Introduction

ODROID-XU is the world's first big.LITTLE architecture based bare-board computer.

ODROID-XU+E BLOCK DIAGRAM								
USB 3.0 DRD/OTG Micro A-B	USB 3.0 #0	Exynos5 Octa Application Processor			USB 2.0 HSIC #2	HSIC-USB Hub	4 x USB Host Port	
USB3.0	USB 3.0	Cortex-A15 Quad (1.7GHz)	Cortex-A7 Quad	(1.4GHz)	USB 2.0			
Host Type A	#1	Cortex-A15 Cortex-A15	Cortex-A7	Cortex-A7	Host			
eMMC	eMMC 4.5	32KB/32KB1/D-Cache NEONv2 + VFPv4 NEONv2 + VFPv4	NEONv2 + VFPv4 N	EONv2 + VFPv4	USB 2.0	HSIC Ethernet	Ethernet	
Module Socket	8bit	Cortex-A15 Cortex-A15	Cortex-A7	Cortex-A7	HSIC #1	Hore Exact act	10/100	
Micro SD Slot	SD3.0 Host	32KB/32KB I/D-Cache NEONv2 + VFPv4 NEONv2 + VFPv4	32KB/32KB I/D-Cache 32K NEONv2 + VFPv4 N	CB/32KB I/D-Cache NEONv2 + VFPv4	I2C	PMIC	DC 5V/4A	
Serial	LIADT 42	SCU and ACP	SCU					
Console	2MB L2-Cache with ECC		512KB L2-Cache			CPU/GPU/DRAM Power Measurement		
		128-bit AMBA ACE Coherent Bus interface	128-bit AMBAACE Coherent Bus interface 128-bit AMBAACE Coherent Bus interface					
					128	Audio Codec	Headphone	
		GPU	INFO	DRAM				
I/O expansion Port	- SPI#1	PowerVR Series5XT SGX544 MP3 (600MHz) OpenCL 1.1 Embedded profile for GP-GPU	Enc/Dec	LPDDR3 800MHz 32bit 2-port 12.8Gbytes/sec	HDMI -		HDMI Type-D	
(30pin)	ADC #0	OpenGL ES 2.0 and OpenGL ES 1.1 + Extension Pr Programmable USSE2 (Universal Scalable Shader	Engine) 1080p 60 Enc/Dec	2GByte PoP				
	GPIO				MIPI DSI #0 I2C/PWM		LCD + Capacitive Touch	

ODROID-XU+E model has the integrated power analysis tool. This package contains a special ODROID-XU board which has 4 current/voltage sensors to measure the power consumption of the Big A15 cores, Little A7 cores, GPUs and DRAMs individually. The professional developers can monitor

CPU, GPU and DRAM power consumption via included on-board power measurement circuit. By using the integrated power analysis tool, developers will reduce the need for repeated trials when debugging for power consumption and get the opportunity to enhance and optimize the performance of their CPU/GPU compute applications, and therefore keeping power consumption as low as possible.

Specifications

Processor	Samsung Exynos5 Octa ARM Cortex™-A15 Quad 1.6Ghz and Cortex™-A7 Quad 1.2GHz CPUs
Memory	2Gbyte LPDDR3 RAM PoP (800Mhz, 1600Mbps/pin, 2 x 32bit Bus)
3D Accelerator	PowerVR SGX544MP3 GPU (OpenGL ES 2.0, OpenGL ES 1.1 and OpenCL 1.1 EP)
Video	supports 1080p via HDMI cable(H.264+AAC based MP4 container format)
Video Out	micro HDMI connector
Audio	On-board Audio codec, Standard 3.5mm headphone jack, HDMI Digital
USB3.0 Host	SuperSpeed USB standard A type connector x 1 port
USB3.0 OTG	SuperSpeed USB Micro A-B type connector x 1 port
USB2.0 Host	High Speed standard A type connector x 4 ports
Display	HDMI monitor
Storage (Option)	MicroSD Card Slot, eMMC module socket : eMMC 4.5 Flash Storage
Fast Ethernet LAN	10/100Mbps Ethernet with RJ-45 Jack (Auto-MDIX support)
Gigabit Ethernet LAN(Option)	USB3.0 to Gigabit Ethernet adapter (USB module)
WiFi (Option)	USB IEEE 802.11b/g/n 1T1R WLAN with Antenna (USB module)
HDD/SSD SATA interface (Optional)	SuperSpeed USB (USB 3.0) to Serial ATA3 adapter for 2.5"/3.5" HDD and SSD storage
Power (included)	5V 4A Power
Case(included)	Mechanical case & cooler (98 x 74 x 29 mm approx.)
PCB Size	94 x 70 x 18 mm approx.

Expansion Connectors

The Odroid-xu povides one 30-pin dual row expansion header "**CON10**" and one 40pin connector " **CON15**" with MIPI DSI for LCD. The location and pinout of these connectors is illustrated blew. All signals on expansion headers are 1.8V except PWRON signal.

CON10 - 2×15 pins

Pin Number	Expansion Net Name	Pin Name of Exynos5410	Description	Pin Number	Expansion Net Name	Pin Name of Exynos5410	Description
1	5V0		Output Power from DC Adaptor	2	GND		Ground
3	ADC_0.AIN0	XADC0AIN_0		4	UART_0.RTSN	UART_0_RTSn	Requests to Send(active low) for UART0
5	UART_0.CTSN	UART_0_CTSn	Clears to Send(active low) for UART0	6	UART_0.RXD	UART_0_RXD	Receives Data for UART0
7	SPI_1.MOISI	SPI_1_MOSI	In Master mode, this port is used to trasmit data to external slave.	8	UART_0.TXD	UART_0_TXD	Transmits Data for UART0
9	SPI_1.MISO	SPI_1_MISO	In Master mode, this port is used to receive data from external slave.	10	SPI_1.CLK	SPI_1_CLK	Serial Clock
11	SPI_1.CSN	SPI_1_nSS	Slave Selection Signal	12	PWRON	External Power On Signal	This pin has an pull-down (about 800kohm) of PMIC inside.
13	XE.INT13(GPX1.5)	EXT_INT13		14	XE.INT19(GPX2.3)	EXT_INT19	
15	XE.INT10(GPX1.2)	EXT_INT10		16	XE.INT8(GPX1.0)	EXT_INT8	
17	XE.INT14(GPX1.6)	EXT_INT14		18	XE.INT11(GPX1.3)	EXT_INT11	GPIO and
19	XE.INT22(GPX2.6)	EXT_INT22	GPIO and External	20	XE.INT20(GPX2.4)	EXT_INT20	External
21	XE.INT21(GPX2.5)	EXT_INT11	Interrupt	22	XE.INT23(GPX2.7)	EXT_INT23	Interrupt
23	XE.INT18(GPX2.2)	EXT_INT18		24	XE.INT17(GPX2.1)	EXT_INT17	
25	XE.INT15(GPX1.7)	EXT_INT15		26	XE.INT16(GPX2.0)	EXT_INT16	
27	XE.INT25(GPX3.1)	EXT_INT25		28	GND		Ground
29	VDD_IO		LDO3 of PMIC with 1.8V	30	GND		Ground

CON15 - 1×40 pins

Pin Number	Expansion Net Name	Pin Name of Exynos5410	Description
1	NC		
2			
3	VDD_IO		
4			
5	NC		
6	I2C_0.SCL	I2C_0_SCL	
7	I2C_0.SDA	I2C_0_SDA	

Pin Number	Expansion Net Name	Pin Name of Exynos5410	Description
8	MIPI-DSI.D0_N	MIPIO_DN_0	Specifies the DN signal for MIPI-D-PHY0 Master data-lane 0
9	MIPI-DSI.D0_P	MIPI0_DP_0	Specifies the DP signal for MIPI-D-PHY0 Master data-lane 0
10	GND		Ground
11	MIPI-DSI.D1_N	MIPIO_DN_1	Specifies the DN signal for MIPI-D-PHY0 Master data-lane 1
12	MIPI-DSI.D1_P	MIPI0_DP_1	Specifies the DP signal for MIPI-D-PHY0 Master data-lane 1
13	GND		Ground
14	MIPI-DSI.CLK_N	MIPIO_CLK_TX_N	Specifies the DN signal for MIPI-D-PHY0 Master clock-lane
15	MIPI-DSI.CLK_P	MIPI0_CLK_TX_P	Specifies the DP signal for MIPI-D-PHY0 Master clock-lane
16	GND		Ground
17	MIPI-DSI.D2_N	MIPIO_DN_2	Specifies the DN signal for MIPI-D-PHY0 Master data-lane 2
18	MIPI-DSI.D2_P	MIPI0_DP_2	Specifies the DP signal for MIPI-D-PHY0 Master data-lane 2
19	GND		Ground
20	MIPI-DSI.D3_N	MIPIO_DN_3	Specifies the DN signal for MIPI-D-PHY0 Master data-lane 3
21	MIPI-DSI.D3_P	MIPIO_DP_3	Specifies the DP signal for MIPI-D-PHY0 Master data-lane 3
22	GND		Ground
23	XE.INT5	EXT_INT5	External Interrupt
24	NC		
25	GND		Ground
26	UART_1.RXD	UART_1_RXD	Receive Data for UART1
27	UART_1.TXD	UART_1_TXD	Transmits Data for UART1
28	GND		Ground
29	UART_3.TXD	UART_3_TXD	Transmits Data for UART3
30	UART_3.RXD	UART_3_RXD	Receive Data for UART3
31	GND		Ground
32	GND		Ground
33	GND		Ground
34	NC		
35	PWM.TOUT3	TOUT_0	PWMTIMER_TOUT[3]
36	NC		
37	NC		
38	-		
39	P5V0		Output Power from DC Adaptor
40			

Expansion Boards and Accessories

Boot Loader

Boot Media

On ODROID-XU is a DIP Switch (sw1) to select the booting Device.

• both eMMC5.0 and 4.4 booting mode of following table are whatever for eMMC booting.

SW1-1,2	1st Boot media
ON ON	eMMC5.0
ON OFF	eMMC4.4
OFF ON	MicroSD card
OFF OFF	Reserved

Boot Sequence

Upon power on the board will search for the boot media. It will perform the following:

- 1) iROM (Code inside the SoC) will attempt to read the boot media at the first 512 bytes of it. On those first 512 bytes fwbl1 should exist.
- 2) fwbl1 will load bl2 (SPL) that is part of the U-boot.
- 3) bl2 will load U-boot.
- 4) U-Boot will do whats left, such as handle TrustZone, load kernel image if setted.

fwbl1

This blob is the first thing that CPU will call, we don't have much information on it since its provided by Samsung. Position on SD: 1

bl2

This is the SPL, part of the U-Boot, upon building U-Boot you'll have the mkspl program what will extract it from the u-boot.bin Position on SD: 31

u-boot.bin

This is the U-Boot itself built. For more information about U-Boot please check their website: http://www.denx.de/wiki/U-Boot Position on SD: 63

TrustZone Software

This is the blob done by Samsung/ARM to support Trustzone platform. Position on SD: 719

Default Env

The default env provided in U-Boot will attempt the following:

- 1) Load boot.ini script from the first FAT type partition from the boot media.
- 2) Load kernel from its on media/ramdisk position (This is the Android Boot)

Boot media sector map for Odroid-xu

- Odroid-xu has Min 8Gbyte eMMC or MicroSD memory card for system area.
- FAT partition to calculate the remaining blocks to create the partition.

Area Name	Size in bytes	From(sector #)	To(Sector #)	Partition Name
FAT32 for Storage	Up to 4GB	6979920	remaining blocks	mmcblk0p1
EXT4 for Android cache	256MB	6446520	6979919	mmcblk0p4
EXT4 for Android userdata	2GB	2240280	6446519	mmcblk0p3
EXT4 for Android system	1GB	137160	2240179	mmcblk0p2
Reserved	58MB	17647	137159	
Kernel	8MB	1263	17646	
u-boot environment	16KB	1231	1262	
TrustZone SW	256KB	719	1230	
u-boot	328KB	63	718	
bl2	16KB	31	62	
fwbl1	15KB	1	30	

2014/08/12 16:16		7/18			Introduction	
Area Name	Size in bytes	From(sector #)	To(Sector #)	Partition Name		
Partition table / MBR	512	0	0			

7/18

* "Sector number - 1" in SD map is used in the eMMC map.

How to build u-boot

2014/08/12 16:16

Download the cross tool chain package

[http://dn.odroid.com/ODROID-XU/compiler/arm-eabi-4.4.3.tar.gz]

Note this tool chain only used to build the u-boot.

If you meet any compile error, try this tool chain package. [http://dn.odroid.in/ODROID-XU/compiler/arm-eabi-4.6.tar.gz]

Copy the cross tool package to /opt/toolchains

If the '/opt/toolchains' directory does not exist in host pc, then create the directory.

```
# sudo mkdir /opt/toolchains
# sudo cp arm-eabi-4.4.3.tar.gz /opt/toolchains
# cd /opt/toolchains/
# sudo tar zxvf arm-eabi-4.4.3.tar.gz
```

Uncompress the cross tool with tar command

```
# cd /opt/toolchains
# sudo tar xvfz arm-eabi-4.4.3.tar.gz
```

Add Path in your environment file

Modify your \sim /.bashrc file to add a new path with editor (gedit or vi)

```
export PATH=${PATH}:/opt/toolchain/arm-eabi-4.4.3/bin
export CROSS COMPILE=arm-eabi-
```

To apply this change, login again or restart the .bashrc

source ~/.bashrc

Check the tool-chain path to see if it is set up correctly or not.

```
# arm-eabi-gcc -v
Using built-in specs.
Target: arm-eabi
Configured with:
/home/jingyu/projects/gcc/android-toolchainsrc/build/../gcc/gcc-4.4.3/config
ure --prefix=/usr/local --target=arm-eabi
--host=x86 64-linux-gnu --build=x86 64-linux-gnu --with-gnu-as --with-gnu-ld
--enable-languages=c,c++ --with-gmp=/home/jingyu/projects
/gcc/toolchain build/obj/temp-install
--with-mpfr=/home/jingyu/projects/gcc/toolchain build/obj/temp-install
--disable-libssp --enable
-threads --disable-nls --disable-libmudflap --disable-libgomp
--disable-libstdc__-v3 --disable-sjlj-exceptions --disable-shared --disa
ble-tls --with-float=soft --with-fpu=vfp --with-arch=armv5te
--enable-target-optspace --with-abi=aapcs --with-gcc-version=4.4.3 --with
-binutils-version=2.19 --with-gmp-version=4.2.4 --with-mpfr-version=2.4.1
--with-gdb-version=7.1.x --with-arch=armv5te --with-multilib
-list=mandroid
--with-sysroot=/usr/local/google/home/android/cupcake rel root
--program-transform-name='s&^&arm-eabi-&'
Thread model: single
gcc version 4.4.3 (GCC)
```

Source code download

You can get the latest source from here.

android-4.2.2

```
$ repo init -u https://github.com/hardkernel/android.git -b
5410_4.2.2_master
$ repo sync
$ repo start 5410_4.2.2_master --all
$ ./build.sh odroidxu platform
```

9/18

android-4.4.2

```
$ repo init -u https://github.com/hardkernel/android.git -b
odroid_5410_master
$ repo sync
$ repo start odroid_5410_master --all
$ ./build.sh odroidxu platform
```

* Visit this link to install the repo. http://source.android.com/source/downloading.html

* To get the same version source of this Alpha 2.0 in the future, try below command of tag.

\$ repo forall -c git reset --hard 5410_v2.0

How to configure and compile

Android-4.2.2

https://github.com/hardkernel/linux/tree/odroidxu-3.4.y-android-jb

```
Kernel configuration file : odroidxu_android_defconfig
```

```
$ git clone https://github.com/hardkernel/linux.git -b
odroidxu-3.4.y-android-jb
$ cd linux
$ make odroidxu_android_defconfig
$ make -j8
```

Android-4.4.2

https://github.com/hardkernel/linux/tree/odroidxu-3.4.y-android

Kernel configuration file : odroidxu_android_defconfig

```
$ git clone https://github.com/hardkernel/linux.git -b
odroidxu-3.4.y-android
$ cd linux
$ make odroidxu_android_defconfig
$ make -j8
```

Write kernel

In the host PC.

#fastboot flash kernel arch/arm/boot/zIamge

Reboot system

In the host PC.

#fastboot reboot

• You will have spl/smdk5410-spl.bin and u-boot.bin, if you build it.

Note

- You need to sign the smdk5410-spl.bin with Hardkernel's private key to make it bootable.
- If you want to contribute your patch, apply it to our u-boot github admin. Or, contact "odroid.uboot@gmail.com"
- And we will publically release the signed bl2 image within 48 hours if there is any update.
- To flash the updated images on your MicroSD card, refer the scriptor file sd_fusing.sh in sd_fuse directory.
- To flash the updated images on your eMMC moduel, refer the scriptor file emmc_fastboot_fusing.sh in sd_fuse directory.
- For eMMC update, you need a fastboot driver and micro-USB cable.

Kernel

Getting the Right Kernel

Step-by-Step guide to building a odroid-xu Kernel

Download the cross tool chain package

[http://dn.odroid.com/ODROID-XU/compiler/arm-eabi-4.6.tar.gz]

Note

- This toolchain only used to build the kernel.
- This toolchain is included in the Android source package. (\$ANDROID_ROOT/prebuilts/gcc/linux-x86/arm/arm-eabi-4.6)

Copy the cross tool package to /opt/toolchains

If the '/opt/toolchains' directory does not exist in host pc, then create the directory.

```
# sudo mkdir /opt/toolchains
# sudo cp arm-eabi-4.6.tar.gz /opt/toolchains
# cd /opt/toolchains
# sudo tar zxvf arm-eabi-4.6.tar.gz
```

Uncompress the cross tool with tar command

```
# cd /opt/toolchains
# sudo tar xvfz arm-eabi-4.6.tar.gz
```

Add Path in your environment file

Modify your ~/.bashrc file to add a new path with editor (gedit or vi)

```
export ARCH=arm
export PATH=${PATH}:/opt/toolchains/arm-eabi-4.6/bin
export CROSS_COMPILE=arm-eabi-
```

To apply this change, login again or restart the .bashrc

source ~/.bashrc

Check the tool-chain path to see if it is set up correctly or not.

```
# arm-eabi-gcc -v
Using built-in specs.
COLLECT_GCC=arm-eabi-gcc
COLLECT_LTO_WRAPPER=/opt/toolchain/arm-eabi-4.6/bin/../libexec/gcc/arm-eabi/
4.6.x-google/lto-wrapper
Target: arm-eabi
Configured with: /tmp/android-15472/src/build/../gcc/gcc-4.6/configure
--prefix=/usr/local --target=arm-eabi --host=x86_64-linux-gnu
--build=x86_64-linux-gnu --with-gnu-as --with-gnu-ld
--enable-languages=c,c++ --with-gmp=/tmp/android-15472/obj/temp-install
--with-
```

```
mpfr=/tmp/android-15472/obj/temp-install
--with-mpc=/tmp/android-15472/obj/temp-install --without-ppl --without-cloog
--disable-libs
sp --enable-threads --disable-nls --disable-libmudflap --disable-libgomp
--disable-libstdc__-v3 --disable-sjlj-exceptions --disable-
shared --disable-tls --disable-libitm --with-float=soft --with-fpu=vfp
--with-arch=armv5te --enable-target-optspace --with-abi=aapcs
--with-gcc-version=4.6 --with-binutils-version=2.21
--with-gmp-version=4.2.4 --with-mpfr-version=2.4.1 --with-gdb-version=7.3.x
- - W
ith-arch=armv5te --with-sysroot=/tmp/android-15472/install/sysroot
--with-prefix=/tmp/android-15472/install --with-gold-version=2.21
--enable-gold --disable-gold --disable-multilib
--program-transform-name='s&^&arm-eabi-&'
Thread model: single
gcc version 4.6.x-google 20120106 (prerelease) (GCC)
```

Source code download

Android-4.2.2

https://github.com/hardkernel/linux/tree/odroidxu-3.4.y-android-jb

```
Kernel configuration file : odroidxu_android_defconfig
```

```
$ git clone https://github.com/hardkernel/linux.git -b
odroidxu-3.4.y-android-jb
$ cd linux
$ make odroidxu_android_defconfig
$ make -j8
```

Android-4.4.2

https://github.com/hardkernel/linux/tree/odroidxu-3.4.y-android

Kernel configuration file : odroidxu_android_defconfig

```
$ git clone https://github.com/hardkernel/linux.git -b
odroidxu-3.4.y-android
$ cd linux
$ make odroidxu_android_defconfig
$ make -j8
```

Android

http://source.android.com/source/initializing.html

Installing required packages (Ubuntu 12.04) Building on Ubuntu 12.04 is currently only experimentally supported and is not guaranteed to work on branches other than master.

```
$ sudo apt-get install git gnupg flex bison gperf build-essential \
zip curl libc6-dev libncurses5-dev:i386 x11proto-core-dev \
libx11-dev:i386 libreadline6-dev:i386 libgl1-mesa-glx:i386 \
libgl1-mesa-dev g++-multilib mingw32 tofrodos \
python-markdown libxml2-utils xs1tproc zlib1g-dev:i386
```

```
$ sudo ln -s /usr/lib/i386-linux-gnu/mesa/libGL.so.1
/usr/lib/i386-linux-gnu/libGL.so
```

Installing the JDK The Oracle/Sun JDK is no longer in Ubuntu's main package repository. In order to download it, you need to add the appropriate repository and indicate to the system which JDK should be used.

If the JDK version is higher than 1.6.0_39, you may meet some compilation errors.

```
sudo add-apt-repository "deb http://ftp.debian.org/debian squeeze main
contrib non-free"
sudo apt-get update
sudo apt-get install sun-java6-jdk
```

```
$ java -version
java version "1.6.0_26"
Java(TM) SE Runtime Environment (build 1.6.0_26-b03)
Java HotSpot(TM) 64-Bit Server VM (build 20.1-b02, mixed mode)
```

Configuring USB Access Under GNU/linux systems (and specifically under Ubuntu systems), regular users can't directly access USB devices by default. The system needs to be configured to allow such access.

The recommended approach is to create a file /etc/udev/rules.d/51-android.rules (as the root user) and to copy the following lines in it. <username> must be replaced by the actual username of the user who is authorized to access the phones over USB.

```
SUBSYSTEM=="usb", ATTRS{idVendor}=="18d1", MODE="0666"
```

Source code download

2014/08/12 16:16	15/18	Introduction
You can get the lat	test source from here.	
http://dn.odroid.co	m/ODROID-XU/Android_bsp/	
Build android		
./build.sh odr	roidxu platform	
[[[[[OUTPUT	<pre>FOLDER = /media/codewalker/SSD/adonis/odroidxu-img</pre>	1111111
ok success !!!	!	
Write system.img		
In the host PC.		
#fastboot flag	sh system out/target/product/odroidxu/system.img	
Write use	erdata.img	
In the host PC.		
#fastboot flag	sh userdata out/target/product/odroidxu/userdata.img	
Write cache.img		
In the host PC.		
#fastboot flag	sh userdata out/target/product/odroidxu/cache.img	
Reboot system		
In the host PC.		
#fastboot rebo	pot	
Note · Ramdisk cor	ntents are merged into system img to minimize the build steps. You ca	an also easily

Note : Ramdisk contents are merged into system.img to minimize the build steps. You can also easily modify the system configuration for example init.*.rd file.

So there is no Ramdisk parition in the storage media.

Linux

Linux ODROID-XU works as follow:

It must have at least two partitions.

First Partition must be a FAT32 partition.

Second Partition can be whatever the Filesystem that your kernel supports (must be built in).

Note: It is possible to use the first partition as ext2, however its strongly not recommended due to Windows Users lost the capability of changing boot.scrs

Partition Contents

Partition 1:

- Kernel Image (zlmage)
- boot.scr
- ulnitrd (if applicable)

Partition 2:

• rootfs (a.k.a. File System)

Currently Supported Linux Distributions

- Ubuntu 13.04 Ubuntu 13.04 Forum Thread
- Debian Wheezy (can be upgraded to Jessie) Debian Wheezy Forum Thread
- Ubuntu 13.07 Server (Linaro's Version) Ubuntu Server Forum Thread

Note: More distributions such as Fedora/OpenSUSE to come

HDMI Support On Linux

HDMI On Linux works via the Exynos5 Hardware Composer. It is available on our github. Its on tools/hardkernel of branch odroidxu-3.4.y

Installation of it for custom proposes is very simple.

- 1. sh autogen.sh
- 2. ./configure
- 3. make
- 4. make install

This will install the exynos5-hwcomposer that must he running in order to get X11/Xorg output.

HDMI Resolution Change

Right now 720P 60Hz and 1080P 60Hz are the supported modes for the HDMI.

It is possible to change it on OFFICIAL images listed above by chaning the boot.scr file on the fat partition.

We current supply inside the FAT partition both boot.scr examples, just rename to what you plan to use.

Kernel Sources

Kernel sources for ODROID-XU is on our Github. Branch is **odroidxu-3.4.y** defconfig is **odroidxu_ubuntu_defconfig**

Kernel Rebuild Guide

Please follow the instructions below to rebuild the Linux Kernel for ODROID.

Those instructions cover native build of the Kernel.

- 1. Install dependencies: apt-get install build-essential libqt4-dev libncurses5-dev git
- 2. Clone Repo: git clone -depth 0 https://github.com/hardkernel/linux.git -b odroidxu-3.4.y odroidxu-3.4.y

git clone --depth 0 https://github.com/hardkernel/linux.git -b
odroidxu-3.4.y odroidxu-3.4.y

- 1. Configure Kernel: make odroidxu_ubuntu_defconfig
- 2. Do changes if you need/want: make menuconfig or make xconfig
- 3. Build Kernel and Modules: make -j5 zlmage modules
- 4. Install zlmage: cp arch/arm/boot/zlmage /media/boot
- 5. Install Modules: make modules_install
- 6. Copy .config to /boot for initramfs creation: cp .config /boot/config-3.4.5
- 7. Create initramfs: update-initramfs -c -k 3.4.5
- 8. Create ulnitrd: mkimage -A arm -O linux -T ramdisk -C none -a 0 -e 0 -n ulnitrd -d /boot/initrd.img-3.4.5 /boot/ulnitrd-3.4.5
- 9. Install new ulnitrd: cp /boot/ulnitrd-3.4.5 /media/boot/ulnitrd
- 10. reboot: sync && reboot

Your new kernel should be installed. Note for your own convenience we provide daily builds of Linux kernel that can be easily installed on Supported distros by using a Simple Script.

wget builder.mdrjr.net/tools/kernel-update.sh
sh kernel-update.sh

Please make sure that you always download a new script before running it. Small fixes for the rootfs can be added to the script itself.

References

From: http://odroid.com/dokuwiki/ - **Odroid Wiki**

Permanent link: http://odroid.com/dokuwiki/doku.php?id=en:odroid-xu

Last update: 2014/07/30 17:44

