin Assignments for HSMC connector

Signal Name FPGA Pin No. Description I/O Standard

HSMC_CLK_IN0 PIN_J14 Dedicated clock input Depend on JP2

HSMC_CLKIN_n1 PIN_AB27 LVDS RX or CMOS I/O or

differential clock input

Depend on JP2

24

HSMC_CLKIN_n2 PIN_G15 LVDS RX or CMOS I/O or

differential clock input

Depend on JP2

HSMC_CLKIN_p1 PIN_AA26 LVDS RX or CMOS I/O or

differential clock input

Depend on JP2

HSMC_CLKIN_p2 PIN_H15 LVDS RX or CMOS I/O or

differential clock input

Depend on JP2

HSMC_CLK_OUT0 PIN_AD29 Dedicated clock output Depend on JP2

HSMC_CLKOUT_n1 PIN_E6 LVDS TX or CMOS I/O or

differential clock input/output

Depend on JP2

HSMC_CLKOUT_n2 PIN_A10 LVDS TX or CMOS I/O or

differential clock input/output

Depend on JP2

HSMC_CLKOUT_p1 PIN_E7 LVDS TX or CMOS I/O or

differential clock input/output

Depend on JP2

HSMC_CLKOUT_p2 PIN_A11 LVDS TX or CMOS I/O or

differential clock input/output

Depend on JP2

HSMC_D[0] PIN_C10 LVDS TX or CMOS I/O Depend on JP2

HSMC_D[1] PIN_H13 LVDS RX or CMOS I/O Depend on JP2

HSMC_D[2] PIN_C9 LVDS TX or CMOS I/O Depend on JP2

HSMC_D[3] PIN_H12 LVDS RX or CMOS I/O Depend on JP2

HSMC_SCL PIN_AA28 Management serial data Depend on JP2

HSMC_SDA PIN_AE29 Management serial clock Depend on JP2

HSMC_GXB_RX_p[0] PIN_AE2 Transceiver RX bit 0 1.5-V PCML

HSMC_GXB_RX_p[1] PIN_AC2 Transceiver RX bit 1 1.5-V PCML

HSMC_GXB_RX_p[2] PIN_AA2 Transceiver RX bit 2 1.5-V PCML

HSMC_GXB_RX_p[3] PIN_W2 Transceiver RX bit 3 1.5-V PCML

HSMC_GXB_RX_p[4] PIN_U2 Transceiver RX bit 4 1.5-V PCML

HSMC_GXB_RX_p[5] PIN_R2 Transceiver RX bit 5 1.5-V PCML

HSMC_GXB_RX_p[6] PIN_N2 Transceiver RX bit 6 1.5-V PCML

HSMC_GXB_RX_p[7] PIN_J2 Transceiver RX bit 7 1.5-V PCML

HSMC_GXB_TX_p[0] PIN_AD4 Transceiver TX bit 0 1.5-V PCML

HSMC_GXB_TX_p[1] PIN_AB4 Transceiver TX bit 1 1.5-V PCML

HSMC_GXB_TX_p[2] PIN_Y4 Transceiver TX bit 2 1.5-V PCML

HSMC_GXB_TX_p[3] PIN_V4 Transceiver TX bit 3 1.5-V PCML

HSMC_GXB_TX_p[4] PIN_T4 Transceiver TX bit 4 1.5-V PCML

HSMC_GXB_TX_p[5] PIN_P4 Transceiver TX bit 5 1.5-V PCML

HSMC_GXB_TX_p[6] PIN_M4 Transceiver TX bit 6 1.5-V PCML

HSMC_GXB_TX_p[7] PIN_H4 Transceiver TX bit 7 1.5-V PCML

HSMC_GXB_RX_n[0] PIN_AE1 Transceiver RX bit 0n 1.5-V PCML

HSMC_GXB_RX_n[1] PIN_AC1 Transceiver RX bit 1n 1.5-V PCML

HSMC_GXB_RX_n[2] PIN_AA1 Transceiver RX bit 2n 1.5-V PCML

HSMC_GXB_RX_n[3] PIN_W1 Transceiver RX bit 3n 1.5-V PCML

HSMC_GXB_RX_n[4] PIN_U1 Transceiver RX bit 4n 1.5-V PCML

HSMC_GXB_RX_n[5] PIN_R1 Transceiver RX bit 5n 1.5-V PCML

HSMC_GXB_RX_n[6] PIN_N1 Transceiver RX bit 6n 1.5-V PCML

HSMC_GXB_RX_n[7] PIN_J1 Transceiver RX bit 7n 1.5-V PCML

HSMC_GXB_TX_n[0] PIN_AD3 Transceiver TX bit 0n 1.5-V PCML

25

HSMC_GXB_TX_n[1] PIN_AB3 Transceiver TX bit 1n 1.5-V PCML

HSMC_GXB_TX_n[2] PIN_Y3 Transceiver TX bit 2n 1.5-V PCML

HSMC_GXB_TX_n[3] PIN_V3 Transceiver TX bit 3n 1.5-V PCML

HSMC_GXB_TX_n[4] PIN_T3 Transceiver TX bit 4n 1.5-V PCML

HSMC_GXB_TX_n[5] PIN_P3 Transceiver TX bit 5n 1.5-V PCML

HSMC_GXB_TX_n[6] PIN_M3 Transceiver TX bit 6n 1.5-V PCML

HSMC_GXB_TX_n[7] PIN_H3 Transceiver TX bit 7n 1.5-V PCML

HSMC_RX _n[0] PIN_G11 LVDS RX bit 0n or CMOS I/O Depend on JP2

HSMC_RX _n[1] PIN_J12 LVDS RX bit 1n or CMOS I/O Depend on JP2

HSMC_RX _n[2] PIN_F10 LVDS RX bit 2n or CMOS I/O Depend on JP2

HSMC_RX _n[3] PIN_J9 LVDS RX bit 3n or CMOS I/O Depend on JP2

HSMC_RX _n[4] PIN_K8 LVDS RX bit 4n or CMOS I/O Depend on JP2

HSMC_RX _n[5] PIN_H7 LVDS RX bit 5n or CMOS I/O Depend on JP2

HSMC_RX _n[6] PIN_G8 LVDS RX bit 6n or CMOS I/O Depend on JP2

HSMC_RX _n[7] PIN_F8 LVDS RX bit 7n or CMOS I/O Depend on JP2

HSMC_RX _n[8] PIN_E11 LVDS RX bit 8n or CMOS I/O Depend on JP2

HSMC_RX _n[9] PIN_B5 LVDS RX bit 9n or CMOS I/O Depend on JP2

HSMC_RX _n[10] PIN_D9 LVDS RX bit 10n or CMOS I/O Depend on JP2

HSMC_RX _n[11] PIN_D12 LVDS RX bit 11n or CMOS I/O Depend on JP2

HSMC_RX _n[12] PIN_D10 LVDS RX bit 12n or CMOS I/O Depend on JP2

HSMC_RX _n[13] PIN_B12 LVDS RX bit 13n or CMOS I/O Depend on JP2

HSMC_RX _n[14] PIN_E13 LVDS RX bit 14n or CMOS I/O Depend on JP2

HSMC_RX _n[15] PIN_G13 LVDS RX bit 15n or CMOS I/O Depend on JP2

HSMC_RX _n[16] PIN_F14 LVDS RX bit 16n or CMOS I/O Depend on JP2

HSMC_RX _p[0] PIN_G12 LVDS RX bit 0 or CMOS I/O Depend on JP2

HSMC_RX _p[1] PIN_K12 LVDS RX bit 1 or CMOS I/O Depend on JP2

HSMC_RX _p[2] PIN_G10 LVDS RX bit 2 or CMOS I/O Depend on JP2

HSMC_RX _p[3] PIN_J10 LVDS RX bit 3 or CMOS I/O Depend on JP2

HSMC_RX _p[4] PIN_K7 LVDS RX bit 4 or CMOS I/O Depend on JP2

HSMC_RX _p[5] PIN_J7 LVDS RX bit 5 or CMOS I/O Depend on JP2

HSMC_RX _p[6] PIN_H8 LVDS RX bit 6 or CMOS I/O Depend on JP2

HSMC_RX _p[7] PIN_F9 LVDS RX bit 7 or CMOS I/O Depend on JP2

HSMC_RX _p[8] PIN_F11 LVDS RX bit 8 or CMOS I/O Depend on JP2

HSMC_RX _p[9] PIN_B6 LVDS RX bit 9 or CMOS I/O Depend on JP2

HSMC_RX _p[10] PIN_E9 LVDS RX bit 10 or CMOS I/O Depend on JP2

HSMC_RX _p[11] PIN_E12 LVDS RX bit 11 or CMOS I/O Depend on JP2

HSMC_RX _p[12] PIN_D11 LVDS RX bit 12 or CMOS I/O Depend on JP2

HSMC_RX _p[13] PIN_C13 LVDS RX bit 13 or CMOS I/O Depend on JP2

HSMC_RX _p[14] PIN_F13 LVDS RX bit 14 or CMOS I/O Depend on JP2

HSMC_RX _p[15] PIN_H14 LVDS RX bit 15 or CMOS I/O Depend on JP2

HSMC_RX _p[16] PIN_F15 LVDS RX bit 16 or CMOS I/O Depend on JP2

HSMC_TX _n[0] PIN_A8 LVDS TX bit 0n or CMOS I/O Depend on JP2

HSMC_TX _n[1] PIN_D7 LVDS TX bit 1n or CMOS I/O Depend on JP2

HSMC_TX _n[2] PIN_F6 LVDS TX bit 2n or CMOS I/O Depend on JP2

HSMC_TX _n[3] PIN_C5 LVDS TX bit 3n or CMOS I/O Depend on JP2

HSMC_TX _n[4] PIN_C4 LVDS TX bit 4n or CMOS I/O Depend on JP2

26

HSMC_TX _n[5] PIN_E2 LVDS TX bit 5n or CMOS I/O Depend on JP2

HSMC_TX _n[6] PIN_D4 LVDS TX bit 6n or CMOS I/O Depend on JP2

HSMC_TX _n[7] PIN_B3 LVDS TX bit 7n or CMOS I/O Depend on JP2

HSMC_TX _n[8] PIN_D1 LVDS TX bit 8n or CMOS I/O Depend on JP2

HSMC_TX _n[9] PIN_C2 LVDS TX bit 9n or CMOS I/O Depend on JP2

HSMC_TX _n[10] PIN_B1 LVDS TX bit 10n or CMOS I/O Depend on JP2

HSMC_TX _n[11] PIN_A3 LVDS TX bit 11n or CMOS I/O Depend on JP2

HSMC_TX _n[12] PIN_A5 LVDS TX bit 12n or CMOS I/O Depend on JP2

HSMC_TX _n[13] PIN_B7 LVDS TX bit 13n or CMOS I/O Depend on JP2

HSMC_TX _n[14] PIN_B8 LVDS TX bit 14n or CMOS I/O Depend on JP2

HSMC_TX _n[15] PIN_B11 LVDS TX bit 15n or CMOS I/O Depend on JP2

HSMC_TX _n[16] PIN_A13 LVDS TX bit 16n or CMOS I/O Depend on JP2

HSMC_TX _p[0] PIN_A9 LVDS TX bit 0 or CMOS I/O Depend on JP2

HSMC_TX _p[1] PIN_E8 LVDS TX bit 1 or CMOS I/O Depend on JP2

HSMC_TX _p[2] PIN_G7 LVDS TX bit 2 or CMOS I/O Depend on JP2

HSMC_TX _p[3] PIN_D6 LVDS TX bit 3 or CMOS I/O Depend on JP2

HSMC_TX _p[4] PIN_D5 LVDS TX bit 4 or CMOS I/O Depend on JP2

HSMC_TX _p[5] PIN_E3 LVDS TX bit 5 or CMOS I/O Depend on JP2

HSMC_TX _p[6] PIN_E4 LVDS TX bit 6 or CMOS I/O Depend on JP2

HSMC_TX _p[7] PIN_C3 LVDS TX bit 7 or CMOS I/O Depend on JP2

HSMC_TX _p[8] PIN_E1 LVDS TX bit 8 or CMOS I/O Depend on JP2

HSMC_TX _p[9] PIN_D2 LVDS TX bit 9 or CMOS I/O Depend on JP2

HSMC_TX _p[10] PIN_B2 LVDS TX bit 10 or CMOS I/O Depend on JP2

HSMC_TX _p[11] PIN_A4 LVDS TX bit 11 or CMOS I/O Depend on JP2

HSMC_TX _p[12] PIN_A6 LVDS TX bit 12 or CMOS I/O Depend on JP2

HSMC_TX _p[13] PIN_C7 LVDS TX bit 13 or CMOS I/O Depend on JP2

HSMC_TX _p[14] PIN_C8 LVDS TX bit 14 or CMOS I/O Depend on JP2

HSMC_TX _p[15] PIN_C12 LVDS TX bit 15 or CMOS I/O Depend on JP2

HSMC_TX _p[16] PIN_B13 LVDS TX bit 16 or CMOS I/O Depend on JP2

3.6.3 Audio CODEC

The board provides high-quality 24-bit audio via the Analog Devices SSM2603 audio CODEC

(Encoder/Decoder). This chip supports microphone-in, line-in, and line-out ports, with a sample rate

adjustable from 8 kHz to 96 kHz. The SSM2603 is controlled via a serial I2C bus interface, which

is connected to pins on the Cyclone V SoC FPGA. A schematic diagram of the audio circuitry is

shown in Figure 3-16. Detailed information for using the SSM2603 codec is available in its

datasheet, which can be found on the manufacturer’s website, or in the Datasheets\Audio CODEC

folder on the SoCKit System CD

27

 Figure 3-16 Connections between FPGA and Audio CODEC

Table 3-14 Pin Assignments for Audio CODEC

Signal Name FPGA Pin No. Description I/O Standard

AUD_ADCLRCK PIN_AG30 Audio CODEC ADC LR Clock 3.3V

AUD_ADCDAT PIN_AC27 Audio CODEC ADC Data 3.3V

AUD_DACLRCK PIN_AH4 Audio CODEC DAC LR Clock 3.3V

AUD_DACDAT PIN_AG3 Audio CODEC DAC Data 3.3V

AUD_XCK PIN_AC9 Audio CODEC Chip Clock 3.3V

AUD_BCLK PIN_AE7 Audio CODEC Bit-Stream Clock 3.3V

AUD_I2C_SCLK PIN_AH30 I2C Clock 3.3V

AUD_I2C_SDAT PIN_AF30 I2C Data 3.3V

AUD_MUTE PIN_AD26 DAC Output Mute, Active Low 3.3V

3.6.4 VGA

The board includes a 15-pin D-SUB connector for VGA output. The VGA synchronization signals

are provided directly from the Cyclone V SoC FPGA, and the Analog Devices ADV7123 triple

10-bit high-speed video DAC (only the higher 8-bits are used) is used to produce the analog data

signals (red, green, and blue). It could support the SXGA standard (1280*1024) with a bandwidth

of 100MHz. Figure 3-17 gives the associated schematic.

28

Figure 3-17 VGA Connections between FPGA and VGA

The timing specification for VGA synchronization and RGB (red, green, blue) data can be found on

various educational website (for example, search for “VGA signal timing”). Figure 3-18 illustrates

the basic timing requirements for each row (horizontal) that is displayed on a VGA monitor. An

active-low pulse of specific duration (time (a) in the figure) is applied to the horizontal

synchronization (hsync) input of the monitor, which signifies the end of one row of data and the

start of the next. The data (RGB) output to the monitor must be off (driven to 0 V) for a time period

called the back porch (b) after the hsync pulse occurs, which is followed by the display interval (c).

During the data display interval the RGB data drives each pixel in turn across the row being

displayed. Finally, there is a time period called the front porch (d) where the RGB signals must

again be off before the next hsync pulse can occur. The timing of the vertical synchronization

(vsync) is the similar as shown in Figure 3-18, except that a vsync pulse signifies the end of one

frame and the start of the next, and the data refers to the set of rows in the frame (horizontal timing).

Table 3-15 and Table 3-16 show different resolutions and durations of time periods a, b, c, and d

for both horizontal and vertical timing.

Detailed information for using the ADV7123 video DAC is available in its datasheet, which can be

found on the manufacturer’s website, or in the Datasheets\VIDEO DAC folder on the SoCKit

System CD. The pin assignments between the Cyclone V SoC FPGA and the ADV7123 are listed in

Table 3-17

29

Figure 3-18 VGA horizontal timing specification

Table 3-15 VGA Horizontal Timing Specification

VGA mode Horizontal Timing Spec

Configuration Resolution(HxV) a(us) b(us) c(us) d(us) Pixel clock(MHz)

VGA(60Hz) 640x480 3.8 1.9 25.4 0.6 25

VGA(85Hz) 640x480 1.6 2.2 17.8 1.6 36

SVGA(60Hz) 800x600 3.2 2.2 20 1 40

SVGA(75Hz) 800x600 1.6 3.2 16.2 0.3 49

SVGA(85Hz) 800x600 1.1 2.7 14.2 0.6 56

XGA(60Hz) 1024x768 2.1 2.5 15.8 0.4 65

XGA(70Hz) 1024x768 1.8 1.9 13.7 0.3 75

XGA(85Hz) 1024x768 1.0 2.2 10.8 0.5 95

1280x1024(60Hz) 1280x1024 1.0 2.3 11.9 0.4 108

Table 3-16 VGA Vertical Timing Specification

VGA mode Vertical Timing Spec

Configuration Resolution(HxV) a(lines) b(lines) c(lines) d(lines) Pixel clock(MHz)

VGA(60Hz) 640x480 2 33 480 10 25

VGA(85Hz) 640x480 3 25 480 1 36

SVGA(60Hz) 800x600 4 23 600 1 40

SVGA(75Hz) 800x600 3 21 600 1 49

SVGA(85Hz) 800x600 3 27 600 1 56

XGA(60Hz) 1024x768 6 29 768 3 65

XGA(70Hz) 1024x768 6 29 768 3 75

XGA(85Hz) 1024x768 3 36 768 1 95

1280x1024(60Hz) 1280x1024 3 38 1024 1 108

30

Table 3-17 Pin Assignments for VGA

Signal Name FPGA Pin No. Description I/O Standard

VGA_R[0] PIN_AG5 VGA Red[0] 3.3V

VGA_R[1] PIN_AA12 VGA Red[1] 3.3V

VGA_R[2] PIN_AB12 VGA Red[2] 3.3V

VGA_R[3] PIN_AF6 VGA Red[3] 3.3V

VGA_R[4] PIN_AG6 VGA Red[4] 3.3V

VGA_R[5] PIN_AJ2 VGA Red[5] 3.3V

VGA_R[6] PIN_AH5 VGA Red[6] 3.3V

VGA_R[7] PIN_AJ1 VGA Red[7] 3.3V

VGA_G[0] PIN_Y21 VGA Green[0] 3.3V

VGA_G[1] PIN_AA25 VGA Green[1] 3.3V

VGA_G[2] PIN_AB26 VGA Green[2] 3.3V

VGA_G[3] PIN_AB22 VGA Green[3] 3.3V

VGA_G[4] PIN_AB23 VGA Green[4] 3.3V

VGA_G[5] PIN_AA24 VGA Green[5] 3.3V

VGA_G[6] PIN_AB25 VGA Green[6] 3.3V

VGA_G[7] PIN_AE27 VGA Green[7] 3.3V

VGA_B[0] PIN_AE28 VGA Blue[0] 3.3V

VGA_B[1] PIN_Y23 VGA Blue[1] 3.3V

VGA_B[2] PIN_Y24 VGA Blue[2] 3.3V

VGA_B[3] PIN_AG28 VGA Blue[3] 3.3V

VGA_B[4] PIN_AF28 VGA Blue[4] 3.3V

VGA_B[5] PIN_V23 VGA Blue[5] 3.3V

VGA_B[6] PIN_W24 VGA Blue[6] 3.3V

VGA_B[7] PIN_AF29 VGA Blue[7] 3.3V

VGA_CLK PIN_W20 VGA Clock 3.3V

VGA_BLANK_n PIN_AH3 VGA BLANK 3.3V

VGA_HS PIN_AD12 VGA H_SYNC 3.3V

VGA_VS PIN_AC12 VGA V_SYNC 3.3V

VGA_SYNC_n PIN_AG2 VGA SYNC 3.3V

3.6.5 IR Receiver

The board provides an infrared remote-control receiver module (model: IRM-V5XX/TR1), whose

datasheet is offered in the Datasheets\IR_Receiver folder on SoCKit System CD. The accompanied

remote controller with an encoding chip of uPD6121G is very suitable of generating expected

infrared signals. Figure 3-19 shows the related schematic of the IR receiver. Table 3-18 shows the

IR receiver interface pin assignments.

31

Figure 3-19 Connection between FPGA and IR

Table 3-18 Pin Assignments for IR

Signal Name FPGA Pin No. Description I/O Standard

IRDA_RXD PIN_ AH2 IR Receiver 3.3V

3.6.6 DDR3 Memory on FPGA

The board supports 1GB of DDR3 SDRAM comprising of two x16 bit DDR3 devices on FPGA

side. The DDR3 devices shipped with this board are running at 400MHz if the hard external

memory interface is enabled, and at 300MHz if the hard external memory interface if not enabled.

Figure 3-20 shows the connections between the DDR3 and Cyclone V SoC FPGA. Table 3-19

shows the DDR3 interface pin assignments.

Figure 3-20 Connections between FPGA and DDR3

32

Table 3-19 Pin Assignments for DDR3

Signal Name FPGA Pin No. Description I/O Standard

DDR3_A[0] PIN_AJ14 DDR3 Address[0] SSTL-15 Class I

DDR3_A[1] PIN_AK14 DDR3 Address[1] SSTL-15 Class I

DDR3_A[2] PIN_AH12 DDR3 Address[2] SSTL-15 Class I

DDR3_A[3] PIN_AJ12 DDR3 Address[3] SSTL-15 Class I

DDR3_A[4] PIN_AG15 DDR3 Address[4] SSTL-15 Class I

DDR3_A[5] PIN_AH15 DDR3 Address[5] SSTL-15 Class I

DDR3_A[6] PIN_AK12 DDR3 Address[6] SSTL-15 Class I

DDR3_A[7] PIN_AK13 DDR3 Address[7] SSTL-15 Class I

DDR3_A[8] PIN_AH13 DDR3 Address[8] SSTL-15 Class I

DDR3_A[9] PIN_AH14 DDR3 Address[9] SSTL-15 Class I

DDR3_A[10] PIN_AJ9 DDR3 Address[10] SSTL-15 Class I

DDR3_A[11] PIN_AK9 DDR3 Address[11] SSTL-15 Class I

DDR3_A[12] PIN_AK7 DDR3 Address[12] SSTL-15 Class I

DDR3_A[13] PIN_AK8 DDR3 Address[13] SSTL-15 Class I

DDR3_A[14] PIN_AG12 DDR3 Address[14] SSTL-15 Class I

DDR3_BA[0] PIN_AH10 DDR3 Bank Address[0] SSTL-15 Class I

DDR3_BA[1] PIN_AJ11 DDR3 Bank Address[1] SSTL-15 Class I

DDR3_BA[2] PIN_AK11 DDR3 Bank Address[2] SSTL-15 Class I

DDR3_CAS_n PIN_AH7 DDR3 Column Address Strobe SSTL-15 Class I

DDR3_CKE PIN_AJ21 Clock Enable pin for DDR3 SSTL-15 Class I

DDR3_CK_n PIN_AA15 Clock for DDR3

DIFFERENTIAL 1.5-V

SSTL

CLASS I

DDR3_CK_p PIN_AA14 Clock p for DDR3
Differential 1.5-V SSTL

Class I

DDR3_CS_n PIN_AB15 DDR3 Chip Select SSTL-15 Class I

DDR3_DM[0] PIN_AH17 DDR3 Data Mask[0] SSTL-15 Class I

DDR3_DM[1] PIN_AG23 DDR3 Data Mask[1] SSTL-15 Class I

DDR3_DM[2] PIN_AK23 DDR3 Data Mask[2] SSTL-15 Class I

DDR3_DM[3] PIN_AJ27 DDR3 Data Mask[3] SSTL-15 Class I

DDR3_DQ[0] PIN_AF18 DDR3 Data[0] SSTL-15 Class I

DDR3_DQ[1] PIN_AE17 DDR3 Data[1] SSTL-15 Class I

DDR3_DQ[2] PIN_AG16 DDR3 Data[2] SSTL-15 Class I

DDR3_DQ[3] PIN_AF16 DDR3 Data[3] SSTL-15 Class I

DDR3_DQ[4] PIN_AH20 DDR3 Data[4] SSTL-15 Class I

DDR3_DQ[5] PIN_AG21 DDR3 Data[5] SSTL-15 Class I

DDR3_DQ[6] PIN_AJ16 DDR3 Data[6] SSTL-15 Class I

DDR3_DQ[7] PIN_AH18 DDR3 Data[7] SSTL-15 Class I

DDR3_DQ[8] PIN_AK18 DDR3 Data[8] SSTL-15 Class I

DDR3_DQ[9] PIN_AJ17 DDR3 Data[9] SSTL-15 Class I

DDR3_DQ[10] PIN_AG18 DDR3 Data[10] SSTL-15 Class I

DDR3_DQ[11] PIN_AK19 DDR3 Data[11] SSTL-15 Class I

DDR3_DQ[12] PIN_AG20 DDR3 Data[12] SSTL-15 Class I

DDR3_DQ[13] PIN_AF19 DDR3 Data[13] SSTL-15 Class I

33

DDR3_DQ[14] PIN_AJ20 DDR3 Data[14] SSTL-15 Class I

DDR3_DQ[15] PIN_AH24 DDR3 Data[15] SSTL-15 Class I

DDR3_DQ[16] PIN_AE19 DDR3 Data[16] SSTL-15 Class I

DDR3_DQ[17] PIN_AE18 DDR3 Data[17] SSTL-15 Class I

DDR3_DQ[18] PIN_AG22 DDR3 Data[18] SSTL-15 Class I

DDR3_DQ[19] PIN_AK22 DDR3 Data[19] SSTL-15 Class I

DDR3_DQ[20] PIN_AF21 DDR3 Data[20] SSTL-15 Class I

DDR3_DQ[21] PIN_AF20 DDR3 Data[21] SSTL-15 Class I

DDR3_DQ[22] PIN_AH23 DDR3 Data[22] SSTL-15 Class I

DDR3_DQ[23] PIN_AK24 DDR3 Data[23] SSTL-15 Class I

DDR3_DQ[24] PIN_AF24 DDR3 Data[24] SSTL-15 Class I

DDR3_DQ[25] PIN_AF23 DDR3 Data[25] SSTL-15 Class I

DDR3_DQ[26] PIN_AJ24 DDR3 Data[26] SSTL-15 Class I

DDR3_DQ[27] PIN_AK26 DDR3 Data[27] SSTL-15 Class I

DDR3_DQ[28] PIN_AE23 DDR3 Data[28] SSTL-15 Class I

DDR3_DQ[29] PIN_AE22 DDR3 Data[29] SSTL-15 Class I

DDR3_DQ[30] PIN_AG25 DDR3 Data[30] SSTL-15 Class I

DDR3_DQ[31] PIN_AK27 DDR3 Data[31] SSTL-15 Class I

DDR3_DQS_n[0] PIN_W16 DDR3 Data Strobe n[0]
Differential 1.5-V SSTL

Class I

DDR3_DQS_n[1] PIN_W17 DDR3 Data Strobe n[1]
Differential 1.5-V SSTL

Class I

DDR3_DQS_n[2] PIN_AA18 DDR3 Data Strobe n[2]
Differential 1.5-V SSTL

Class I

DDR3_DQS_n[3] PIN_AD19 DDR3 Data Strobe n[3]
Differential 1.5-V SSTL

Class I

DDR3_DQS_p[0] PIN_V16 DDR3 Data Strobe p[0]
Differential 1.5-V SSTL

Class I

DDR3_DQS_p[1] PIN_V17 DDR3 Data Strobe p[1]
Differential 1.5-V SSTL

Class I

DDR3_DQS_p[2] PIN_Y17 DDR3 Data Strobe p[2]
Differential 1.5-V SSTL

Class I

DDR3_DQS_p[3] PIN_AC20 DDR3 Data Strobe p[3]
Differential 1.5-V SSTL

Class I

DDR3_ODT PIN_AE16 DDR3 On-die Termination SSTL-15 Class I

DDR3_RAS_n PIN_AH8 DDR3 Row Address Strobe SSTL-15 Class I

DDR3_RESET_n PIN_AK21 DDR3 Reset SSTL-15 Class I

DDR3_WE_n PIN_AJ6 DDR3 Write Enable SSTL-15 Class I

DDR3_RZQ PIN_AG17
External reference ball for

output drive calibration

1.5V

34

3.6.7 Temperature Sensor

The board contains a temperature sensor (Analog Devices ADT7301) to monitor the ambient

temperature. It is a band gap temperature sensor with a 13-bit ADC to monitor and digitize the

temperature reading to a resolution of 0.03125°C. The interface between sensor and FPGA is SPI

serial interface. Detailed information for using the sensor is available in its datasheet, which can be

found on the manufacturer’s website, or in the Datasheets\TEMP_Sensor folder on the SoCKit

System CD. Figure 3-21 shows the connections between temperature sensor and Cyclone V SoC

FPGA. Table 3-20 gives the all the pin assignments of the sensor.

Figure 3-21 Connections between FPGA and Temperature Sensor

Table 3-20 Pin Assignments for Temperature Sensor

Signal Name FPGA Pin No. Description I/O Standard

TEMP_CS_n PIN_AF8 Temp Sensor Chip Select Input 3.3V

TEMP_DIN PIN_AG7 Temp Sensor Serial Data Input 3.3V

TEMP_DOUT PIN_AG1 Temp Sensor Serial Data Output 3.3V

TEMP_SCLK PIN_AF9 Temp Sensor Serial Clock Input 3.3V

33..77 IInntteerrffaaccee oonn HHaarrdd PPrroocceessssoorr SSyysstteemm ((HHPPSS))

This section introduces the interfaces connected to the HPS section of the FPGA. Users can access

these interfaces via the HPS processor.

35

33..77..11 UUsseerr PPuusshh--bbuuttttoonnss,, SSwwiittcchheess aanndd LLEEDD oonn HHPPSS

Like the FPGA, the HPS also features its own set of switches, buttons, LEDs, and other user

interfaces. Users can control these interfaces for observing HPS status and debugging.

Table 3-21 gives the all the pin assignments of all the user interfaces.

Table 3-21 Pin Assignments for LEDs, Switches and Buttons

Signal Name HPS GPIO Register/bit Function

HPS_KEY[0] GPI8 GPIO2[21] Input only

HPS_KEY[1] GPI9 GPIO2[22] Input only

HPS_KEY[2] GPI10 GPIO2[23] Input only

HPS_KEY[3] GPI11 GPIO2[24] Input only

HPS_SW[0] GPI7 GPIO2[20] Input only

HPS_SW[1] GPI6 GPIO2[19] Input only

HPS_SW[2] GPI5 GPIO2[18] Input only

HPS_SW[3] GPI4 GPIO2[17] Input only

HPS_LED[0] GPIO54 GPIO1[25] I/O

HPS_LED[1] GPIO55 GPIO1[26] I/O

HPS_LED[2] GPIO56 GPIO1[27] I/O

HPS_LED[3] GPIO57 GPIO1[28] I/O

33..77..22 GGiiggaabbiitt EEtthheerrnneett

The board provides Ethernet support via an external Micrel KSZ9021RN PHY chip and HPS

Ethernet MAC function. The KSZ9021RN chip with integrated 10/100/1000 Mbps Gigabit Ethernet

transceiver support RGMII MAC interfaces. Figure 3-22 shows the connection setup between the

Gigabit Ethernet PHY and Cyclone V SoC FPGA.

The associated pin assignments are listed in Table 3-22. For detailed information on how to use the

KSZ9021RN refers to its datasheet and application notes, which are available on the manufacturer’s

website.

36

HPS_ENET_TX_EN

TXD[3..0]

GTX_CLK

TX_EN

RXD[3..0]

RX_CLK

RX_DV

MDC

MDIO

INT_N

RESET_N

X1

TXRXP

TXRXM

LED1

LED2

TRD+

TRD-

LED2-1

LED2-2

U13

KSZ9021RN

HPS_ENET_RX_DATA[3..0] MDI_HPS_N

HPS_ENET_RX_CLK

HPS_ENET_RX_DV

HPS_ENET_MDC

HPS_ENET_MDIO

HPS_ENET_INT_N

HPS_ENET_RESET_N

MDI_HPS_P

LED2_DUAL_1

LED2_DUAL_2

HPS_ENET_TX_DATA[3..0]

HPS_ENET_GTX_CLK

J11

RJ45_1368589_5

OSC_25

Figure 3-22 Connections between Cyclone V SoC FPGA and Ethernet

Table 3-22 Pin Assignments for Ethernet PHY

Signal Name FPGA Pin No. Description I/O Standard

HPS_ENET_TX_EN PIN_A20 GMII and MII transmit enable 3.3V

HPS_ENET_TX_DATA[0] PIN_F20 MII transmit data[0] 3.3V

HPS_ENET_TX_DATA[1] PIN_J19 MII transmit data[1] 3.3V

HPS_ENET_TX_DATA[2] PIN_F21 MII transmit data[2] 3.3V

HPS_ENET_TX_DATA[3] PIN_F19 MII transmit data[3] 3.3V

HPS_ENET_RX_DV PIN_K17 GMII and MII receive data valid 3.3V

HPS_ENET_RX_DATA[0] PIN_A21 GMII and MII receive data[0] 3.3V

HPS_ENET_RX_DATA[1] PIN_B20 GMII and MII receive data[1] 3.3V

HPS_ENET_RX_DATA[2] PIN_B18 GMII and MII receive data[2] 3.3V

HPS_ENET_RX_DATA[3] PIN_D21 GMII and MII receive data[3] 3.3V

HPS_ENET_RX_CLK PIN_G20 GMII and MII receive clock 3.3V

HPS_ENET_RESET_n PIN_E18 Hardware Reset Signal 3.3V

HPS_ENET_MDIO PIN_E21 Management Data 3.3V

HPS_ENET_MDC PIN_B21 Management Data Clock Reference 3.3V

HPS_ENET_INT_n PIN_C19 Interrupt Open Drain Output 3.3V

HPS_ENET_GTX_CLK PIN_H19 GMII Transmit Clock 3.3V

Additionally, the Ethernet PHY (KSZ9021RNI) LED status has been set to tri-color dual LED mode.

The LED control signals are connected to LEDs (orange and green) on the RJ45 connector. States

and definitions can be found in Table 3-23, which can display the current status of the Ethernet. For

example once the green LED lights on , the board has been connected to Giga bit Ethernet.

37

Table 3-23 Tri-Color Dual LED Mode-Pin Definition

LED (State) LED (Definition) Link /Activity

 LED2 LED1 LED2 LED1

H H OFF OFF Link off

L H ON OFF 1000 Link / No Activity

Toggle H Blinking OFF 1000 Link / Activity (RX, TX)

H L OFF ON 100 Link / No Activity

H Toggle OFF Blinking 100 Link / Activity (RX, TX)

L L ON ON 10 Link/ No Activity

Toggle Toggle Blinking Blinking 10 Link / Activity (RX, TX)

33..77..33 UUAARRTT

The board has one UART interface connected for communication with the HPS. This interface

wouldn’t support HW flow control signals. The physical interface is done using UART-USB

onboard bridge from an FT232R chip and connects to the host using a Micro-USB (B) connector.

For detailed information on how to use the transceiver, please refer to the datasheet, which is

available on the manufacturer’s website, or in the Datasheets\FT232 folder on the SoCKit System

CD. Figure 3-23 shows the related schematics, and Table 3-24 lists the pin assignments of HPS in

Cyclone V SoC FPGA.

Figure 3-23 Connections between the Cyclone V SoC FPGA and FT232R Chip

Table 3-24 UART Interface I/O

Signal Name FPGA Pin No. Description I/O Standard

HPS_UART_RX PIN_B25 HPS UART Receiver 3.3V

HPS_UART_TX PIN_C25 HPS UART Transmitter 3.3V

HPS_CONV_USB_n PIN_B15 Reserve 3.3V

38

33..77..44 DDDDRR33 MMeemmoorryy oonn HHPPSS

The DDR3 devices that are connected to the HPS are the exact same devices connected to the

FPGA in capacity (1GB) and data-width (32-bit), comprised of two x16 devices with a single

address/command bus. This interface connects to dedicate Hard Memory Controller for HPS I/O

banks and the target speed is 400 MHz. Table 3-25 lists DDR3 pin assignments, I/O standards and

descriptions with Cyclone V SoC FPGA.

Table 3-25 Pin Assignments for DDR3 Memory

Signal Name FPGA Pin No. Description I/O Standard

HPS_DDR3_A[0] PIN_F26 HPS DDR3 Address[0] SSTL-15 Class I

HPS_DDR3_A[1] PIN_G30 HPS DDR3 Address[1] SSTL-15 Class I

HPS_DDR3_A[2] PIN_F28 HPS DDR3 Address[2] SSTL-15 Class I

HPS_DDR3_A[3] PIN_F30 HPS DDR3 Address[3] SSTL-15 Class I

HPS_DDR3_A[4] PIN_J25 HPS DDR3 Address[4] SSTL-15 Class I

HPS_DDR3_A[5] PIN_J27 HPS DDR3 Address[5] SSTL-15 Class I

HPS_DDR3_A[6] PIN_F29 HPS DDR3 Address[6] SSTL-15 Class I

HPS_DDR3_A[7] PIN_E28 HPS DDR3 Address[7] SSTL-15 Class I

HPS_DDR3_A[8] PIN_H27 HPS DDR3 Address[8] SSTL-15 Class I

HPS_DDR3_A[9] PIN_G26 HPS DDR3 Address[9] SSTL-15 Class I

HPS_DDR3_A[10] PIN_D29 HPS DDR3 Address[10] SSTL-15 Class I

HPS_DDR3_A[11] PIN_C30 HPS DDR3 Address[11] SSTL-15 Class I

HPS_DDR3_A[12] PIN_B30 HPS DDR3 Address[12] SSTL-15 Class I

HPS_DDR3_A[13] PIN_C29 HPS DDR3 Address[13] SSTL-15 Class I

HPS_DDR3_A[14] PIN_H25 HPS DDR3 Address[14] SSTL-15 Class I

HPS_DDR3_BA[0] PIN_E29 HPS DDR3 Bank Address[0] SSTL-15 Class I

HPS_DDR3_BA[1] PIN_J24 HPS DDR3 Bank Address[1] SSTL-15 Class I

HPS_DDR3_BA[2] PIN_J23 HPS DDR3 Bank Address[2] SSTL-15 Class I

HPS_DDR3_CAS_n PIN_E27 DDR3 Column Address Strobe SSTL-15 Class I

HPS_DDR3_CKE PIN_L29 HPS DDR3 Clock Enable SSTL-15 Class I

HPS_DDR3_CK_n PIN_L23 HPS DDR3 Clock Differential 1.5-V SSTL Class I

HPS_DDR3_CK_p PIN_M23 HPS DDR3 Clock p Differential 1.5-V SSTL Class I

HPS_DDR3_CS_n PIN_H24 HPS DDR3 Chip Select SSTL-15 Class I

HPS_DDR3_DM[0] PIN_K28 HPS DDR3 Data Mask[0] SSTL-15 Class I

HPS_DDR3_DM[1] PIN_M28 HPS DDR3 Data Mask[1] SSTL-15 Class I

HPS_DDR3_DM[2] PIN_R28 HPS DDR3 Data Mask[2] SSTL-15 Class I

HPS_DDR3_DM[3] PIN_W30 HPS DDR3 Data Mask[3] SSTL-15 Class I

HPS_DDR3_DQ[0] PIN_K23 HPS DDR3 Data[0] SSTL-15 Class I

HPS_DDR3_DQ[1] PIN_K22 HPS DDR3 Data[1] SSTL-15 Class I

HPS_DDR3_DQ[2] PIN_H30 HPS DDR3 Data[2] SSTL-15 Class I

HPS_DDR3_DQ[3] PIN_G28 HPS DDR3 Data[3] SSTL-15 Class I

HPS_DDR3_DQ[4] PIN_L25 HPS DDR3 Data[4] SSTL-15 Class I

HPS_DDR3_DQ[5] PIN_L24 HPS DDR3 Data[5] SSTL-15 Class I

39

HPS_DDR3_DQ[6] PIN_J30 HPS DDR3 Data[6] SSTL-15 Class I

HPS_DDR3_DQ[7] PIN_J29 HPS DDR3 Data[7] SSTL-15 Class I

HPS_DDR3_DQ[8] PIN_K26 HPS DDR3 Data[8] SSTL-15 Class I

HPS_DDR3_DQ[9] PIN_L26 HPS DDR3 Data[9] SSTL-15 Class I

HPS_DDR3_DQ[10] PIN_K29 HPS DDR3 Data[10] SSTL-15 Class I

HPS_DDR3_DQ[11] PIN_K27 HPS DDR3 Data[11] SSTL-15 Class I

HPS_DDR3_DQ[12] PIN_M26 HPS DDR3 Data[12] SSTL-15 Class I

HPS_DDR3_DQ[13] PIN_M27 HPS DDR3 Data[13] SSTL-15 Class I

HPS_DDR3_DQ[14] PIN_L28 HPS DDR3 Data[14] SSTL-15 Class I

HPS_DDR3_DQ[15] PIN_M30 HPS DDR3 Data[15] SSTL-15 Class I

HPS_DDR3_DQ[16] PIN_U26 HPS DDR3 Data[16] SSTL-15 Class I

HPS_DDR3_DQ[17] PIN_T26 HPS DDR3 Data[17] SSTL-15 Class I

HPS_DDR3_DQ[18] PIN_N29 HPS DDR3 Data[18] SSTL-15 Class I

HPS_DDR3_DQ[19] PIN_N28 HPS DDR3 Data[19] SSTL-15 Class I

HPS_DDR3_DQ[20] PIN_P26 HPS DDR3 Data[20] SSTL-15 Class I

HPS_DDR3_DQ[21] PIN_P27 HPS DDR3 Data[21] SSTL-15 Class I

HPS_DDR3_DQ[22] PIN_N27 HPS DDR3 Data[22] SSTL-15 Class I

HPS_DDR3_DQ[23] PIN_R29 HPS DDR3 Data[23] SSTL-15 Class I

HPS_DDR3_DQ[24] PIN_P24 HPS DDR3 Data[24] SSTL-15 Class I

HPS_DDR3_DQ[25] PIN_P25 HPS DDR3 Data[25] SSTL-15 Class I

HPS_DDR3_DQ[26] PIN_T29 HPS DDR3 Data[26] SSTL-15 Class I

HPS_DDR3_DQ[27] PIN_T28 HPS DDR3 Data[27] SSTL-15 Class I

HPS_DDR3_DQ[28] PIN_R27 HPS DDR3 Data[28] SSTL-15 Class I

HPS_DDR3_DQ[29] PIN_R26 HPS DDR3 Data[29] SSTL-15 Class I

HPS_DDR3_DQ[30] PIN_V30 HPS DDR3 Data[30] SSTL-15 Class I

HPS_DDR3_DQ[31] PIN_W29 HPS DDR3 Data[31] SSTL-15 Class I

HPS_DDR3_DQS_n[0] PIN_M19 HPS DDR3 Data Strobe n[0] Differential 1.5-V SSTL Class I

HPS_DDR3_DQS_n[1] PIN_N24 HPS DDR3 Data Strobe n[1] Differential 1.5-V SSTL Class I

HPS_DDR3_DQS_n[2] PIN_R18 HPS DDR3 Data Strobe n[2] Differential 1.5-V SSTL Class I

HPS_DDR3_DQS_n[3] PIN_R21 HPS DDR3 Data Strobe n[3] Differential 1.5-V SSTL Class I

HPS_DDR3_DQS_p[0] PIN_N18 HPS DDR3 Data Strobe p[0] Differential 1.5-V SSTL Class I

HPS_DDR3_DQS_p[1] PIN_N25 HPS DDR3 Data Strobe p[1] Differential 1.5-V SSTL Class I

HPS_DDR3_DQS_p[2] PIN_R19 HPS DDR3 Data Strobe p[2] Differential 1.5-V SSTL Class I

HPS_DDR3_DQS_p[3] PIN_R22 HPS DDR3 Data Strobe p[3] Differential 1.5-V SSTL Class I

HPS_DDR3_ODT PIN_H28 HPS DDR3 On-die Termination SSTL-15 Class I

HPS_DDR3_RAS_n PIN_D30 DDR3 Row Address Strobe SSTL-15 Class I

HPS_DDR3_RESET_n PIN_P30 HPS DDR3 Reset SSTL-15 Class I

HPS_DDR3_WE_n PIN_C28 HPS DDR3 Write Enable SSTL-15 Class I

HPS_DDR3_RZQ PIN_D27 External reference ball for

output drive calibration

1.5 V

33..77..55 QQSSPPII FFllaasshh

The board supports a 1G-bit serial NOR flash device for non-volatile storage of HPS boot code,

40

user data and program. The device is connected to HPS dedicated interface. It may contain

secondary boot code.

This device has a 4-bit data interface and uses 3.3V CMOS signaling standard. Connections

between Cyclone V SoC FPGA and Flash are shown in Figure 3-24.

To program the QSPI flash, the HPS Flash Programmer is provided both as part of the Altera

Quartus II suite and as part of the free Altera Quartus II Programmer. The HPS Flash Programmer

sends file contents over an Altera download cable, such as the USB Blaster II, to the HPS, and

instructs the HPS to write the data to the flash memory.

Figure 3-24 Connections Between Cyclone V SoC FPGA and QSPI Flash

Table 3-26 below summarizes the pins on the flash device. Signal names are from the device

datasheet and directions are relative to the Cyclone V SoC FPGA.

Table 3-26 QSPI Flash Interface I/O

Signal Name FPGA Pin No. Description I/O Standard

HPS_FLASH_DATA[0] PIN_C20 HPS FLASH Data[0] 3.3V

HPS_FLASH_DATA[1] PIN_H18 HPS FLASH Data[1] 3.3V

HPS_FLASH_DATA[2] PIN_A19 HPS FLASH Data[2] 3.3V

HPS_FLASH_DATA[3] PIN_E19 HPS FLASH Data[3] 3.3V

HPS_FLASH_DCLK PIN_D19 HPS FLASH Data Clock 3.3V

HPS_FLASH_NCSO PIN_A18 HPS FLASH Chip Enable 3.3V

33..77..66 MMiiccrroo SSDD

The board supports Micro SD card interface using x4 data lines. And it may contain secondary boot

code for HPS. Figure 3-25 shows the related signals.

Finally, Table 3-27 lists all the associated pins for interfacing HPS respectively.

41

Figure 3-25 Connections between Cyclone V SoC FPGA and SD Card Socket

Table 3-27 SD Card Socket Pin Assignments

Signal Name FPGA Pin No. Description I/O Standard

HPS_SD_CLK PIN_A16 HPS SD Clock 3.3V

HPS_SD_CMD PIN_F18 HPS SD Command Line 3.3V

HPS_SD_DATA[0] PIN_G18 HPS SD Data[0] 3.3V

HPS_SD_DATA[1] PIN_C17 HPS SD Data[1] 3.3V

HPS_SD_DATA[2] PIN_D17 HPS SD Data[2] 3.3V

HPS_SD_DATA[3] PIN_B16 HPS SD Data[3] 3.3V

33..77..77 UUSSBB 22..00 OOTTGG PPHHYY

The board provides USB interfaces using the SMSC USB3300 controller. A SMSC USB3300

device in a 32-pin QFN package device is used to interface to a single Type AB Micro-USB

connector. This device supports UTMI+ Low Pin Interface (ULPI) to communicate to USB 2.0

controller in HPS. As defined by OTG mode, the PHY can operate in Host or Device modes. When

operating in Host mode, the interface will supply the power to the device through the Micro-USB

interface. Figure 3-26 shows the schematic diagram of the USB circuitry; the pin assignments for

the associated interface are listed in Table 3-28.

42

Figure 3-26 Connections between Cyclone V SoC FPGA and USB OTG PHY

Table 3-28 USB OTG PHY Pin Assignments

Signal Name FPGA Pin No. Description I/O Standard

HPS_USB_CLKOUT PIN_N16 60MHz Reference Clock Output 3.3V

HPS_USB_DATA[0] PIN_E16 HPS USB_DATA[0] 3.3V

HPS_USB_DATA[1] PIN_G16 HPS USB_DATA[1] 3.3V

HPS_USB_DATA[2] PIN_D16 HPS USB_DATA[2] 3.3V

HPS_USB_DATA[3] PIN_D14 HPS USB_DATA[3] 3.3V

HPS_USB_DATA[4] PIN_A15 HPS USB_DATA[4] 3.3V

HPS_USB_DATA[5] PIN_C14 HPS USB_DATA[5] 3.3V

HPS_USB_DATA[6] PIN_D15 HPS USB_DATA[6] 3.3V

HPS_USB_DATA[7] PIN_M17 HPS USB_DATA[7] 3.3V

HPS_USB_DIR PIN_E14 Direction of the Data Bus 3.3V

HPS_USB_NXT PIN_A14 Throttle the Data 3.3V

HPS_USB_RESET_PHY PIN_G17 HPS USB PHY Reset 3.3V

HPS_USB_STP PIN_C15 Stop Data Stream on theBus 3.3V

33..77..88 GG--SSeennssoorr

The board is equipped with a digital accelerometer sensor module. The ADXL345 is a small, thin,

ultralow power assumption 3-axis accelerometer with high-resolution measurement. Digitalized

output is formatted as 16-bit twos complement and can be accessed using I2C interface. Connected

to the I2C interface includes two peripherals, the G-sensor and the LTC connector. The I2C address

of the G-Sensor device is 0xA6/0xA7. For more detailed information of better using this chip,

please refer to its datasheet which is available on manufacturer’s website or under the Datasheet

folder of the SoCKit System CD. Figure 3-27 shows the connections between ADXL345 and HPS.

The associated pin assignments are listed in Table 3-29.

43

Figure 3-27 Connections between Cyclone V SoC FPGA and G-Sensor

Table 3-29 G-Sensor Pin Assignments

Signal Name FPGA Pin No. Description I/O Standard

HPS_GSENSOR_INT PIN_B22 HPS GSENSOR Interrupt Output 3.3V

HPS_I2C_CLK PIN_H23 HPS I2C Clock (share bus with LTC) 3.3V

HPS_I2C_SDA PIN_A25 HPS I2C Data (share bus) 3.3V

33..77..99 112288xx6644 DDoottss LLCCDD

The board equips an LCD Module with 128x64 dots for display capabilities. The LCD module uses

serial peripheral interface to connect with the HPS. To use the LCD module, please refer to the

datasheet folder in SoCKit System CD. Figure 3-28 shows the connections between the HPS and

LCD module. The default setting for LCD backlight power is ON by shorting the pins of header JP1.

Table 3-30 lists the pin assignments between LCD module and Cyclone V SoC FPGA.

44

Figure 3-28 Connections between Cyclone V SoC FPGA and LCD Module

Table 3-30 LCD Module Pin Assignments

Signal Name FPGA Pin No. Description I/O Standard

HPS_LCM_D_C PIN_G22 HPS LCM Data bit is Data/Command 3.3V

HPS_LCM_RST_N PIN_B26 HPS LCM Reset 3.3V

HPS_LCM_SPIM_CLK PIN_C23 SPI Clock 3.3V

HPS_LCM_SPIM_MOSI PIN_D22 SPI Master Output /Slave Input 3.3V

HPS_LCM_SPIM_SS PIN_D24 SPI Slave Select 3.3V

33..77..1100 LLTTCC CCoonnnneeccttoorr

The board allows connection to interface card from Linear Technology. The interface is

implemented using a14-pin header that can be connected to a variety of demo boards from Linear

Technology. It will be connected to SPI Master and I2C ports of the HPS to allow bidirectional

communication with two types of protocols. The 14-pin header will allow for GPIO, SPI and I2C

extension for user purposes if the interfaces to Linear Technology board aren’t in use. Connections

between the LTC connector and the HPS are shown in Figure 3-29, and the functions of the 14 pins

is listed in Table 3-31.

45

Figure 3-29 Connections between the LTC Connector and HPS

Table 3-31 LTC Connector Pin Assignments

Signal Name FPGA Pin No. Description I/O Standard

HPS_LTC_GPIO PIN_F16 HPS LTC GPIO 3.3V

HPS_I2C_CLK PIN_H23 HPS I2C Clock (share bus with

G-Sensor)

3.3V

HPS_I2C_SDA PIN_A25 HPS I2C Data (share bus with G-Sensor) 3.3V

HPS_SPIM_CLK PIN_A23 SPI Clock 3.3V

HPS_SPIM_MISO PIN_B23 SPI Master Input/Slave Output 3.3V

HPS_SPIM_MOSI PIN_C22 SPI Master Output /Slave Input 3.3V

HPS_SPIM_SS PIN_H20 SPI Slave Select 3.3V

46

Chapter 4

SoCKit System Builder

This chapter describes how users can create a custom design project on the board by using the

SoCKit Software Tool – SoCKit System Builder.

44..11 IInnttrroodduuccttiioonn

The SoCKit System Builder is a Windows-based software utility, designed to assist users to create a

Quartus II project for the board within minutes. The generated Quartus II project files include:

 Quartus II Project File (.qpf)

 Quartus II Setting File (.qsf)

 Top-Level Design File (.v)

 Synopsis Design Constraints file (.sdc)

 Pin Assignment Document (.htm)

By providing the above files, the SoCKit System Builder prevents occurrence of situations that are

prone to errors when users manually edit the top-level design file or place pin assignments. The

common mistakes that users encounter are the following:

1. Board damage due to wrong pin/bank voltage assignments.

2. Board malfunction caused by wrong device connections or missing pin counts for connected

ends.

3. Performance degeneration due to improper pin assignments.

44..22 GGeenneerraall DDeessiiggnn FFllooww

This section will introduce the general design flow to build a project for the development board via

the SoCKit System Builder. The general design flow is illustrated in Figure 4-1.

Users should launch the SoCKit System Builder and create a new project according to their design

requirements. When users complete the settings, the SoCKit System Builder will generate two

major files, a top-level design file (.v) and a Quartus II setting file (.qsf).

47

The top-level design file contains top-level Verilog HDL wrapper for users to add their own

design/logic. The Quartus II setting file contains information such as FPGA device type, top-level

pin assignment, and the I/O standard for each user-defined I/O pin.

Finally, the Quartus II programmer must be used to download SOF file to the development board

using a JTAG interface.

Figure 4-1 The general design flow of building a design

44..33 UUssiinngg SSooCCKKiitt SSyysstteemm BBuuiillddeerr

This section provides the detailed procedures on how the SoCKit System Builder is used.

 Install and launch the SoCKit System Builder

The SoCKit System Builder is located in the directory:

“Tools\SOC_Kit_system_builder” on the SoCKit System CD. Users can copy the whole folder to a

host computer without installing the utility. Launch the SoCKit System Builder by executing the

SOC_Kit_SystemBuilder.exe on the host computer and the GUI window will appear as shown in

Figure 4-2.

48

Figure 4-2 The SoCKit System Builder window

 Input Project Name

Input project name as show in Figure 4-3.

Project Name: Type in an appropriate name here, it will automatically be assigned as the name of

your top-level design entity.

49

Figure 4-3 Board Type and Project Name

 System Configuration

Under the System Configuration users are given the flexibility of enabling their choice of included

components on the board as shown in Figure 4-4. Each component of the board is listed where

users can enable or disable a component according to their design by simply marking a check or

removing the check in the field provided. If the component is enabled, the SoCKit System Builder

will automatically generate the associated pin assignments including the pin name, pin location, pin

direction, and I/O standard.

50

Figure 4-4 System Configuration Group

 HSMC Expansion

Users can connect HSMC daughter cards onto the HSMC connector located on the development

board shown in Figure 4-5. Select the daughter card you wish to add to your design under the

appropriate HSMC connector to which the daughter card is connected. The System Builder will

automatically generate the associated pin assignment including pin name, pin location, pin direction,

and I/O standard.

51

Figure 4-5 HSMC Expansion Group

The “Prefix Name” is an optional feature that denotes the pin name of the daughter card assigned in

your design. Users may leave this field empty.

 Project Setting Management

The SoCKit System Builder also provides functions to restore default setting, loading a setting, and

saving users’ board configuration file shown in Figure 4-6. Users can save the current board

configuration information into a .cfg file and load it to the SoCKit System Builder.

52

Figure 4-6 Project Settings

 Project Generation

When users press the Generate button, the SoCKit System Builder will generate the corresponding

Quartus II files and documents as listed in the Table 4-1:

Table 4-1 The files generated by SoCKit System Builder

No. Filename Description

1 <Project name>.v Top level Verilog HDL file for Quartus II

2 <Project name>.qpf Quartus II Project File

3 <Project name>.qsf Quartus II Setting File

4 <Project name>.sdc Synopsis Design Constraints file for Quartus II

5 <Project name>.htm Pin Assignment Document

Users can use Quartus II software to add custom logic into the project and compile the project to

generate the SRAM Object File (.sof).

53

Chapter 5

Examples For FPGA

This chapter provides a number of examples of advanced circuits implemented by RTL or Qsys on

the SoCKit board. These circuits provide demonstrations of the major features which connected to

FPGA interface on the board, such as audio, DDR3 and IR receiver. All of the associated files can

be found in the Demonstrations/FPGA folder on the SoCKit System CD.

 Installing the Demonstrations

To install the demonstrations on your computer:

Copy the directory Demonstrations into a local directory of your choice. It is important to ensure

that the path to your local directory contains no spaces – otherwise, the Nios II software will not

work. Note Quartus II v13 is required for all SoCKit demonstrations to support Cyclone V SoC

device.

55..11 AAuuddiioo RReeccoorrddiinngg aanndd PPllaayyiinngg

This demonstration shows how to implement an audio recorder and player using the SoCKit board

with the built-in Audio CODEC chip. This demonstration is developed based on Qsys and Eclipse.

Figure 5-1 shows the man-machine interface of this demonstration. Two push-buttons and four

slide switches are used for users to configure this audio system: SW0 is used to specify recording

source to be Line-in or MIC-In. SW1, SW2, and SW3 are used to specify recording sample rate as

96K, 48K, 44.1K, 32K, or 8K. Table 5-1 and

Table 5-2 summarize the usage of Slide switches for configuring the audio recorder and player.

54

Figure 5-1 Man-Machine Interface of Audio Recorder and Player

Figure 5-2 shows the block diagram of the Audio Recorder and Player design. There are hardware

and software parts in the block diagram. The software part stores the Nios II program in the on-chip

memory. The software part is built by Eclipse in C programming language. The hardware part is

built by Qsys under Quartus II. The hardware part includes all the other blocks. The “AUDIO

Controller” is a user-defined Qsys component. It is designed to send audio data to the audio chip or

receive audio data from the audio chip.

The audio chip is programmed through I2C protocol which is implemented in C code. The I2C pins

from audio chip are connected to Qsys System Interconnect Fabric through PIO controllers. In this

example, the audio chip is configured in Master Mode. The audio interface is configured as I2S and

16-bit mode. 18.432MHz clock generated by the PLL is connected to the MCLK/XTI pin of the

audio chip through the AUDIO Controller.

55

Figure 5-2 Block diagram of the audio recorder and player

 Demonstration Setup, File Locations, and Instructions

 Hardware Project directory: SoCKit _Audio

 Bit stream used: SoCKit _Audio.sof

 Software Project directory: SoCKit _Audio\software

 Connect an Audio Source to the LINE-IN port of the SoCKit board.

 Connect a Microphone to MIC-IN port on the SoCKit board.

 Connect a speaker or headset to LINE-OUT port on the SoCKit board.

 Load the bit stream into FPGA. (note *1)

 Load the Software Execution File into FPGA. (note *1)

 Configure audio with the Slide switches SW0 as shown in Table 5-1.

 Press KEY3 on the SoCKit board to start/stop audio recording (note *2)

 During audio recording process, LED[3] will illuminate.

 Press KEY2 on the SoCKit board to start/stop audio playing (note *3)

 During audio playing process, LED[2] will illuminate.

Table 5-1 Slide switches usage for audio source

Slide Switches 0 – DOWN Position 1 – UP Position

SW0 Audio is from MIC Audio is from LINE-IN

56

Table 5-2 Slide switch setting for sample rate switching for audio recorder and player

SW3

(0 – DOWN;

1- UP)

SW2

(0 – DOWN;

1-UP)

SW1

(0 – DOWN;

1-UP)

Sample Rate

0 0 0 96K

0 0 1 48K

0 1 0 44.1K

0 1 1 32K

1 0 0 8K

Unlisted combination 96K

Note:

(1). Execute SoCKit _Audio \demo_batch\ SoCKit _Audio.bat will download .sof and .elf files.

(2). Recording process will stop if audio buffer is full.

(3). Playing process will stop if audio data is played completely.

55..22 AA KKaarraaookkee MMaacchhiinnee

This demonstration uses the microphone-in, line-in, and line-out ports on the SOCKIT board to

create a Karaoke Machine application. The SSM2603 audio CODEC is configured in the master

mode, with which the audio CODEC generates AD/DA serial bit clock (BCK) and the left/right

channel clock (LRCK) automatically. As indicated in Figure 5-3, the I2C interface is used to

configure the Audio CODEC. The sample rate and gain of the CODEC are set in this manner, and

the data input from the line-in port is then mixed with the microphone-in port and the result is sent

to the line-out port.

For this demonstration the sample rate is set to 48kHz. Pressing the pushbutton KEY0 reconfigures

the gain of the audio CODEC via I2C bus, cycling within ten predefined gain values (volume levels)

provided by the device.

57

Figure 5-3 Block diagram of the Karaoke Machine demonstration

 Demonstration Setup, File Locations, and Instructions

 Project directory: SOCKIT_i2sound

 Bit stream used: SOCKIT_i2sound.sof

 Connect a microphone to the microphone-in port (pink color) on the SOCKIT board

 Connect the audio output of a music-player, such as an MP3 player or computer, to the line-in

port (blue color) on the SOCKIT board

 Connect a headset/speaker to the line-out port (green color) on the SOCKIT board

 Load the bit stream into the FPGA by execute the batch file ‘SOCKIT_i2sound’ under the

SOCKIT_i2sound\demo_batch folder

 You should be able to hear a mixture of the microphone sound and the sound from the music

player

 Press KEY0 to adjust the volume; it cycles between volume levels 0 to 9

Figure 5-4 illustrates the setup for this demonstration.

58

Figure 5-4 Setup for the Karaoke Machine

59

55..33 DDDDRR33 SSDDRRAAMM TTeesstt

This demonstration presents a memory test function on the bank of DDR3-SDRAM on the SoCKit

board. The memory size of the DDR3 SDRAM bank is 1GB.

 Function Block Diagram

Figure 5-5 shows the function block diagram of this demonstration. The controller uses 50 MHz as

a reference clock, generates one 300 MHz clock as memory clock, and generates one half-rate

system clock 150MHz for the controller itself.

 Figure 5-5 Block Diagram of the DDR3 SDRAM (1G) Demonstration

RW_test modules read and write the entire memory space of the DDR3 through the Avalon

interface of the controller. In this project, the Avalon bus read/write test module will first write the

entire memory and then compare the read back data with the regenerated data (the same sequence as

the write data). KEY0 will trigger test control signals for the DDR3, and the LEDs will indicate the

test results according to Table 5-3.

 Altera DDR3 SDRAM Controller with UniPHY

To use the Altera DDR3 controller, users need to perform three major steps:

1. Create correct pin assignments for the DDR3.

2. Setup correct parameters in DDR3 controller dialog.

3. Perform “Analysis and Synthesis” by selecting from the Quartus II menu:

ProcessStartStart Analysis & Synthesis.

4. Run the TCL files generated by DDR3 IP by selecting from the Quartus II menu:

ToolsTCL Scripts…

60

 Design Tools

 64-Bit Quartus 13.0

 Demonstration Source Code

 Project directory: SoCKit_DDR3_RTL_Test

 Bit stream used: SoCKit_DDR3_RTL_Test.sof

 Demonstration Batch File

Demo Batch File Folder: SoCKit_DDR3_RTL_Test \demo_batch

The demo batch file includes following files:

 Batch File: SoCKit_DDR3_RTL_Test.bat

 FPGA Configure File: SoCKit_DDR3_RTL_Test.sof

 Demonstration Setup

 Make sure Quartus II is installed on your PC.

 Connect the USB cable to the USB Blaster II connector (J2) on the SoCKit board and host PC.

 Power on the SoCKit board.

 Execute the demo batch file “SoCKit_DDR3_RTL_Test.bat” under the batch file folder,

SoCKit_DDR3_RTL_Test \demo_batch.

 Press KEY0 on the SoCKit board to start the verification process. When KEY0 is pressed, the

LEDs (LED [2:0]) should turn on. At the instant of releasing KEY0, LED1, LED2 should start

blinking. After approximately 13 seconds, LED1 should stop blinking and stay on to indicate

that the DDR3 has passed the test, respectively. Table 4-2 lists the LED indicators.

 If LED2 is not blinking, it means the 50MHz clock source is not working.

 If LED1 do not start blinking after releasing KEY0, it indicates local_init_done or

local_cal_success of the corresponding DDR3 failed.

 If LED1 fail to remain on after 13 seconds, the corresponding DDR3 test has failed.

 Press KEY0 again to regenerate the test control signals for a repeat test.

Table 5-3 LED Indicators

NAME Description

LED0 Reset

LED1 If light, DDR3 test pass

LED2 Blinks

61

55..44 DDDDRR33 SSDDRRAAMM TTeesstt bbyy NNiiooss IIII

Many applications use a high performance RAM, such as a DDR3 SDRAM, to provide temporary

storage. In this demonstration hardware and software designs are provided to illustrate how to

perform DDR3 memory access in QSYS. We describe how the Altera’s “DDR3 SDRAM Controller

with UniPHY” IP is used to access a DDR3-SDRAM, and how the Nios II processor is used to read

and write the SDRAM for hardware verification. The DDR3 SDRAM controller handles the

complex aspects of using DDR3 SDRAM by initializing the memory devices, managing SDRAM

banks, and keeping the devices refreshed at appropriate intervals.

 System Block Diagram

Figure 5-6 shows the system block diagram of this demonstration. The system requires a 50 MHz

clock provided from the board. The DDR3 controller is configured as a 1 GB DDR3-300 controller.

The DDR3 IP generates one 300 MHz clock as SDRAM’s data clock and one half-rate system clock

150 MHz for those host controllers, e.g. Nios II processor, accessing the SDRAM. In the QSYS,

Nios II and the On-Chip Memory are designed running with the 100MHz clock, and the Nios II

program is running in the on-chip memory.

 Figure 5-6 Block diagram of the DDR3 Basic Demonstration

The system flow is controlled by a Nios II program. First, the Nios II program writes test patterns

into the whole 1 GB of SDRAM. Then, it calls Nios II system function, alt_dache_flush_all, to

make sure all data has been written to SDRAM. Finally, it reads data from SDRAM for data

verification. The program will show progress in JTAG-Terminal when writing/reading data to/from

the SDRAM. When verification process is completed, the result is displayed in the JTAG-Terminal.

62

 Altera DDR3 SDRAM Controller with UniPHY

To use Altera DDR3 controller, users need to perform the four major steps:

1. Create correct pin assignments for DDR3.

2. Setup correct parameters in DDR3 controller dialog.

3. Perform “Analysis and Synthesis” by clicking Quartus menu: ProcessStartStart

Analysis & Synthesis.

4. Run the TCL files generated by DDR3 IP by clicking Quartus menu: ToolsTCL Scripts…

 Design Tools

 Quartus II 13.0

 Nios II Eclipse 13.0

 Demonstration Source Code

 Quartus Project directory: SoCKit_DDR3_Nios_Test

 Nios II Eclipse: SoCKit_DDR3_Nios_Test\Software

 Nios II Project Compilation

Before you attempt to compile the reference design under Nios II Eclipse, make sure the project is

cleaned first by clicking ‘Clean’ from the ‘Project’ menu of Nios II Eclipse.

 Demonstration Batch File

Demo Batch File Folder:

SoCKit_DDR3_Nios_Test\demo_batch

The demo batch file includes following files:

 Batch File for USB-Blaster (II) : SoCKit_DDR3_Nios_Test.bat,

SoCKit_DDR3_Nios_Test_bashrc

 FPGA Configure File : SoCKit_DDR3_Nios_Test.sof

 Nios II Program: SoCKit_DDR3_Nios_Test.elf

 Demonstration Setup

 Make sure Quartus II and Nios II are installed on your PC.

 Power on the SoCKit board.

 Use USB cable to connect PC and the SoCKit board (J2) and install USB Blaster driver if

necessary.

63

 Execute the demo batch file “SoCKit_DDR3_Nios_Test.bat” for USB-Blaster II under the batch

file folder, SoCKit_DDR3_Nios_Test\demo_batch

 After Nios II program is downloaded and executed successfully, a prompt message will be

displayed in nios2-terminal.

 Press Button3~KEY0 of the SoCKit board to start SDRAM verify process. Press KEY0 for

continued test and press any to terminate the continued test.

 The program will display progressing and result information, as shown in Figure 5-7.

Figure 5-7 Display Progress and Result Information for the DDR3 Demonstration

55..55 IIRR RReecceeiivveerr DDeemmoonnssttrraattiioonn

In this demonstration, the key code information that the user has pressed on the remote

controller(Figure 5-8，Table 5-4) will be displayed in nios2-terminal. The remote controller can be

purchased from Terasic website or user can use any remote control. We use Terasic remote

controller for the following demonstration. Users only need to point the remote controller to the IR

receiver on SoCKit and press the key. After the signal being decoded and processed through FPGA,

the related information will be included in hexadecimal format, which contains Custom Code, Key

Code and Inversed Key Code. The Custom Code and Key Code are used to identify a remote

controller and key on the remote controller, respectively. Finally, the key code information will be

displayed in nios2-terminal. Figure 5-9 shows the block diagram of the design.

64

Figure 5-8 Terasic Remote controller

Table 5-4 Key code information for each Key on remote controller

Key Key Code Key Key Code Key Key Code Key Key Code

0x0F

0x13

0x10

0x12

0x01

0x02

0x03

0x1A

0x04

0x05

0x06

0x1E

0x07

0x08

0x09

0x1B

0x11

0x00

0x17

0x1F

0x16

0x14

0x18

0x0C

65

Figure 5-9 Block Diagram of the IR Receiver Demonstration

Next we will introduce how this information is decoded and then displayed in this demo.

When a key on the remote controller is pressed, the remote controller will emit a standard frame,

shown in Figure 5-10. The beginning of the frame is the lead code represents the start bit, and then

is the key-related information, and the last 1 bit end code represents the end of the frame.

Lead Code 1bit Custom Code 16bits Key Code 8bits
Inv Key Code

8bits

End

Code

1bit

Figure 5-10 The transmitting frame of the IR remote controller

66

After the IR receiver on SoCKit receives this frame, it will directly transmit that to FPGA. In this

demo, the IP of IR receiver controller is implemented in the FPGA. As Figure 5-11 shows, it

includes Code Detector, State Machine, and Shift Register. First, the IR receiver demodulates the

signal input to Code Detector block. The Code Detector block will check the Lead Code and

feedback the examination result to State Machine block.

The State Machine block will change the state from IDLE to GUIDANCE once the Lead code is

detected. Once the Code Detector has detected the Custom Code status, the current state will change

from GUIDANCE to DATAREAD state. At this state, the Code Detector will save the Custom Code

and Key/Inv Key Code and output to Shift Register then displays it in nios2-terminal. Figure 5-12

shows the state shift diagram of State Machine block. Note that the input clock should be 50MHz.

Figure 5-11 The IR Receiver controller

Figure 5-12 State shift diagram of State Machine

We can apply the IR receiver to many applications, such as integrating to the SD Card Demo, and

you can also develop other related interesting applications with it.

67

DDeemmoonnssttrraattiioonn SSoouurrccee CCooddee

 Project directory: SoCKit_IR

 Bit stream used: SoCKit_IR.sof

 Nios II Workspace: SoCKit_IR\Software

DDeemmoonnssttrraattiioonn BBaattcchh FFiillee

Demo Batch File Folder: SoCKit_IR\demo_batch

The demo batch file includes the following files:

 Batch File: SoCKit_IR.bat, SoCKit_IR_bashrc

 FPGA Configure File : SoCKit_IR.sof

 Nios II Program: SoCKit_IR.elf

DDeemmoonnssttrraattiioonn SSeettuupp,, FFiillee LLooccaattiioonnss,, aanndd IInnssttrruuccttiioonnss

 Make sure Quartus II and Nios II are installed on your PC.

 Power on the SoCKit board.

 Connect USB Blaster to the SoCKit board and install USB Blaster driver if necessary.

 Execute the demo batch file “SoCKit _IR.bat” under the batch file folder, SoCKit _IR

\demo_batch.

 After Nios II program is downloaded and executed successfully, a prompt message will be

displayed in nios2-terminal.

 Point the IR receiver with the remote-controller and press any button

 the information will be displayed in nios2-terminal, shown in Figure 5-13.

68

Figure 5-13 Running results of the IR demonstration

Figure 5-14 illustrates the setup for this demonstration.

Figure 5-14 The Setup of the IR receiver demonstration

55..66 TTeemmppeerraattuurree DDeemmoonnssttrraattiioonn

This demonstration illustrates how to use the ADT7301 device with the Nios II Processor to realize

the function of board temperature detection. Figure 5-15 shows the system block diagram of this

demonstration. The ambient temperature information, which is collected by a built-in temperature

69

sensor on the SoCKit board, can be converted into digital data by a 13-bit A/D converter. The

generated digital data will be stored into the Temperature Value Register.

The sensor connects the FPGA device through a SPI interface. In this demonstration, a SPI master

core is used by Nios II software to access the sensor’s Temperature Value registers. Based on the

register’s values reading out in every five seconds, the program calculates the centigrade degree.

The relative values are finally displayed onto the nios2-terminal window, in order to let the user

monitor the board real-time temperature.

 Figure 5-15 Block diagram of the Temperature Demonstration

DDeemmoonnssttrraattiioonn SSoouurrccee CCooddee

 Project directory: SoCKit_TEMP

 Bit stream used: S0Ckit_TEMP.sof

 Nios II Workspace: SoCKit_TEMP\Software

DDeemmoonnssttrraattiioonn BBaattcchh FFiillee

Demo Batch File Folder: SoCKit_TEMP\demo_batch

The demo batch file includes the following files:

 Batch File: SoCKit_TEMP.bat, SoCKit_TEMP_bashrc

70

 FPGA Configure File : SoCKit_TEMP.sof

 Nios II Program: SoCKit _TEMP.elf

DDeemmoonnssttrraattiioonn SSeettuupp,, FFiillee LLooccaattiioonnss,, aanndd IInnssttrruuccttiioonnss

 Make sure Quartus II and Nios II are installed on your PC.

 Power on the SoCKit board.

 Connect USB Blaster to the SoCKit board and install USB Blaster driver II if necessary.

 Execute the demo batch file “SoCKit _TEMP.bat” under the batch file folder, SoCKit _TEMP

\demo_batch.

 After Nios II program is downloaded and executed successfully, the related information will be

displayed in nios2-terminal , shown in Figure 5-16.

Figure 5-16 Running results of the Temperature demonstration

71

Chapter 6

Examples for HPS SoC

This chapter provides a number of C-code examples based on the Altera SoC Linux built by Yocto

Project. These examples provide demonstrations of the major features which connected to HPS

interface on the board, such as users LED/button/switch, I2C interfaced G-sensor, and SPI

interfaced graphic LCD. All of the associated files can be found in the Demonstrations/SOC folder

in the SoCKit System CD.

 Installation of the Demonstrations

To install the demonstrations on your computer:

Copy the directory Demonstrations into a local directory of your choice. Altera SoC EDS v13.0 is

required for users to compile the c-code project.

66..11 HHeelllloo PPrrooggrraamm

This demonstration presents how to develop your first HPS program by using Altera SoC EDS tool.

For operation details, please refer to My_First_HPS.pdf in the system CD.

Here are the major procedures to develop and build HPS project.

 Make sure Altera SoC EDS is installed on your PC.

 Create program .c/.h files with a generic text editor

 Create a "Makefile" with a generic text editor

 Build your project under Altera SoC EDS

 Program File

Here is the main program of this Hello World demo.

72

 Makefile

To compile a project, a Makefile is required. Here is the Makefile used for this demo.

 Compile

To compile a project, please launch Altera SoC EDS Command Shell by executing

C:\altera\13.0\embedded\Embedded_Command_Shell.bat

Use the "cd" command to change the current directory to where the Hello World project is located.

Then type "make" to build the project. The executable file "my_first_hps" will be generated after

the compiling process is finished. The "clean all" command can be used to remove all temporary

files.

73

 Demonstration Source Code

 Build Tool: Altera SoC EDS v13.0

 Project directory: \Demonstration\SoC\my_first_hps

 Binary file: my_first_hps

 Build Command: make ("make clean" to remove all temporary files)

 Execute Command: ./my_first_hps

 Demonstration Setup

 Make sure BOOTSEL[2:0] = 101 (Boot from SD card)

 Make sure CLKSEL[1:0] = 00

 Make sure MSEL[4:0] = 10000

 Connect USB cable to the USB-to-UART connector (J4) on the SoCKit board and host PC.

 Make sure the demo file "my_first_hps" is copied into the SD card under the "/home/root"

folder in Linux.

 Insert the booting micro SD card into the SoCKit board.

 Power on the SoCKit board.

 Launch PuTTY to connect to the UART port of Putty and type "root" to login Altera Yocto

Linux.

 In the UART terminal of PuTTY, type "./my_first_hps" to start the program, and you will see

"Hello World!" message in the terminal.

66..22 UUsseerrss LLEEDD,, SSwwiittcchh aanndd BBuuttttoonn

This demonstration presents how to control the users LEDs, switches, and buttons by accessing the

register of PIO controller through the memory-mapped device driver. The memory-mapped device

driver allows developer to access the system physical memory.

74

 Function Block Diagram

Figure 6-1 shows the function block diagram of this demonstration. The users LEDs are connected

to the PIO1 controller in HPS, while the switches and buttons are connected to the PIO2 controller

in HPS. The behavior of the PIO controller is controlled by the register in the PIO controller. The

registers can be accessed by application software through the memory-mapped device driver, which

is built into Altera SoC Linux.

Figure 6-1 Block Diagram of GPIO Demonstration

 GPIO Interface Block Diagram

The HPS provides three general-purpose I/O (GPIO) interface modules. Figure 6-2 shows the block

diagram of the GPIO Interface. GPIO[28..0] is controlled by GPIO0 controller and GPIO[57..29] is

controlled by GPIO1 controller. GPIO[70..58] and input-only GPI[13..0] are controlled by GPIO2

controller.

Figure 6-2 Block Diagram of GPIO Interface

75

 GPIO Register Block

The behavior of I/O pin is controlled by the registers in the register block. In this demonstration, we

only use three 32-bit registers in the GPIO controller. The registers are:

 gpio_swporta_dr: used to write output data to output I/O pin

 gpio_swporta_ddr: used to configure the direction of I/O pin

 gpio_ext_porta: used to read input data of I/O input pin

For LED control, we use gpio_swporta_ddr to configure the LED pins as output pins, and drive

the pins high or low by writing data to the gpio_swporta_dr register. For the gpio_swporta_ddr

register, the first bit (least significant bit) controls direction of the first IO pin in the associated

GPIO controller and the second bit controls the direction of second IO pin in the associated GPIO

controller, and so on. The value "1" in the register bit indicates the I/O direction is output, and the

value "0" in the register bit indicates the I/O direction is input.

For the gpio_swporta_dr register, the first bit controls the output value of first I/O pin in the

associated GPIO controller, and the second bit controls the output value of second I/O pin in the

associated GPIO controller, and so on. The value "1" in the register bit indicates the output value is

high, and the value "0" indicates the output value is low.

For switches and keys control, it is not necessary to configure the pin direction because input-only

pins are used to connect the switches and keys. The status of switches and button can be queried by

reading the value of gpio_ext_porta register. The first bit represents the input status of first IO pin

in the associated GPIO controller, and the second bit represents the input status of second IO pin in

the associated GPIO controller, and so on. The value "1" in the register bit indicates the input state

is high, and the value "0" indicates the input state is low.

 GPIO Register Address Mapping

The registers of HPS peripherals are mapped to HPS base address space 0xFC000000 with 64KB

size. Registers of GPIO1 controller are mapped to the base address 0xFF208000 with 4KB size, and

registers of GPIO2 controller are mapped to the base address 0xFF20A000 with 4KB size, as shown

in Figure 6-3.

76

Figure 6-3 GPIO Address Map

 Software API

Developers can use the following software API to access the register of GPIO controller.

 open: use to open memory mapped device driver

 mmap: map physical memory to user space

 alt_read_word: read a value from a specified register

 alt_write_word: write a value into a specified register

 munmap: clean up memory mapping

 close: close device driver.

Developers can also use the following MACRO to access the register

 alt_setbits_word: set specified bit value to zero for a specified register

 alt_clrbits_word: set specified bit value to one for a specified register

To use the above API to access register of GPIO controller, the program must include the following

header files.

#include <stdio.h>

#include <unistd.h>

#include <fcntl.h>

#include <sys/mman.h>

#include "hwlib.h"

#include "socal/socal.h"

#include "socal/hps.h"

#include "socal/alt_gpio.h"

77

 LED Control

Figure 6-4 shows the HPS users LED pin assignment for the SoCKit board. The LED0, LED1,

LED2, and LED3 are connected to HPS_GPIO53, HPS_GPIO54, HPS_GPIO55, and HPS_GPIO56,

which are controlled by the GPIO1 controller, which also controls HPS_GPIO29 ~ HPS_GPIO57.

Figure 6-4 LED Pin Assignment

Figure 6-5 shows the gpio_swporta_ddr register of the GPIO1 controller. The bit-0 controls the

pin direction of HPS_GPIO29. The bit-24 controls the pin direction of HPS_GPIO53, which

connects to the HPS_LED0, the bits-25 controls the pin direction of HPS_GPIO54 which connects

to the HPS_LED1, and so on. In summary, the pin direction of HPS_LED0, HPS_LED1,

HPS_LED2, and HPS_LED3 are controlled by the bit-24, bit-25, bit-26, and bit-27 in the

gpio_swporta_ddr register of the GPIO1 controller, respectively. Similarly, the output status of

HPS_LED0, HPS_LED1, HPS_LED2, and HPS_LED3 are controlled by the bit-24, bit-25, bit-26,

and bit-27 in the gpio_swporta_dr register of the GPIO1 controller, respectively.

Figure 6-5 gpio_swpport_ddr Register in the GPIO1

78

In this demo code, the following mask is defined to control LED direction and output value.

The following statement can be used to configure the LED associated pins as output pins.

alt_setbits_word((virtual_base +

((uint32_t)(ALT_GPIO1_SWPORTA_DDR_ADDR) &

(uint32_t)(HW_REGS_MASK))), BIT_LED_ALL);

The following statement can be used to turn on all LED.

alt_setbits_word((virtual_base +

((uint32_t)(ALT_GPIO1_SWPORTA_DR_ADDR) &

(uint32_t)(HW_REGS_MASK))), BIT_LED_ALL);

 Switches and Keys Control

Figure 6-6 shows the pin assignment of HPS users key and switch for the SoCKit board. The

controller pin HPS_GPI4 ~ HPS_GPI11 are controlled by the GPIO2 controller. It is not necessary

to configure the direction of these pins before using because they are input-only. The status of

switches and keys can be queried by reading the gpio_ext_porta register in the GPIO2 controller.

Figure 6-6 HPS Switches and Keys Pin Assignment

Figure 6-7 shows the gpio_ext_porta register of the GPIO2 controller. The bit-0 represents the

input value of HPS_GPIO54. The bit-17 represents the input value of HPS_GPI4, which is

connected to H_SW3, and the bit-18 represents the input value of HPS_GPI5, which is connected to

79

H_SW2, and so on. The bit-21 represents the input value of HPS_GPI8, which is connected to

H_KEY0, and the bit-22 represents the input value of HPS_GPI9 which is connected to H_KEY1,

and so on. In summary, the input value of H_SW0, H_SW1, H_SW2, and H_SW3 are controlled by

the bit-20, bit-19, bit-18, and bit-17 in the gpio_extra_porta register of the GPIO2 controller,

respectively. The input value of H_KEY0, H_KEY1, H_KEY2, and H_KEY3 are controlled by the

bit-21, bit-22, bit-23, and bit-24 in the gpio_extra_porta register of the GPIO2 controller,

respectively.

Figure 6-7 gpio_swpport_ddr Register in the GPIO1 Controller

In the demo code, the following bit mask is defined to check the input status of switches and keys.

80

The following statement can be used to read the content of gpio_ext_porta register. The bit mask is

used to check the status of switches and keys.

alt_read_word((virtual_base +

((uint32_t)(ALT_GPIO2_EXT_PORTA_ADDR) &

(uint32_t)(HW_REGS_MASK))));

.

 Demonstration Source Code

 Build tool: Altera SoC EDS V13.0

 Project directory: \Demonstration\SoC\hps_gpio

 Binary file: hps_gpio

 Build command: make ('make clean' to remove all temporal files)

 Execute command: ./hps_gpio

 Demonstration Setup

 Make sure BOOTSEL[2:0] = 101 (Boot from SD card)

 Make sure CLKSEL[1:0] = 00

 Make sure MSEL[4:0] = 10000

 Connect the USB cable to the USB-to-UART connector (J4) on the SoCKit board and host PC.

 Make sure the executable file "hps_gpio" is copied into the SD card under the "/home/root"

folder in Linux.

 Insert the booting micro SD card into the SoCKit board.

 Power on the SoCKit board.

 Launch PuTTY to connect to the UART port of SoCKit board and type "root" to login Altera

Yocto Linux.

 In the UART terminal of PuTTY, execute "./hps_pio" to start the program.

 Press H_KEY0, H_KEY1, H_KEY2, and H_KEY3 will light up LED0, LED1, LED2, and

LED3, respectively. Move H_SW0, H_SW1, H_SW2, and H_SW3 to UP position will light up

LED0, LED1, LED2, and LED3, respectively. Press "CTRL + C" to terminate the application.

81

66..33 II22CC IInntteerrffaacceedd GG--sseennssoorr

This demonstration shows how to control the G-sensor by accessing its registers through the built-in

I2C kernel driver in Altera SoC Yocto Linux.

 Function Block Diagram

Figure 6-8 shows the function block diagram of this demonstration. The G-sensor on the SoCKit

board is connected to the I2C1 controller in HPS. The G-Sensor I2C 7-bit device address is 0x53.

The system I2C bus driver is used to access the register files in the G-sensor. The G-sensor interrupt

signal is connected to the PIO controller. In this demonstration, we use polling method to read the

register data, so the interrupt method is not introduced here.

Figure 6-8 Block Diagram of the G-sensor Demonstration

 I2C Driver

Here is the list of procedures in order to read a register value from G-sensor register files by using

the existing I2C bus driver in the system:

5. Open I2C bus driver "/dev/i2c-1": file = open("/dev/i2c-1", O_RDWR);

6. Specify G-sensor's I2C address 0x53: ioctl(file, I2C_SLAVE, 0x53);

7. Specify desired register index in g-sensor: write(file, &Addr8, sizeof(unsigned char));

8. Read one-byte register value: read(file, &Data8, sizeof(unsigned char));

Because the G-sensor I2C bus is connected to the I2C1 controller, as shown in the Figure 6-9, the

given driver name is '/dev/i2c-1'.

82

Figure 6-9 Schematic of I2C

To write a value into a register, developer can change step 4 to:

write(file, &Data8, sizeof(unsigned char));

To read multiple byte values, developer can change step 4 to:

read(file, &szData8, sizeof(szData8)); // where szData is an array of bytes

To write multiple byte values, developer can change step 4 to:

write(file, &szData8, sizeof(szData8)); // where szData is an array of bytes

 G-sensor Control

The ADI ADXL345 provides I2C and SPI interfaces. I2C interface is used by setting the CS pin to

high on this SoCKit board.

The ADI ADXL345 G-sensor provides user-selectable resolution up to 13-bit ± 16g. The

resolution can be configured through the DATA_FORAMT(0x31) register. In the demonstration, we

configure the data format as:

 Full resolution mode

 ± 16g range mode

 Left-justified mode

The X/Y/Z data value can be derived from the DATAX0(0x32), DATAX1(0x33), DATAY0(0x34),

DATAY1(0x35), DATAZ0(0x36), and DATAX1(0x37) registers. The DATAX0 represents the least

significant byte, and DATAX1 represents the most significant byte. It is recommended to perform

multiple-byte read of all registers to prevent change in data between reads of sequential registers.

Developer can use the following statement to read 6 bytes of X, Y, or Z value.

read(file, szData8, sizeof(szData8)); // where szData is an array of six-bytes

83

 Demonstration Source Code

 Build tool: Altera SoC EDS v13.0

 Project directory: \Demonstration\SoC\hps_gsensor

 Binary file: gsensor

 Build command: make ('make clean' to remove all temporal files)

 Execute command: ./gsensor [loop count]

 Demonstration Setup

 Make sure BOOTSEL[2:0] = 101 (Boot from SD card)

 Make sure CLKSEL[1:0] = 00

 Make sure MSEL[4:0] = 10000

 Connect the USB cable to the USB-to-UART connector (J4) on the SoCKit board and host PC.

 Make sure the executable file "gsensor" is copied into the SD card under the "/home/root"

folder in Linux.

 Insert the booting micro sdcard into the SoCKit board.

 Power on the SoCKit board.

 Launch PuTTY to connect to the UART port of SoCKit borad and type "root" to login Yocto

Linux.

 In the UART terminal of PuTTY,, execute "./gsensor" to start the gsensor polling.

 The demo program will show the X, Y, and Z values in the Putty, as shown in Figure 6-10.

Press "CTRL + C" to terminate the program.

Figure 6-10 Terminal output of the G-sensor Demonstration

84

66..44 SSPPII IInntteerrffaacceedd GGrraapphhiicc LLCCDD

This demonstration shows how to control the Graphic LCD by using the HPS SPIM (SPI Master)

controller and HPS GPIO controllers.

 Function Block Diagram

Figure 6-11 shows the function block diagram of this demonstration. The LTC is connected to the

SPIM1, GPIO1, and GPIO2 controllers in HPS on this SoCKit board. The built-in virtual

memory-mapped device driver in the system is used to access the registers in the HPS SPIM and GPIO controllers.

The SPI interface is used to transfer Data or Command from HPS to LCD. Because the LCD is write-only, only

three SPI signals LCM_SPIM_CLK, LCM_SPIM_SS, and LCM_SPIM_MOSI are required. The LCM_D_C

signal is used to indicate the signal transferred on the SPI bus is Data or Command. When LCM_D_C signal is

pulled high, it means the signal on SPI bus is Data. When LCM_D_C signal is pulled low, it means the signal on

SPI bus is Command. The LCD_RST_n is the reset control signal of LCD. This signal is low active. The

LCM_BK signal is used to turn on/off the black light of the LCD. When this signal is pulled high, LCD backlight

is turned on.

Figure 6-11 Block Diagram of the Graphic LCD Demonstration

 LCD Control

Developer needs to initialize the LCD before sending any display data. The initialization includes:

 Common output mode select (Code: 0xC0~0xCF)

 Power sontrol set (Code: 0x28~0x2F)

 Display start line set (Code: 0x40~0x7F)

 Page address set (Code: 0xB0~0xB8)

 Column address set (Code: 0x00 to 0x18)

 Display ON/OFF (Code: 0xAE~0xAF)

85

For details of command sets, please refer to the NT7534 datasheet in the System CD. After the LCD

is initialized, developer can start transferring display data. Due to the display area is divided into 8

page, developer must first specify target page and column address before starting to transfer display

data. Figure 6-12 shows the relationship between image data bits and LCD display pixels when

page = 0, column = 0, and start line = 0.

Figure 6-12 Relation between LCD display pixel and image data bits

 SPIM Controller

In this demonstration, the HPS SPIM1 controller is configured as TX-Only SPI with clock rate

3.125MHz. Please refer to the function "LCDHW_Init" in LCD_Hw.c for details. The header file

"socal/alt_spim.h", which needs to be included into the SPI controller program, defines all

necessary constants for the SPIM controller.

 C-code Explanation

This demonstration includes the following major files:

 LCD_HW.c: Low-level SPI and GPIO API to access LCD hardware

 LCD_Driver.c: LCD configuration API

 LCD_Lib.c: Top-level LCD control API

 lcd_graphic.c: Graphic and font APIs for LCD

 font.c: Font bitmap resource used by lcd_graphic.c

 main.c: Main program for this demonstration

The main program main.c calls "LCDHW_Init" to initialize the SPIM1 and GPIO controllers,

which are used to control the LCD. It then calls "LCDHW_BackLight" to turn on the backlight of

LCD. "LCD_Init" is called to initialize LCD configuration. Finally, the APIs in lcd_graphic.c are

called to draw graphic on the LCD.

86

APIs in lcd_graphic.c don’t drive LCD to draw graphic pixels directly. All graphic pixels are stored

in a temporary image buffer called "Canvas". When API "DRAW_Refresh" is called, all drawing

data in the Canvas is transferred to LCD. In this demonstration, main program calls "DRAW_Clear"

to clear LCD Canvas first. "DRAW_Rect" and "DRAW_Circle" are called to draw geometry in

Canvas. "DRAW_PrintString" is called to draw font in Canvas. Finally, "DRAW_Refresh" is called

to move Canvas data onto LCD.

 Demonstration Source Code

 Build tool: Altera SoC EDS v13.0

 Project directory: \Demonstration\SoC\hps_lcd

 Binary file: hps_lcd

 Build command: make ("make clean" to remove all temporary files)

 Execute command: ./hps_lcd

 Demonstration Setup

 Make sure BOOTSEL[2:0] = 101 (Boot from SD card)

 Make sure CLKSEL[1:0] = 00

 Make sure MSEL[4:0] = 10000

 Connect the USB cable to the USB-to-UART connector (J4) on the SoCKit board and host PC.

 Make sure the executable file "hps_lcd" is copied into the SD card under the /home/root folder

in Linux.

 Insert the booting micro SD card into the SoCKit board.

 Power on the SoCKit board.

 Launch PuTTY to connect to the UART port of SoCKit board and type "root" to login Yocto

Linux.

 In the UART terminal of PuTTY, type "./hps_lcd" to start the LCD demo, as shown in Figure

6-13.

Figure 6-13 Launch LCD Demonstration

87

 Users should see the LCD displayed as shown in Figure 6-14.

Figure 6-14 LCD display for the LCD Demonstration

88

Chapter 7

Steps of Programming the

Quad Serial Configuration

Device

This chapter describes how to program the quad serial configuration device with Serial Flash

Loader (SFL) function via the JTAG interface. User can program quad serial configuration devices

with a JTAG indirect configuration (.jic) file. To generate JIC programming files with the Quartus II

software, users need to generate a user-specified SRAM object file (.sof), which is the input file

first. Next, users need to convert the SOF to a JIC file. To convert a SOF to a JIC file in Quartus II

software, follow these steps:

 Before you Begin

To use the Quad serial flash as a FPGA configuration device, the FPGA will need to be set in Asx4

mode. To do this, adjust the configuration mode switch (SW6) to let MSEL[4..0] to be set as

“10010”.

 Convert. SOF File to .JIC file

1. Choose Convert Programming Files on Quartus window (File menu), See Figure 7-1.

89

Figure 7-1. File menu of Quartus

2. In the Convert Programming Files dialog box, scroll to the JTAG Indirect Configuration

File (.jic) from the Programming file type field.

3. In the Configuration device field, choose EPCQ256.

4. In the Mode field, choose Active Serial X4.

5. In the File name field, browse to the target directory and specify an output file name.

6. Highlight the SOF data in the Input files to convert section. See Figure 7-2.

90

Figure 7-2. Convert Programming Files Dialog Box

7. Click Add File.

8. Select the SOF that you want to convert to a JIC file.

9. Click Open.

10. Highlight the Flash Loader and click Add Device. See Figure 7-3.

11. Click OK. The Select Devices page displays.

91

Figure 7-3. Highlight Flash Loader

12. Select the targeted FPGA that you are using to program the serial configuration device. See

Figure 7-4.

13. Click OK. The Convert Programming Files page displays. See Figure 7-5.

14. Click Generate.

92

Figure 7-4. Select Devices Page

Figure 7-5. Convert Programming Files Page

 Write JIC File into Quad Serial Configuration Device

To program the serial configuration device with the JIC file that you just created, add the file to the

Quartus II Programmer window and follow the steps:

93

1. When the SOF-to-JIC file conversion is complete, add the JIC file to the Quartus II

Programmer window:

i. Choose Programmer (Tools menu), and the Chain.cdf window appears.

ii. Click Auto Detect and choose the device, See Figure 7-6.

iii. Click the FPGA device and right click mouse, click Change File and select .jic file for

FPGA. See Figure 7-7.

Figure 7-6. Choose device

Figure 7-7. Add .jic file

2. Program the serial configuration device by checking the corresponding Program/Configure

box, a factory default SFL image will be loaded (See Figure 7-8).

94

Figure 7-8. Quartus II programmer window with one JIC file

3. Click Start to program serial configuration device.

 Erase the Quad Serial Configuration Device

To erase the existed file in the serial configuration device, follow the steps listed below:

1. Choose Programmer (Tools menu), and the Chain.cdf window appears.

2. Click Auto Detect, choose the device.

4. Click the FPGA device, right click mouse and click Change File. Then select .jic file for

FPGA (See Figure 7-9).

95

Figure 7-9 Erasing setting in Quartus II programmer window

5. Click Start to erase the serial configuration device.

96

Chapter 8

Appendix

88..11 RReevviissiioonn HHiissttoorryy

Version Change Log

V0.1 Initial Version (Preliminary)

V0.2 Add CH5 and CH6

V0.3 Modify CH3

V0.4 Add CH6 HPS

V1.0 Modify CH 7

88..22 CCooppyyrriigghhtt SSttaatteemmeenntt

Copyright © 2013 Terasic Technologies. All rights reserved.

	OLE_LINK2
	OLE_LINK1
	OLE_LINK11
	OLE_LINK12
	OLE_LINK4
	OLE_LINK3
	OLE_LINK7
	OLE_LINK5
	OLE_LINK6

