
Instruction manual

Protocol Developer

Article No.: V3183E
Deutschmann Automation GmbH & Co. KG

Carl-Zeiss-Straße 8 D-65520 Bad Camberg +49-(0)6434 / 9433-0 +49-(0)6434 / 9433-40
eMail: mail@deutschmann.de Internet: http://www.deutschmann.de

Deutschmann Automation GmbH & Co. KG
1 Introduction . 7
2 What is a Script?. . 8

2.1 Decision for an own Script language 8
2.2 Memory efficiency of the programs 8

3 Hardware . 9
3.1 UNIGATE SC in Debug-version 9
3.2 Debug mode . 9

3.2.1 Setting the Debug mode . 9
3.2.1.1 Switch-on message of the Gateway . 9

3.3 UNIGATE IC . 10
4 What can you do with a Script device? 11

4.1 Independence of buses . 12
4.2 Further settings at the Gateway 12
4.3 The use of the Protocol Developer 12

4.3.1 Main window . 13
4.4 Menu structure . 13
4.5 The Debugger . 15
4.6 Programming Scripts . 18

4.6.1 Spelling of Script commands . 18
4.6.1.1 Numbers . 18
4.6.1.2 Texts . 19
4.6.1.3 Comments . 19
4.6.1.4 Label . 19

4.7 About the Script development 19
4.8 Special rules for Scripts . 20
4.9 Debugging . 20

4.9.1 Proceeding . 20
4.9.2 Debug commands. . 20

5 Description of the Script Program Tool 21
5.1 Manual mode . 21
5.2 Automatic mode . 21

5.2.1 Setting up the automatic mode . 21
6 Appendix . 22
7 Quick start . 25

7.1 Step-by-step . 26
7.1.1 Step 1 . 26
7.1.2 Step 2 . 26
7.1.3 Step 3 . 26
7.1.4 Step 4 . 27
7.1.5 Step 5 . 28
7.1.6 Step 6 . 29
7.10.10 Instruction manual Protocol Developer V. 2.1 3

 Deutschmann Automation GmbH & Co. KG
7.1.7 Step 7 . 29
7.1.8 Step 8 . 30

8 Commands (selection of commands) 31
8.1 BusStart . 31
8.2 CalculateByte . 32
8.3 CalculateWord . 33
8.4 Call . 34
8.5 Checksum . 35
8.6 Convert . 36
8.7 Copy . 37
8.8 Delay . 38
8.9 DIN19244DataExchange . 39
8.10 ExchangeModbusRTUMaster 40
8.11 FillMemory . 41
8.12 GetParameter . 42
8.13 If - then - else . 43
8.14 Init3964R . 44
8.15 InitCommunicationChannel . 45
8.16 Jump . 46
8.17 Label . 47
8.18 LONSelfDocString . 48
8.19 MoveConst . 49
8.20 ReadBus . 50
8.21 ReadModbusSlave . 51
8.22 Receive3964R . 52
8.23 ReceiveSomeCharRS . 53
8.24 ReceiveSpecialCharRS . 54
8.25 Return . 55
8.26 ScriptAuthor . 56
8.27 ScriptName . 57
8.28 ScriptRevision . 58
8.29 Send3964R . 59
8.30 SendRS . 60
8.31 Set . 61
8.32 SetByVar . 62
8.33 SetLonMapping . 63
8.34 Stop . 64
8.35 VariableDeclaration . 65
8.36 Wait . 66
8.37 WaitBusChange . 67
8.38 WriteBus . 68
4 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG
8.39 WriteModbusSlave . 69
9 Parameters (selection of parameters) 70

9.1 3964RPriority . 70
9.2 AvailableBusData . 71
9.3 Baudrate . 72
9.4 BusBaudrate . 73
9.5 BusDataChanged . 74
9.6 BusInputsize . 75
9.7 BusOutputSize . 76
9.8 BusTimeout . 77
9.9 BusType . 78
9.10 ChecksumCalculationMethods 79
9.11 CommunicationChannel . 80
9.12 DataBits . 81
9.13 ErrorCode . 82
9.14 ErrorProgramcounter . 83
9.15 EthernetDestinationPort . 84
9.16 EthernetSourcePort . 85
9.17 FieldbusID . 86
9.18 LonProgramID . 87
9.19 ModbusRTUTimeout . 88
9.20 ModbusSlaveAddress . 89
9.21 MPIDBFetch . 90
9.22 MPIDBSend . 91
9.23 MPIDWFetch . 92
9.24 MPIDWSend . 93
9.25 MPIFetchOn . 94
9.26 MPIFetchType . 95
9.27 MPIGapFactor . 96
9.28 MPIMax.Station . 97
9.29 MPIPartnerAddress . 98
9.30 MPISendType . 99
9.31 Parity . 100
9.32 ProductCode . 101
9.33 RSInCharacter . 102
9.34 RSOutFree . 103
9.35 RS_State_LED . 104
9.36 RSSwitch . 105
9.37 RSType . 106
9.38 SelectID . 107
9.39 ShiftRegisterInputBitLength . 108
7.10.10 Instruction manual Protocol Developer V. 2.1 5

 Deutschmann Automation GmbH & Co. KG
9.40 ShiftRegisterInputType . 109
9.41 ShiftRegisterOutputBitLength 110
9.42 ShiftRegisterOutputType . 111
9.43 StartBits . 112
9.44 StopBits . 113
9.45 Timer . 114
9.46 WarningTime . 115

10 Miscellaneous . 116
10.1 Return codes . 116
10.2 Script revisions . 116
10.3 Script execution . 116
10.4 Bus Types or Device Types . 117
6 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Introduction
1 Introduction
Our customers are looking for flexible solutions: Rightly. That was reason enough for us to also
think about such a solution in the Gateway market.
We therefore took all known demands on a Gateway into consideration and from that superset
we tried to find a simple solution for all problems. We realized very quickly that one single setting
of the Gateway would not be sufficient to achieve the vast number of possible applications, that
is already done with WINGATE®. However, an implementation that we offer to our customers is
often too expensive - a solution would be to enable the customer to carry out the programming
himself. If now a customer would try to write his own C-program, he would be faced with the
problem to program bus-accesses. Knowledge of the single fieldbus controllers etc. is required.
Therefore we offer an intermediate solution. The only thing the customer has to do is to process
the data of the fieldbus. He does not have to bother about the specific features of the buses. Also
the customer does not have to possess knowledge of programming languages, but he generates
a Script by means of a Windows-tool.

A general basic knowledge in programming, however, is required. Examples that are given in this
introduction are extracts from Scripts, that are not necessarily executable the way they are
printed in this manual, as possible preconditions are not fulfilled. These examples are to be
understood as basic statements.
7.10.10 Instruction manual Protocol Developer V. 2.1 7

What is a Script? Deutschmann Automation GmbH & Co. KG
2 What is a Script?
A Script is a sequence of commands, that are executed in that exact order. Because of the fact
that also mechanisms are given that control the program flow in the Script it is also possible to
assemble more complex processes from these simple commands.

The Script is memory-oriented. It means that all variables always refer to one memory area.
While developing a Script you do not have to take care of the memory management though. The
Protocol Developer takes on this responsibility for you.

2.1 Decision for an own Script language
Conditional on the hardware an existing Script language as for instance JavaScript, TCL, Perl,
Python cannot be run on the Gateway. As the operating system is not a Microsoft® operating
system, also Visual Basic and its variants are out of question. Another point also argues against
these languages: None of the above languages is designed for the 'embedded' area.

All these points lead to one possible solution:
A language,
• that is designed exactly for the Gateway / fieldbus area
• that takes all characteristics of the Gateway into consideration
• that is simple
• that is low on memory
• that can be executed by the Gateway efficiently

These points altogether define our language and also explain the restrictions of the language at
the same time.

2.2 Memory efficiency of the programs
A Script command can carry out e. g. a complex checksum like a CRC-16 calculation via data.
For the coding of this command only 9 byte are required as memory space (for the command
itself). This is only possible when these complex commands are contained in a library.
A further advantage of this library is, that the underlying functions have been in practical use for a
couple of years and therefore can be described as ’void of errors’. As these commands are also
present in the native code for the controller, at this point also the runtime performance of the
Script is favorable.
8 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Hardware
3 Hardware
3.1 UNIGATE SC in Debug-version
On principle the Debug hardware does not differ from the one of the standard Gateway. In
addition to the regular hardware a special variant is available which, however, is only required for
the development of a Script. Due to technical reasons this extended hardware is not available for
all buses, but a development on another than the target hardware can be made.
Compared to the standard Gateway, this Debug Gateway features an additional RS232-inter-
face, which is available at the model with 9-pol. D-SUB connector. This Debug-interface itself is
always operated with 9600 baud, no parity, 8 data bits and 1 stop bit. Apart from that there are no
further differences neither in the software nor in the hardware.

3.2 Debug mode
The Debug mode is important for the development of a Script. In this mode the Script will only be
executed as far and in the extent as indicated by the user. Furthermore, the currently running
Script can be stopped by the user and be continued step by step or it can be continued at
another position as well. Contents of variables can be observed, so that the processing of Script
commands can be examined. Data coming in from the bus or the RS-interface can be displayed.
The most important tool would probably be the single-step mode and the possibility to set Break-
points as well as the possibility to read out the current memory (variables).

3.2.1 Setting the Debug mode
When starting the Gateway the switch Interface (at UNIGATE SC) is supposed to be adjusted to
RS232. After the start the device outputs a binary “0“ (0x00) at the Debug interface. The device is
in the Debug mode if this is anwered with a O (0x4F) within 0.5 s.
The switches S4 and S5 as well as the RS-switch can be brought to any position if required.
For the user himself, all Debug commands are integrated into a convenient surface, that makes it
easier to develop Script.

3.2.1.1 Switch-on message of the Gateway
When switching on the device it issues a switch-on message on the RS232-interface (standard
interface) provided the device is in the config mode (which means the config jumper is set at
UNIGATE IC or S4 and S5 are set to position ”FF” at CL + SC).

RS-PB-SC D(232/485) V5.0[6] (c)dA Switch=0xFFFF Script=Empty SN=12345678
Config mode...
RS-PB-SC means that the device is a Profibus Script Gateway.
D means that the connection is a 9-pol. DSUB.
(232/485) means that the device features the RS-interfaces RS232 and RS485. As an alternative
the designation (232/485) could be mentioned here at SC. AT CL = (232/422/485), at IC the inter-
face is not indicated.
V5.0: Software revision of the device; firmware is V5.0
[6]: Script revision 6
(c)dA Switch=0xFFFF: Copyright indication and switch position of all 4 rotary switches. At the
different buses this message varies slightly. At IC the position of the switch is omitted.
Script=Empty: The device contains an empty Script. The designation of your Script will be here.
The designations have to be at the beginning of the Script and they have a maximum length of
32 byte.
In addition an author as well as a version of the Script, that can also be displayed here can be
added at this place.
7.10.10 Instruction manual Protocol Developer V. 2.1 9

Hardware Deutschmann Automation GmbH & Co. KG
3.3 UNIGATE IC
In addition to the UNIGATE SC Deutschmann Automation is also offering the UNIGATE IC.

The UNIGATE series IC includes all analogue and digital components that are required for a
fieldbus implementation. Processor, flash memory, RAM, Fieldbus ASIC and all analogue com-
ponents as well as the opto-coupler and voltage supply are being combined on a small face.
The IC-Gateway also carries out the complete fieldbus communication. The difference between
the serial interface and the interface of the UNIGATE SC is that at the UNIGATE IC no drivers are
connected and the levels are TTL-levels.

Please note that the Gateways UNIGATE CL, IC and SC feature the same Script functions,
unless differences are explicitly pointed out. The expression „Gateway“ used in this
instruction manual stands for UNIGATE CL, UNIGATE IC and for UNIGATE SC as well.

Notes on the UNIGATE IC can be found in the instruction manual UNIGATE IC and on our web-
site at http://www.deutschmann.de.
10 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG What can you do with a Script device?
4 What can you do with a Script device?
Our Script devices are in the position to process a lot of commands. In this case a command is
always a small firmly outlined task. All commands can be put into classes or groups. A group of
commands deals with the communication in general. This group’s commands enable the Gate-
way to send and receive data on the serial side as well as on the bus-side.

The command groups are:

Declarations Variable declaration
Flow Control Subfunction calls, jumps, branches
Math Mathematical functions

Data conversions
Communication Send and receive data
Device Control Set and read parameters. Exemplary the baud rate for the serial inter-

face is mentioned here.
Bus specific Here the commands are placed that enter bus-specific values.

We consciously used these commands as rarely as possible, so that
the Scripts remain compatible.

Version Info Text, issued by the Gateway in its switch-on message.
These commands do not have a direct influence on the Script itself and
also at the runtime they are of no account.

Data Manipulation

Please note that no detailed description of commands is given here; the
commands are described in the Online Help.

Please note that at this point no detailed description of the commands is given; the commands
are described in the On-line help.

The amount of tasks, that can be processed with it is virtually endless.
Scripts,
• that over and over automatically acquire data from one participant at the serial interface, edit

the data and then present the edited data in the bus
• that carry out actions only in case the bus data changes
• that carry out time-controlled actions
• that inform of the communication states
• that exchange data between 2 serial participants (RS485) and present the state in the bus

are conceivable.

By means of this short enumeration it becomes clear that the Scripts are a flexible solution to
your problems. Data can be processed, converted and arranged on both sides (on the RS-side
and the bus-side as well). That way the Script basically offers the chance to cope with all require-
ments.
Problems are only to be expected in few cases:
• Is your requirement extremely time-critical? Because the Script is interpreted, the runtime per-

formance is not as favorable as a direct implementation.
• Depending on the protocol that is to be handled, however, a reaction time of few milliseconds

can also be achieved with the Script, that will absolutely do for most applications.
7.10.10 Instruction manual Protocol Developer V. 2.1 11

What can you do with a Script device? Deutschmann Automation GmbH & Co. KG
4.1 Independence of buses
Basically the Scripts do not depend on the bus, they are supposed to operate on. It means that a
Script which was developed on a Profibus Gateway can also be operated on an Interbus without
changes, since the functioning of these buses is very similar. In order to also process this Script
on an Ethernet Gateway, perhaps further adjustments have to be made in the Script, so that the
Script can be executed reasonably.
There are no fixed rules how which Scripts have to operate properly. When writing a Script you
should take into account on which target hardware the Script is to be executed, so the necessary
settings for the respective buses can be made.

4.2 Further settings at the Gateway
Most devices require no further adjustments, except for those made in the Script itself. However,
there are also exceptions to it. These settings are made by means of the software WINGATE. If
you know our UNIGATE-series, you are already familiar with the proceeding with it. An example
is the adjustment of the IP-address and the net-mask of an Ethernet-Gateway. These values
have to be known as fixed values and are not available for the runtime. Another reason for the
configuration of the values in WINGATE is the following: After an update of the Script these val-
ues remain untouched, i. e. the settings that were made once are still available after a change of
the Script.
Only this way it is also possible that the same Script operates on different Ethernet-Gateways,
that feature different IP-addresses.

4.3 The use of the Protocol Developer
The Protocol Developer is a tool for an easy generation of a Script for our Script Gateways. Its
operation is exactly aimed at this use. After starting the program the Script that was loaded the
last time is loaded again, provided that it is not the first start.
Typical for Windows Script commands can be added by means of the mouse or the keyboard. As
far as defined and required for the corresponding command, the dialog to the corresponding
command is displayed, and after entering the values the right text is automatically added to the
Script. The insertion of new commands by the Protocol Developer is carried out in a way that
existing commands will not be overwritten. Generally a new command is inserted in front of the
one where the cursor is positioned. Of course the commands can also be written by means of the
keyboard or already written commands can also be modified.
12 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG What can you do with a Script device?
4.3.1 Main window

The actual writing of a Script is made in the main window. From the list in the left part of the win-
dow you can “take“ a command by means of the mouse and insert it into the Script on the right
side. If a dialog is available for the respective command, it is called before the text is inserted.
Now variable names etc. can be entered, that will be available in the Script then. At this point you
do not have to worry about the spelling of Script commands, the Protocol Developer will support
you here.
Example for a dialog to a command.

After confirming the dialog with OK, the Protocol Developer generates the code for this com-
mand. In the example this would be the code "MoveConst (A, 1);“. This code can also be modi-
fied manually.

4.4 Menu structure
Menu File
In the File Menu all menu options that are necessary for the files can be found.

New
With File New a new editor file is generated. The new file does not contain a Script and is com-
pletely empty. When such a file is compiled, only the basic code for a Script is generated.
7.10.10 Instruction manual Protocol Developer V. 2.1 13

What can you do with a Script device? Deutschmann Automation GmbH & Co. KG
Open
With File Open an existing file is opened. The file already has to exist. A new file is to be gener-
ated with File New.

Save
With File Save a new file is saved on a data carrier. In case a file does not have a name so far, as
it was generated with File New, then the file Save as Dialog is automatically opened.

Save as
With this menu option a file can be saved under a different name than the one that was used
before.

Save compiled file
This file is available as source code. With Save compiled File the source code is compiled once
again. When the file was successfully compiled it is saved as binary file. This file can be trans-
ferred to a Script Gateway with other tools (WINGATE or SPT- ScriptProgramTool).

Print
With Print the complete source code of a program can be printed. At present the print cannot be
restricted to certain pages.

Exit
With Exit the Protocol Developer is quit. In case the current file is not stored, then you are
prompted to save the file.

Menu Options
Settings
With Settings the underlying settings of the Protocol Developer can be adjusted. For instance the
adjustment of the serial interface belongs to it.
In addition, all files that contain dialogs, commands etc. are created here. However, you should
never process this list without being asked.

Menu Project
Compile
The current Script, that is in the Protocol Developer is translated. In case of an error the compiler
will indicate, where the error was detected and what kind of error it is. Then you can specifically
process this point in the editor.

Debug
The Debugger is started with this. However, the Script has to be syntactically alright for it and a
Gateway in Debug mode has to be connected to the interface. See also chapter Debugging.

Menu View
Editor
The editor is displayed.

Internals
With Internals the internal values oft he compilers can be looked at.

Help
When the Help File is in the same directory as the Protocol Developer, then the start page of the
Help is displayed.
14 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG What can you do with a Script device?
4.5 The Debugger

The main window of the Debugger enables to control a Gateway that is in the Debug Mode. The
window offers the interface for operating and controlling the Debugger or the Debug Gateways.

Exit Debugger
The Debugger window is closed.

Program Script
The Script that is in the Debugger at this time is permanently programmed into the Gateway
(UNIGATE IC, UNIGATE-SC), so that it will be still available after a new start of the Gateway. The
Debugger is now in the position to find out if a Script is already programmed and so every time
when it detects a new start of the Debug Gateway the Script that was processed the last time will
be sent to the device. With this proceeding it is guaranteed that the Debug Gateway always con-
tains the Script from the Code window.

The Code window

In the Code window the Script itself is displayed as a version that was reviewed by the Compiler.
In the Code window you can set Breakpoints, start Scripts etc. Here you follow the course of your
Script and watch the behavior of the Script and your application in order to detect and repair
potential logic errors in the Script.
Usually the window is docked to the main window, however it can also be disconnected from it.
7.10.10 Instruction manual Protocol Developer V. 2.1 15

What can you do with a Script device? Deutschmann Automation GmbH & Co. KG
Starting a Script
After the Debugger is started, usually the Script has the execution address 0000, it stands at the
very beginning. A green arrow in the column State indicates the current position. With "Start" you
are now in the position to execute the Script yourself. As soon as the Gateway is into operation
and the processing of the Script is started, then the switches for "Single Step" and "Continue" are
hidden.

Stopping a Script
In order to stop the Script you have to wait until the Script comes across a Breakpoint and stops
the further processing of Script commands with it or you can also stop the Script with the „Stop“
key. In case a command which takes quite a while is executed at the time, the Gateway is not
stopped. The current command is completely executed. It seems the Debugger does not work
any more or the Gateway does not react.
Example: the command "delay(10000);" waits for 10 seconds. In case you interrupt this com-
mand by "Stop", the command will be finished anyway, i. e. the control is passed to the debugger
after a period of the 10 seconds. Please note that there are also commands, that do not have a
fixed runtime. These commands cannot be interrupted by Stop.

Reset of a Gateway
With Reset the Gateway is brought to its original condition, it is in after switching on. The device’s
whole memory is preset with 0, the execution position for the Script command is address 0000.

Setting a Breakpoint
In the Code window please select that line, in front of which the execution of the Script is sup-
posed to be stopped. Now a Breakpoint can be switched on or off through the context sensitive
menu (right mouse button). Please note that all Breakpoints are deleted after a reset.

Changing the execution position
In the Code window please select that line, where you want to continue the execution of the
code. By means of the context sensitive menu you can place the “ProgramCounter“ on this posi-
tion now. You should only do so if you are able to keep track of all side effects that might occur
because of this. This command is useful in case you are for instance developing without bus and
you want to skip the command "wait(Bus_Active)".
16 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG What can you do with a Script device?
Variable display
From the Debugger window the display of the window itself can be controlled. Variables can be
displayed and this variable’s type of representation can be set. A variable can be deleted again.
Also all other variables can be deleted or all variables of a Script can be displayed.
Besides there is the possibility to update all values of the variables manually. Usually after the
Gateway is stopped, all variables are updated automatically.
In order to add variables you can use the key in the Debugger or the context sensitive menu of
the variable window. Only those variables can be added, that are also included in the current
Script. In case variables from earlier Debug sessions are included only the name without value is
displayed. These variables should be deleted.
With a double click variables can be edited. Now you can change the variable’s type of represen-
tation.

Breakpoints
For the development of a Script, the Script Gateway is able to manage up to 15 Breakpoints. A
Breakpoint is set on a line in a code by moving the marking to the corresponding line (or by
selecting that line with the mouse) and a switchover is made either through the menu of the right
mouse button or with the F5-key. A Breakpoint can only be set in case the Gateway is in the Stop
state. If the Gateway is executing a Script that time, then the setting of a Breakpoint is without
function.
A list of active Breakpoints can be called through the Debugger menu.
If a Breakpoint is set in the Script and the execution of the Script meets with a Breakpoint, then it
will be stopped BEFORE the execution of the corresponding command. This line can be exe-
cuted with Single Step, with Go the Script can be executed further from the stopping position on.
7.10.10 Instruction manual Protocol Developer V. 2.1 17

What can you do with a Script device? Deutschmann Automation GmbH & Co. KG
Bus Data Window
Here the current bus data can be monitored. They are updated after every Stop command. They
can also be updated manually. However, this data is only available AFTER the execution of the
first Script command. For a useful utilization of this window it is absolutely necessary that the bus
is in same kind of operation as it is supposed to be used later.

Error Window
The Gateway executes each Script command individually. On the execution itself a constellation
might occur, that the command was executed, but still an error condition was reached.
Example: Receipt of serial data with Timeout, then Timeout initiates an error, which, however,
does not result in an abort of the Script. The Script has to continue evaluating this condition.
Each time the Gateway stops in the Debug mode, the most recent error state of the device is
transferred to the PC. The Gateway executes a stop:
• after a Single Step.
• after a restart.
• when a break is reached.

An error code as well as a short description to this error is displayed in the window.
The Online help also contains the error codes.

4.6 Programming Scripts
4.6.1 Spelling of Script commands
No distinction is made between upper-case and lower-case letters.

4.6.1.1 Numbers
There are different possibilities to write numbers; in decimal, binary and hexadecimal form.
Besides, an explicit type conversion can be made, when a constant factor has to be converted
into a specific format.
18 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG What can you do with a Script device?
Example:

var b: word; // B in use 2 byte in memory
MoveConst (B, 257) ; // B has the value 0101
MoveConst (B, 0x110) ; // B has the value 0110
MoveConst (B, "AA") ; // B has the value 4040
MoveConst (B, #0x01#13) ; // B has the value 010D
MoveConst (B, "A"#13) ; // B has the value 400D
MoveConst (B, 0b1111) ; // B has the value 000F

4.6.1.2 Texts
Texts are generally stated in double quotes. It is also possible to integrate special characters into
the text. At the declaration time length checks are made, i. e. it is not possible to assign a 30-digit
text to a variable with a length of 10 characters only. Binary characters can be attached to a
string constant by indicating the decimal code.
Unlike e. g. in Pascal no lengths are stored in the texts, as the length is to be calculated by the
Script itself.

4.6.1.3 Comments
Comments can be added at any position in the Script. Comments are always introduced with a
double slash and stretch down to the end of a row on principle. There is no other possibility, that
comments extend over several rows, than to introduce each row as a new comment.

4.6.1.4 Label
Basically all identifiers, that are structured correctly can be a label. There is no length restriction,
however, only labels with 255 digits are treated with significance, which means that labels with
more than 255 characters and whose first 255 characters are equal, are considered to be identi-
cal. The first character of a label is the colon, followed by any alphanumeric characters and the
underscore.

4.7 About the Script development
Think about some initial considerations:
Is your Script meant for one bus only or is it supposed to be working for several buses?
Are the buses similar on principle or contrary?

If your Script is meant for one bus only, then you can take advantage of all properties of this bus.
If your Script is supposed to support several buses, a few things have to be considered:
Which bus, that is supposed to be supported has the minimum data capacity? Take this data
capacity as a basis and structure the bus data so that all buses can work with it. That way you do
not have to make a distinction between the Scripts in bus-specific parts.

Are the buses similar on principle or contrary?
Here those buses would be considered as similar buses, that are for instance Single-master
buses where the master transfers data cyclically. Profibus, Interbus, DeviceNet in a restricted
extent (in poll operation) rank among these buses.
Ethernet and CANopen® can be mentioned here as dissimilar buses.

Please describe the Script’s duty:
A Script can only be converted successfully with a clearly outlined duty.
7.10.10 Instruction manual Protocol Developer V. 2.1 19

What can you do with a Script device? Deutschmann Automation GmbH & Co. KG
Please generate a structure in any familiar form, no matter if it is a graphical structure or a verbal
description. Those procedures make sense in order to find logical errors in Scripts.

Please start with the coding of the single duties only now. If possible divide some duties into
smaller unities in order to keep them clear and also to be able to check them correspondingly.

Always run the test of the Script piece by piece, remember or take down which properties have
subfunctions.

4.8 Special rules for Scripts
The commands "ScriptName", "ScriptAuthor" and "ScriptVersion" have to be entered in the Script
as first commands, so that they appear in the device’s switch-on information. The Script dat is
the Script’s translation date and is entered automatically. If these commands are in any other
position, then they are not recognized when the Gateway is initialized. They do not lead to a mal-
function of the Script itself, though.
The order of commands does not matter; also only one command from this group can be used.

4.9 Debugging
In the programming the general error location in a project is described as Debugging. The
Debugging can be seen on the Gateway in a restricted way because of the hardware, where the
Script is executed. However, it still offers all necessary properties in order to see errors of logical
structure. Indeed you should realize that the Protocol Developer is not in the position to detect
errors automatically. It only offers the tools to do so. You still have to do the exact analysis of the
things, the Script is doing.
The Protocol Developer can support you in some points.

4.9.1 Proceeding
First of all you have to develop a Script or, provided that you want to make yourself familiar with
the functions of the Protocol Developer, you have to load an existing Script into the development
environment. Syntactic errors must not be existing in the Script any more.
A Gateway capable for development has to be connected and it has to be in the Debug mode (for
this see chapter ’Hardware’).
The Script has to be stored.
Please start the Debugger through the menu or the button. Now the Protocol Developer will try to
recognize the Gateway, translate the Script and transfer it to the Gateway. Not until these steps
have been carried out successfully, the Debugger itself is started.

4.9.2 Debug commands
A lot of Debug commands are available, that can be carried out via the Gateway’s diagnosis-
interface. The commands are designed in a way that they can be executed from any terminal.
Usually a “manual“ operation is not necessary, as these commands are applied by the Debugger
of the Protocol Developer. Besides, the Protocol Developer also carries out further actions, that
make an error location in a program much easier, as for instance the direct observation of vari-
ables in different display formats, the easy change of the present execution position.
Additionally the environment also guarantees that always the currently valid row Code is dis-
played (Comments are not visible here and commands that stretch over several rows in the orig-
inal code are reduced to one row here. Branch destinations are indicated.) The code that was
generated by the Compiler can be seen, so that memory limits etc. can be revealed.
20 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Description of the Script Program Tool
5 Description of the Script Program Tool
This tool was developed to program a Script that is there in translated form into a Gateway capa-
ble to execute a Script. A Script in the translated form can be generated by means of the Protocol
Developer.

Basically 2 equipment options are available.

5.1 Manual mode
The program is called.
From the menu a file (a translated Script) is loaded and sent to the device (Per Dialog File...).
The program is closed (File Exit).
Settings can be made (COM 1.. COM 4).

5.2 Automatic mode
In the automatic mode the program is directly supplied with the file name of the translated Script,
that is to be programmed.
An attempt to start the program is made. At the first start the serial interface the Scriptgateway is
connected to is additionally determined interactively.
With the program start itself an attempt is made to load this file.
Then the program is trying to send the Script to the Gateway. When this operation can be carried
out a progress display is presented, otherwise an error.
The program waits until the Gateway is reset after the Script was written and then terminates
itself independently. For the programming only a click is required.

5.2.1 Setting up the automatic mode
To set up the automatic mode a ’link’ has to be generated in the Explorer (right mouse button,
New -> Link). Then the Link itself has to be marked (click with the mouse).
The properties of the Link have to be adjusted (right mouse button, Edit -> Properties).
The name of the file is to be installed as parameter in the command line.
Example: (SPT.EXE "FileName.gws.gwc")
Confirm the dialog, and that’s that.
7.10.10 Instruction manual Protocol Developer V. 2.1 21

Appendix Deutschmann Automation GmbH & Co. KG
6 Appendix
Listing of all Debug commands in alphabetic order
Break
With Break a Breakpoint is deleted or set. Setting a Breakpoint to one address:
B030020: the Breakpoint 03 is set to the address 0020, no matter if the Breakpoint existed before
or not.
B030000: the Breakpoint 03 is deleted. Deleting a nonexisting Breakpoint does not have any
consequences.

ChangeProgramCounter
The Program Counter (the current position of the Script) can be changed manually at a Gateway
in Stop state. The indication of the new execution position is made in 4 Byte ASCII Hex:
P0020: the Program Counter is set to address 0020 (typically the beginning of the Script). With
the next Go or Single Step the Script will be executed from this position on.

Download
The download of a program in the RAM is initiated with D, followed by a word Data (binary), that
states the length of the following bytes, the data themselves in binary format and then the check-
sum (1 word binary). In case the download was successful the Gateway confirms with O, other-
wise in case an error occurred, then an E is issued.
The checksum is the total of all data bytes.

Go
A Script can be executed from its beginning by executing a Go command from the address O on.
Also any other address can be specified as starting address. If an address where no Script com-
mand starts is specified, an error is probably output. The Script address is indicated in 4-digit
spelling.
Examples: G0000 or also G0043.

MemoryDump
The Gateway’s user memory can be read out. Each declared variable has a valid address in the
user memory. Valid addresses occur when the area ranges between 0 and 8000 (hex). All other
addresses are invalid memory addresses. The returned values are probably invalid.
The requirement of a Memory Dump occurs by the command Mxxaaaa, where xx is the amount
of the data bytes that are to be requested and aaaa the start address, in HEX-ASCII notation in
each case: the return consists of 2*xx+2Byte. The first byte specifies the length of the returned
data, followed by the data in HEX-ASCII format. A maximum of 128 byte may be read per call; a
higher number might result in corrupt data during the execution.

Two special cases exist:
• Reading out the fieldbus input buffer: the start address is FFF0

Here the length reflects the actual number of used data in the bus and not the number of read
bytes.

• Reading out the RS- input buffer: the start address is FFE0
Here the length equals the number of data in the RS-input buffer.

Programming
The current Script is only in the RAM after the download, and it can only be executed as long as
the Gateway is supplied with voltage. The current Script has to be programmed in order to load it
into the non-volatile memory. This happens by sending the character E to the Gateway. After a
successful transfer of the Script the Gateway responds with “O“, in case of an error with “E“.
22 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Appendix
Reset
The Reset of the Gateway is initiated with R. After the Reset, however, the Script that is currently
in the RAM will be rejected, and the Script that was recently included in the EEROM is activated
on a restart. For this reason the current Script should either be transferred to the EEROM (Pro-
gramming) or it should be loaded once again into the RAM after a restart. A download is always
carried out after a restart since the Debugger is not in the position to decide whether the EEROM
also contains the current Script.
After a Reset the Gateway carries out a Restart and sends a Start-message. Subsequently it will
output its state.

SingleStep
The Gateway can be given instructions to process a single Script command or a sequence of
commands. The number of commands has also to be mentioned. The command is “Sxx“, where
x is the number of commands. Exception: If “00“ is specified as x, 256 commands are executed.
After the execution of the command (the commands) the Gateway outputs a status.

StartMessage
In case a Gateway is restarted in the Debug mode (cold start through voltage or warm start
through Reset) it outputs the character string CR LF (0x0D 0x0A). After receipt of this sequence
a connected program is able to detect that the device was restarted.

State
After different conditions the Gateway will output its State Message.
1. after a Reset Message.
2. when reaching a Breakpoint
3. after a Single Step execution
4. after the execution of a Stop Script command
5. after a stop through the Debugger

The structure of the message itself is always the same:
Ibbppppeeaass:
I: Constant key character
bb: Breakpoint
pppp: ProgramCounter, the currently reached position of the Script
ee: ErrorCode, error state at the time of the Break 00, no error
aa: The address where the error occurred
ss: The Stack pointer

Stop
By sending the character X to the Gateway the current Script is stopped on the next command.
The Gateway sends out a status message, the break number is FF.

Upload
With sending the command U to the Gateway the device outputs its memory. At present this con-
tent is limited to 32 byte.
Format of the upload:
1 word binary (data bytes), data in binary format, 1 word checksum (binary);
The checksum is generated as 16 bit sum with all data byte.
7.10.10 Instruction manual Protocol Developer V. 2.1 23

Appendix Deutschmann Automation GmbH & Co. KG
WriteMemory
Equivalent to reading out the user memory you can also write in the memory. Per call a maximum
of 128 byte can be overwritten in the memory. The format for the call is Waaaaxxd1d2..dn, where
aaaa is the start address,
xx is the length of the data and
d1..dn are the data themselves.
The data have to be in Hex-ASCII format. The execution of the command is carried out
immediately and does not come up with a confirmation after the execution.
24 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Quick start
The commands listet here as well as the corresponding definitions are available in
English only. Since all commands are in English a programmer who understands
these commands should also be in the position to cope with the English definitions
of the commands. On account of the topicality it is quite common in this field that
the translations are not updated.

The definitions of the commands cannot be kept up to date in this document. There-
fore it is possible that newer commands or corrections are not included here. They
are only available in the Online Help.

Here also the examples are only to be seen as short excerpts. Further examples as
well as complete scripts can be found on our website.

7 Quick start
Getting started with Protocol Developer
Welcome to Deutschmann Automation Protocol Developer. We have designed this product for
you to create a protocol for your fieldbus interface, either a UNIGATE CL, UNIGATE IC or a UNI-
GATE SC, regardless of the fieldbus system.
To get the best benefit from this description you should read it carefully. It is short enough not to
bore you while reading and detailed enough to answer most of your questions.

What you need
You need a PC running either Windows 95, Windows 98, Windows ME, Windows 2000, Windows
NT or XP. The PC must have at least one serial port available.
You need an installation of the Protocol Developer software package.
And you need the hardware. We strongly recommend a starterkit, containing a script capable
device (either a UNIGATE CL, UNIGATE IC or a UNIGATE SC), a cable and a power supply.

Some Add-Ons are available. The Add Ons are easy fieldbus master systems, not capable of
running all features but the most important feature for the bus. To use an Add-On you do not
need to open your PC and plug in a PC-Card; all Add-Ons are connected to the PC by a serial
interface; so you need a second COM Port for the Add-On or a different PC.

What you should do
We recommend that you follow our step-by-step procedure to get a first primitive script running.
This script does not make much sense in the meaning of your protocol, but it shows you the gen-
eral handling of the software and the hardware. After those steps you should be able to load
another example file and adapt this file to your requirements.
7.10.10 Instruction manual Protocol Developer V. 2.1 25

Quick start Deutschmann Automation GmbH & Co. KG
7.1 Step-by-step
7.1.1 Step 1
Installation
Install the software package Protocol Developer first. If you have ordered an Add-On follow the
Add-On page for installation and start of this installation.

Known problems:
1. If you run the software under Windows NT or Windows 2000 under some circumstances we

have heard of problems (concerning the Windows registry). If you have troubles try to run
the software as a local administrator.

2. Some notebooks or laptops do not work properly at the serial communication port. You do
not have another solution than using a different computer.

7.1.2 Step 2
Connecting the device (Power and Debug)

At this point it is not necessary to connect a fieldbus cable or your device. We will do this step
after we have checked the general functionality.
You do not need the adapter for configuration now.

7.1.3 Step 3
Starting the Software
Start the software Protocol Developer. After a short while it should come up with an empty file. It
should look similar to the screen shot.
26 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Quick start
Now we write a first trivial script. This script does not have any real functionality, but it shows the
general handling. You may "copy and paste" the script code from this here. All commands can
also be found in the list on the left side.

// Script initialization
ScriptName "First Simple Script"

// we declare a variable and define this variable with a fix value
var vw_a: word;
MoveConst (vw_a, 100);

// stop the script.
stop;

7.1.4 Step 4
Compile the script and start the device
After writing the script you have to compile the script. Use the compile button or the menu to do
so.
7.10.10 Instruction manual Protocol Developer V. 2.1 27

Quick start Deutschmann Automation GmbH & Co. KG
If you do not have any errors in the script you will get a Compiler Window like this:

The script is now checked for syntax and a compressed code is generated for the code.

7.1.5 Step 5
Start Debugger
Now you should start the UNIGATE CL, UNIGATE IC or UNIGATE SC by applying the power to
the device. Depending on the device it takes a few seconds for starting. In the lower left corner of
the Protocol Developer you will see a message showing the device is in Debug Mode.

From now on it is possible to debug the script.
In Debug Mode the device is not executing the script; it waits until for user commands to start
and stop the script.

Every time the device is switched off and on again you will see this message.
Please save this file now because it is only possible to debug a saved file.

Now it is time to start the Debugger.
28 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Quick start
For this purpose you should select "Debug" from the project menu or use the debug button.

When you start a debug session the script is automatically compiled and downloaded to the
script device. This transmission takes a short while, depending on the size of a script. For this
time you see a progress bar.

7.1.6 Step 6
Debugging
After the script is completely downloaded to the device the Debugger is stopped, the device’s
script is not executed. You will see the Debugger's main window, which has two more button bars
for debugging.
You should note the green arrow, which marks the next line to be executed by the device.

In our script we use a variable called vw_a (our variable-naming convention for variable word, so
we can see its type everywhere the variable is used). Now click on the variables button and add
these variables to the window (right mouse “Add“ in window or drop down list in variables button);
thereafter it looks like this:

7.1.7 Step 7
Single Step
You may now click onto the single step button until the script is at the STOP command. After
every step the Protocol Developer refreshes all variables used in the variable window, so after
executing the line "MoveConst ..." our variable window looks like this:
7.10.10 Instruction manual Protocol Developer V. 2.1 29

Quick start Deutschmann Automation GmbH & Co. KG
Now please click on the reset button and wait until the device is reset. All display is refreshed, all
memory is set to 0 again.
Select the line with the stop command in the debugger window.
Press the "F5" button or select from the context-sensitive menu (right-mouse-click) the "toggle
breakpoint" item. Your screen should look like this:

After you click onto the "continue" button the script is executed until a breakpoint is reached. The
Debugger stops right before the breakpoint, so the stop command itself is not yet executed. Even
in this case the variable window is refreshed.

7.1.8 Step 8
Congratulations!

Now you have learnt how to use the Protocol Developer. Most functions are similar to the opera-
tions shown in the last steps. This short introduction does not show all debugging or script writing
techniques, but it shows the principles of a script and how to create and debug it.

It is now up to you to write your own script. Feel free to have a look into our example files. Use
this Online reference to learn about the script commands.

We hope that you are satisfied with our product.
30 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Commands (selection of commands)
8 Commands (selection of commands)
Please note that this chapter does not contain all commands.

Only the online help includes the descriptions of all commands!

8.1 BusStart
Syntax
BusStart ;

Description
The fieldbus will not start until the Script gateway executes this command.
It is always save to use this command even in busses not supporting a bus start. Such gateways
will ignore this command and will not produce an error on execution.
You should use this command if you are writing one scripts for all busses.

Example
// Start of Script Set BusInputSize to 8; // operation should
be done before bus starts
Set (BusOutputSize, 4) ;
BusStart;
...
// bus is may now became active
7.10.10 Instruction manual Protocol Developer V. 2.1 31

Commands (selection of commands) Deutschmann Automation GmbH & Co. KG
8.2 CalculateByte
Syntax
CalculateByte (Source1=v1, Source2=v2, Operator=v3, Destination=v4) ;

Description
This command is used for assigning the result of a mathematical or logical operation of exactly
two operators to a given variable. The result of the operation is a word-value, parameters are
byte-value only; if the parameter is a word only lower 8 bits are used!

Example
---------------- example code cut here -----------------
var a: word;
var b: word;
var c: word;

MoveConst(a, 0b0100) ;
MoveConst(b, 0b0101) ;
CalculateByte(a, b, and, c) ; // c ist now 0100
---------------- example code cut here -----------------

Execution Code
Possible execution codes are
DIV_ZERO: Operator v2 is zero; division by zero is not allowed.
UNKNOWN_FUNCTION: The selected operation is not part of this script device’s firmware.
Check script revision for support of this operator.

See also
Mathematical and logical operators

Note
You should know that some functions may return a word value. If you use a buffer variable as the
result variable this is ok, if you use a buffer with an index the byte with index-1 is affected too.

Example:
Buffer1 contains some bytes in sequence (01 02 03 04).

var buffer1: buffer[4];
MoveConst(Buffer1, #1#2#3#4);
CalculateByte(Buffer[1], Buffer[2], or, Buffer[3]);
The resulting buffer contains the following values (01 02 03 03).
32 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Commands (selection of commands)
8.3 CalculateWord
Syntax
CalculateWord (Source1=v1, Source2=v2, Operator=v3, Destination=v4) ;

Description
This command is used for assigning the result of a mathematical or logical operation of exactly
two operators to a given variable. The result of the operation is a word-value. You will get an error
if a result does not fit in a word.

Example
---------------- example code cut here -----------------
var a: word;
var b: word;
var c: word;

MoveConst(a, 0b0100) ;
MoveConst(b, 0b0101) ;
CalculateByte(a, b, and, c) ; // c ist now 0100
---------------- example code cut here -----------------

See also
Logical operators
Mathematical operators
7.10.10 Instruction manual Protocol Developer V. 2.1 33

Commands (selection of commands) Deutschmann Automation GmbH & Co. KG
8.4 Call
Syntax
Call subroutine ;

Description
The Call command calls a subroutine. The start of the subroutine is given by a label declaration,
the routine’s end is the return statement. It is necessary to complete a subroutine with a return
statement, if not the gateway shows an error.

Errors
This command results in an error if return address is not available.

Example
call :subroutine;
stop;

: subroutine ;
// do something
return;

See also
Command return
Label
34 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Commands (selection of commands)
8.5 Checksum
Syntax
Checksum (Source=v1, Destination=v2, NumberChar=v3, ChecksumMethod=v4) ;

Description
This command calculates a checksum with the given method for a number of bytes in the
device's memory.
The variable source is a buffer containing the data the checksum should be calculated for. Desti-
nation is a word variable which holds the checksum after the routine finishes with return code
OK. The number of characters is a variable which holds the number of bytes the checksum
should be calculated for. Checksum method defines which method should be used for calcula-
tion.

Example
var num: byte;
var Data: buffer[10];
var Result: word;
MoveConst (num, 5) ;
MoveConst (Data, "Hello") ;
Checksum (Data, Result, Num, CRC16);

See also
Checksum methods
7.10.10 Instruction manual Protocol Developer V. 2.1 35

Commands (selection of commands) Deutschmann Automation GmbH & Co. KG
8.6 Convert
Syntax
Convert (Source=v1, SourceType=v2, Destination=v3, DestinationType=v4) ;

Description
Use this command if you like to change its data format. It is possible to convert 3 bytes ASCII to
a binary word value or vice versa.
All known conversion types are usable either for source and for destination, so data conversion is
possible from every data representation to another.

Errors
A conversion error may occur. This error is to be detected by checking the ErrorCode parameter.

Example
var Data: buffer[3];
var Result: word;
MoveConst (Data, "123");
// convert 3 Bytes ASCII-Dezimal into binary number
Convert (Data, ASCII_DEZ_3, Result, byte);
36 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Commands (selection of commands)
8.7 Copy
Syntax
Copy (Source=v1, Destination=v2, NumberChar=v3);

Description
Copy a number of bytes from one variable to another. The number of bytes is a variable contain-
ing the number of bytes, Source and Destination are meant to be Buffer variables; it is also pos-
sible to use an ordinal variable as a byte, word or long instead.
If necessary it is possible to indicate an ordinal variable.

Example
var b1: buffer[10];
var b2: long;

var num: word;

MoveConst (b1, "++++++++++") ;
MoveConst (b2, 0x30313233) ; // means ASCII 0,1,2 and ASCII 3
MoveConst (num, 3);
Copy (b2[1], b1[1] , num) ; // copy 4 bytes

// b1 is now "+123++++++"

.

See also
FillMemory
CopyIndexed
7.10.10 Instruction manual Protocol Developer V. 2.1 37

Commands (selection of commands) Deutschmann Automation GmbH & Co. KG
8.8 Delay
Syntax
Delay (ConstTime=v1) ;

Description
Execution of the actual script is delayed by the given time. The time is in milliseconds and can
take directly values from 0 to 65535. It is not possible to hold the time in a variable.

Errors
This command will not produce any errors.

Example
// assume time is 12:00:00
delay (10000);
// time is 12:00:10
38 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Commands (selection of commands)
8.9 DIN19244DataExchange
Syntax
DIN19244 (InBuffer, OutBuffer, Insize, Outsize);

Description
This command exchanges data with DIN 19244 routine.
Send buffer and Receive buffer must have a special data format. See DIN 19244 specification for
details.
After data was sent by the gateway the routine waits for a response.

Example
www.deutschmann.de
7.10.10 Instruction manual Protocol Developer V. 2.1 39

Commands (selection of commands) Deutschmann Automation GmbH & Co. KG
8.10 ExchangeModbusRTUMaster
Syntax
ExchangeModbusRTUMaster (Source=v1, Destination=v2, NumberCharReceived=v3) ;

Description
This command takes two buffers and sends the data given in the variable Source. Source con-
tains all data necessary for a Modbus RTU record except the CRC checksum. This checksum is
generated by the function itself.
The function returns the number of bytes received by the Modbus Slave. If a timeout occurs this
value is 0. If no timeout occurs the function copies the slave's response data into the variable
Destination.

Example
An example is available from our website
www.deutschmann.de.

Errors
A timeout may occur.

See also
Errorcodes
40 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Commands (selection of commands)
8.11 FillMemory
Syntax
Fill (Destination=v1, Char=v2, NumberChar=v3) ;

Description
This command fills a given number of bytes of the desired variable with a specified character.
The number of characters to be filled is a variable containing the number. The variable source is
filled with the character contained in the variable fillchar.

Example
// Script Start
var fillchar: byte;
var number: byte;
var data: buffer[10]; // Variable data contains 0x00 in all
bytes
MoveConst (number, 10) ;
Moveconst (fillchar, "?") ;
Fill (data, fillchar , number) ;
//data now is "??????????"
7.10.10 Instruction manual Protocol Developer V. 2.1 41

Commands (selection of commands) Deutschmann Automation GmbH & Co. KG
8.12 GetParameter
Syntax
Get (Parameter=v1, Returnvalue=v2) ;

Description
With this command it is possible to read most of the settings of the gateway.
Most important is the capability of reading the RS-switches and the type of RS-interface. It is also
possible to determine the baudrate, input-/outputsize for the bus and some other parameters.

Errors
This command does not produce any errors.

Example
var RSSwitchInfo: byte;
Get (RSSwitchInfo , RS_Switch);
// variable RSSwitchInfo now contains a number. See parameter
RS_Switch for more information.

See also
Parameters
42 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Commands (selection of commands)
8.13 If - then - else
Syntax
if variable1 operator variable2 then :thenpath else :elsepath;

Description
Variable1 and variable2 are compared.
If the result of operation is true the script is continued at :thenpath, otherwise it is continued at
:elsepath. Comparison of the variables is type-depending. The type of relation is determined by
the smaller variable types (types with less bytes). A buffer variable is treated as a byte-variable.

Example
var a: word;
var b: byte;
MoveConst (a, 257) ; // binary of a is 0x01 0x01
MoveConst (b, 2) ; // binary of b is 0x02;
if a greater b then :isgreater else :isnotgreater ;//
// only the lower byte of variable a is used for compare
function,
// therefore variable a (0x01) is not greater than b (0x02)
 :isnotgreater;
MoveConst (a, 0) ;
if a greater b then :isgreater else :DoError ;
 :isGreater;
// a is really greater than b
...
:DoError;

See also
Operators
7.10.10 Instruction manual Protocol Developer V. 2.1 43

Commands (selection of commands) Deutschmann Automation GmbH & Co. KG
8.14 Init3964R
Syntax
Init3964R (Priority, CONST MaxReceiveSize) ;

Description
Communication with 3964R needs an initialization before data exchange is possible. You need to
set the ReceiveBuffer and the maximum number of bytes to receive.

Example
...
Init3964R(low, 10);
// The communication is initialized with low priority
// maximum receive size is 10 byte user data
...

Notes
A character DLE, which is duplicated by the communication is not counted twice by the maxi-
mum receive size. Handshaking characters and framing characters are not counted either.
A number of protocol errors may occur. Those errors are handled by the operating system of the
device and can be caught by the OnError function.
44 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Commands (selection of commands)
8.15 InitCommunicationChannel
Syntax
InitCommunicationChannel (CONST channel, Value);

Description
A communication channel must be initialized exactly once before used. You will get an error if
you try to initialize the channel two times.
Up to 16 channels may be opened at one time; the number of channels depends on the device
type.

Example
...
Var ArcnetID: long; // declare variable
MoveConst (ArcnetID, 4); // assign value
 InitCommunicationChannel(1, ArcnetID) ;
// The communication channel 1 is initialized with
// ID 4. This means all communication send to
// this channel is going to Arcnet Partner #4.
...

Notes

Fieldbus type Meaning

ARCNET Send ID of ARCNET message.

CANopen® Channel 0 is PDO1. No others are defined yet.

DeviceNet Channel 0 is poll connection. No other connections are defined yet.

Ethernet TCP-IP destination address for sending packets. Destination is sender if the value is 0.

Interbus Only standard communication channel (process data) available.

LON Not available.

MPI MPI partner is adjusted by parameters.

ProfibusDP Only standard communication channel (cyclic process data) available.
7.10.10 Instruction manual Protocol Developer V. 2.1 45

Commands (selection of commands) Deutschmann Automation GmbH & Co. KG
8.16 Jump
Syntax
jump :address;

Description
A script execution is continued at the given address. The address itself is a label. The compiler
stops if a destination label is not defined by the script. Resolution of labels to addresses is done
by the compiler.

Errors
An error 5 (unknown command) is produced if the address points to an invalid command.

Example
jump :GoOn; // continue script execution at this label
stop ; // This code is never executed
: GoOn; // Next command after jump
...

See also
Label declaration
46 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Commands (selection of commands)
8.17 Label
Syntax
:Identifier ;

Description
A Label is defined by the first character ":" and the following identifier. A Label is a mark in the
script which could be used by a jump, a call or an if statement.

Example
jump :GoOn; // continue script execution at this label
stop ; // This code is never executed
: GoOn; // Next command after jump
...

See also
Jump
Call
If
SetErrorHandler
7.10.10 Instruction manual Protocol Developer V. 2.1 47

Commands (selection of commands) Deutschmann Automation GmbH & Co. KG
8.18 LONSelfDocString
Syntax
LonSelfDocString (source=v1 , Numberchar=v2) ;

Description
Device self-documentation string. If the documentation string is not supplied, there is a single line
containing a single asterisk. If supplied, the documentation lines begin with a double-quote char-
acter (not part of the documentation string) each. Multiple lines must be concatenated without
any intervening characters. There is no end double-quote, instead the line is terminated by a new
line. The characters of the string must all be printable ASCII characters (this includes spaces, but
not tabs). Trailing spaces are included. The line may be up to 60 characters long, not including
the starting double-quote character or the new line. Any non-printable characters must be
encoded using an ANSI C hex character escape sequence of "\xHH"' where H represents a sin-
gle hexadecimal digit. The values A-F within a hex character escape sequence must be specified
with upper case letters exclusively.
If the static interface contains LONMARK objects, the device self-documentation string should be
formatted as described in The LONMARK Interoperability Guidelines.

Example
...
// variable declarations
var SelfDocsize : word ;
var SelfDocBuffer: buffer[60];
 moveConst(SelfDocsize, 60);
 // define static docstring
moveConst(SelfDocBuffer[0], "Hallo World
3456789012345678901234567890abcdefghijklmnopqrst");
 // activate docstring
LonSelfDocString(SelfDocBuffer[0], SelfDocsize);
.
..

Values
The length of Numberchar may be 0 .. 60
48 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Commands (selection of commands)
8.19 MoveConst
Syntax
MoveConst (Destination=v1, ConstantValue = v2) ;

Description
A constant value is transferred into the memory used by the given variable. This command is
used to predefine a variable with a constant value.

Example
var a: byte;
var b: buffer[10];
 MoveConst (a, 2); // a contains now 2
MoveConst (a, 0b10101); // a contains now 21, which is 10101
binary
MoveConst (a, 0x0A); // a contains now 10 which is
hexadecimal 0A
MoveConst (a, "A"); // a contains now 65, which is ASCII-
code for character "A"
MoveConst (b, "Hello"#0x0D) ;
// b contains now text "Hello" followed by the character 13,
which is 0x0D(hex)

Memory organization
Every variable in the script is meant to be a cell in the device’s memory. The address of the vari-
able is determined by the Protocol Developer software. A variable of type byte needs 2 bytes
memory of the device, a variable of type long needs 4 bytes of memory. A buffer variable needs
the number of data bytes given in its declaration.
A byte variable can keep values from 0 to 255 (0x00 to 0xFF).
A word variable can keep values from 0 to 65535 (0x0000 to 0xFFFF).
A long variable can keep values from 0 to 4294967295 (0x00000000 to 0xFFFFFFFF).
The address of a byte variable can be 0x0003. If this variable is used as a word variable, the Pro-
tocol Developer changes the address from 0x0003 to 0x0002, so the value can be used as a
word value.
Normally it is safe to use a byte variable as a word value. If you assign a word value to a byte
variable, the higher byte of the variable may be lost.
If you like to use a buffer element as a byte variable you must convert the element to a byte vari-
able and use the resulting variable.
7.10.10 Instruction manual Protocol Developer V. 2.1 49

Commands (selection of commands) Deutschmann Automation GmbH & Co. KG
8.20 ReadBus
Syntax
ReadBus (Destination=v1, Numberchar=v2) ;

Description
The number of bytes given in the variable number is read from the bus input buffer. The number
of bytes available should be read from the parameter BusInputSize. The destination buffer must
be big enough to hold all bytes from the bus.

Example
var BusSize: byte;
var data: buffer[10];
 // assume bus contains new data "Hello"
Get (BusInputSize , BusInsize); // assume a Bus input size
of 5 bytes
ReadBus (Buffer , BusSize) ; // Buffer Data contains now
"Hello"

See also
Get BusInputSize
Set BusInputSize
WriteBus
50 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Commands (selection of commands)
8.21 ReadModbusSlave
Syntax
ReadModbusSlave (Destination, Length) ;

Description
This command reads a request with Modbus RTU. If the value for length remains 0 after the func-
tion was called the master did not tried to read the slave, otherwise the value contains the num-
ber of valid bytes in the Destination buffer.

Example
An example is available from our website
www.deutschmann.de.

Return codes
MODBUS_ERROR
RX_OVERRUN
RX_DIN19244_MODBUS_ERROR
CHECKSUM_ERROR

See also
Parameter ModbusSlaveAddress
7.10.10 Instruction manual Protocol Developer V. 2.1 51

Commands (selection of commands) Deutschmann Automation GmbH & Co. KG
8.22 Receive3964R
Syntax
Receive3964R (Source, Size, Timeout) ;

Description
It is possible to wait for an incoming data record in the 3964R format. This means, the routine
handles the complete STX, ETX, BCC and DLE handling. You must give 3 variables to the func-
tion: source: a buffer variable which holds the received data after the function returns with func-
tion code OK. The variable size is overridden by the function and holds the number of received
characters after the function completes with result code OK. The variable Timeout defines how
long the routine should wait for the partner to send.

Example
..
var RcvBuffer: Buffer[10];
var Size: Word;
var Timeout: Word;
MoveConst (Timeout, 1000) ;
Receive3964R (RcvBuffer, Size, Timeout);
...

Return codes
OK
TIMOUT
3964R_ERROR
CHECKSUM_ERROR
3964R_WRONG_CHAR
52 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Commands (selection of commands)
8.23 ReceiveSomeCharRS
Syntax
ReceiveSomeCharRS (Timeout=v1, ReceiveDataBuffer=v2, NumberCharToReceive=v3) ;

Description
This command waits for the receipt of the given number of characters. The time between any
characters must not exceed Timeout milliseconds. If variable Timeout contains 0 no timeout con-
trol is used. All characters received are stored in variable Destination. This variable must be big
enough to hold all incoming characters, for example a buffer variable.

Example
var timeout: word;
var number: word;
var data: buffer[10];
 MoveConst (number, 3) ;
MoveConst (timeout, 1000) ;
// Assume data string "Hello" not yet read in the gateways RS-
Input Buffer
ReceiveSomeCharRS (timeout, data , number) ;
// 3 bytes are read, data now contains "Hel",
// RS input Buffer still contains data "lo"
// which is the rest of the data "Hello"

Note
If you are using 9 databits every character received is stored as 2 bytes in the receive buffer. If
you like to receive 4 characters consisting of 9 bit each character you should set your Number-
ToReceive to 8.
7.10.10 Instruction manual Protocol Developer V. 2.1 53

Commands (selection of commands) Deutschmann Automation GmbH & Co. KG
8.24 ReceiveSpecialCharRS
Syntax
ReceiveSpecialCharRS (Char=v1, Timeout=v2, ReceiveDataBuffer=v3, Size=v4) ;

Description
This command waits the time given in variable Timeout for the character variable Char points to.
All characters received until the specified Char is recognized are stored in the buffer Receive-
DataBuffer. After the command is finished the variable Size contains the total number of bytes
received.

Example
No example is available at the moment.

Note
If using 9 databits (= CharToReceive) it is only possible to trigger for the higher byte of a charac-
ter. The higher byte can only be 0 or 1.
54 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Commands (selection of commands)
8.25 Return
Syntax
return;

Description
Return completes execution of a subroutine and continues the script execution with the com-
mand after the call statement. You should never use a return command in a script if you do not
use a call. Using the return without a prior call produces an error.

Example
call :subroutine; // subroutine is executed and finishes
stop;
 :subroutine ;
// DoSomething
return;

See also
Jump
7.10.10 Instruction manual Protocol Developer V. 2.1 55

Commands (selection of commands) Deutschmann Automation GmbH & Co. KG
8.26 ScriptAuthor
Syntax
ScriptAuthor ("Author") ;

Description
Every script may have an author. An author is a text containing characters up to a size of 32
bytes.
This text is displayed in the device’s boot message.
The boot message is sent out by the device in Configmode on startup.
The Script author item must be one of the first commands in the script; otherwise it is without a
function.

See also
Script Name
Script Revision
56 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Commands (selection of commands)
8.27 ScriptName
Syntax
ScriptName "NameString" ;

Description
Every script may have an Name. A name is a text containing characters up to a size of 32 bytes.
This text is displayed in the devices boot message.
The boot message is sent out by the device in Configmode on startup.
The ScriptName item must be one of the first commands in the script; otherwise it is without a
function.

See also
Script Author
Script Revision
7.10.10 Instruction manual Protocol Developer V. 2.1 57

Commands (selection of commands) Deutschmann Automation GmbH & Co. KG
8.28 ScriptRevision
Description
Every script may have a revision. A revision is a text containing every character up to a size of 31
byte. The size may differ for some devices in the future; a typical revision is an upcounting num-
ber or a short text.
This text is displayed in the device’s boot message.
The boot message is sent out by the device in Configmode on startup.
The Script revision item must be one of the first commands in the script; otherwise it is without a
function.

Command
ScriptRevision (RevisionText) ;

Example

ScriptRevision ("V 1.0");

e.g. message from a device
RS-EN10-SC D(232/485) V2.1t[13] (c)dA Switch=0xFFF
Script="sc" Author="DA" Version="V 1.0" Date=16.11.2001 SN=0
Konfigmode...

Defaults
There is no default value for the script revision.

See also
ScriptAuthor
ScriptName
58 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Commands (selection of commands)
8.29 Send3964R
Syntax
Send3964R (Source, Size) ;

Description
It is possible to send a number of bytes (a data record) with the procedure of 3964R. The routine
itself only requires the data and the number of bytes to be sent; the protocol handling (STX,
ETX...) is done by the routine. If the partner does not respond or a conflict occurs an error can be
detected with the "Get (ErrorCode, variable)" command.

Example
...
var SendBuffer: Buffer[10];
var Size: Word;
MoveConst (SendBuffer, "Hallo"#13#10);
MoveConst (Size, 7);
Send3964R (SendBuffer, Size);
...

Notes
OK
TIMOUT
3964R_ERROR
CHECKSUM_ERROR
3964R_WRONG_CHAR
7.10.10 Instruction manual Protocol Developer V. 2.1 59

Commands (selection of commands) Deutschmann Automation GmbH & Co. KG
8.30 SendRS
Syntax
SendRS (Source=v1, NumberChar=v2) ;

Description
SendRS writes the given number of characters to the output buffer of the gateway. As the buffer
is filled with data the hardware (no longer the software) is responsible for accessing serial lines.
With the action SendRS the script has no more control over the data, it is not possible to clear
output string etc.
Number is a variable containing the number of bytes to be sent, source is a variable containing
the data itself.

Example
var src: buffer[7];
var size: word;
 MoveConst (src, "Hello"#0x0A#0x0D) ;
MoveConst (size, 7) ;;
SendRS (src [0], size); // writes "Hello" followed by CR-LF> to
serial port

See also
ReceiveSomeCharRS
ReceiveSpecialCharRS

Note
The number of bytes sent by the device is always given in byte. If you are using 9 databits every
character must consists of 2 bytes in the send buffer, the higher byte contains the MSB only (0 or
1) and the lower byte contains the data byte.
The number of bytes to be sent must be even, and the higher byte must always be 0 or 1. An
error occurs if one of those conditions is violated.
60 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Commands (selection of commands)
8.31 Set
Syntax
Set (parameter=v1, Value=v2) ;

Description
Sets the given parameter to the value. The parameter is one of the parameters defined for this
command, the value must be one of the valid values for this parameter.

Errors
If a parameter or a value is not supported by the gateway it will show an error and stop all
actions. Script execution with such a problem makes no sense.

Example
Set (Baudrate, 9600) ;
Set (Parity, none) ;
Set (RS_State_LED, RedGreenFlashing);

See also
GetParameter
SetByVar
7.10.10 Instruction manual Protocol Developer V. 2.1 61

Commands (selection of commands) Deutschmann Automation GmbH & Co. KG
8.32 SetByVar
Syntax
SetByVar (parameter=v1, Value=v2) ;

Description
Sets the given parameter to the value. The parameter is one of the parameters defined for this
command, the value must be a variable containing a valid value for this parameter.
You have to make sure that the variable type MUST be correct for the parameter. The Protocol
Developer will not make any type conversion nor check the correct type of the parameter.
If you us a wrong variable type it will result in runtime errors.

Errors
If a parameter or a value is not supported by the gateway it will show an error and stop all
actions. Script execution with such a problem makes no sense. All those errors could be trapped
with OnError function.

Example
var iBaudrate: long;
MoveConst(iBaudrate, 9600);
SetByVar (Baudrate, iBaudrate) ;
62 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Commands (selection of commands)
8.33 SetLonMapping
Syntax
LonInMapping (source=v1, Numberchar=v2) ;
LonOutMapping (source=v1, Numberchar=v2) ;

Description
LON defines a number of SNVT In and SNVT Out variables. A variable is always seen from the
LON device, this means an In-variable is received by a LON device.
It is necessary to tell the gateway which Input and Output variables are to be used. This is done
with the commands LonInMapping and LonOutMapping. All SNVT's which should be available
on LON-side are declared by those two commands.
All SNVT-types available are given in the map-table, which is a normal script buffer variable. This
variable consists of a number of bytes and each byte defines an SNVT-type. The commands
LonInMapping / LonOutMapping create all requested SNVT's.
LON variables of type 0 are defined by the commands Set(BusInputSize,x) and Set (BusOutput-
Size, x). By setting BusInputsize or BusOutputSize to a value greater 0 a variable of type with the
given size is created. If the given size is 0 or the command is never called no SNVT 0 is created.
The similar behaviour is available for output data.

Values
The length of an SNVT for SNVT's type 1 .. 145 is defined by the SNVT itself. The length of a
SNVT type 0 is defined by the commands Set BusInputSize/BusOutputSize.

Example
// variable declarations
var InMapsize : word;
var InMapTable: buffer[4];
var BusInSize: word; var ReceiveBuffer: buffer[5];
// define 2 bytes for mapping
// Maptable consists of 4 bytes, but only 2 bytes are used
moveConst (InMapsize , 2) ;

// define static mapping
MoveConst (InMapTable[0] , #8#7);
// type 8 = count= 2 byte
// type 7 = char_ascii = 1 byte, is a total of 3 byte

// activate mapping
LonInMapping (InMapTable, InMapsize) ;

...
Get (BusInsize , BusInputSize) ; // var has now value 3, 3 bytes
ReadBus (ReceiveBuffer , BusInsize) ;

// ReceiveBuffer is now updated,
// Bytes 0 and 1 contain data from SNVT 8
// Byte 2 contain data from SNVT 7
7.10.10 Instruction manual Protocol Developer V. 2.1 63

Commands (selection of commands) Deutschmann Automation GmbH & Co. KG
8.34 Stop
Syntax
stop ;

Description
This command stops the execution of the script. This is useful if the script comes to a point a fur-
ther script execution makes no sense, e. g. if BusInputSize does not fit the required values.
If the gateway shows an error (indicated by a flashing LED) the error still remains (LED still
flashes).

Example
...
// stop condition reached
Set (Error , 8) ; // Errorcode 8 is shown
stop ;
...
64 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Commands (selection of commands)
8.35 VariableDeclaration
Syntax
var VariableName: Type ;

Description
Declare a variable with a type. The size of the variable is depending on the type.
A variable name can be every valid identifier, beginning with a character or an underline, fol-
lowed by an alphanumerical value or an underline. The length of a variable name is not limited
and does not reflect usage of memory in the gateway. You should choose names which describe
their content instead of abbreviations.
The compiler automatically arranges variables in the order of declaration in memory, leaving no
memory holes..

Types
byte
A byte is a variable with 8 bit datawidth. Such a variable can hold binary values from 0 to 255 or
a single character.

word
A word is a variable with 16 bit datawidth. A word variable can hold binary values from 0 to 65535
or 2 characters.

long
A long value can hold binary values from 0 to 4294967295 or 4 characters.

buffer
A buffer is additionally defined by the size. Its size is from 1 character to 255 characters.
Every single char of a buffer is accessible by the index.

Example
var Size: byte;
var Destination: word;
var Source: buffer[5];
MoveConst (Size, 1);
Copy (Source , Destination, size);
7.10.10 Instruction manual Protocol Developer V. 2.1 65

Commands (selection of commands) Deutschmann Automation GmbH & Co. KG
8.36 Wait
Syntax
Wait (condition) ;

Description
The gateway waits until the condition is completed. The condition is only one of the predefined
conditions, not every possible expression.

Example
...
wait (Bus_Active);
// Bus is now active, e.g. data exchanging
...
66 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Commands (selection of commands)
8.37 WaitBusChange
Syntax
WaitBusChange (Timeout , WatchSize) ;

Description
The command waits the given time for changing busdata. The number of bytes set in the variable
Watchsize are observed. If no byte of the observed changes a timeout (return code 2) occurs.
The command immediately returns on changing data.
If the value for timeout is 0 then the commands wait infinite.
The value for the Watchsize should never be 0.

Execution Code
PARA_NUMBER_ERROR The number of parameters when calling the command is not ok.

Please check all parameters.
PARA_RANGE_ERROR The number of bytes to be observed is zero; this is not allowed.
TIMEOUT The number of busdata has not changed within the given time.

Example
var timeout: word;
var watchsize: word;

MoveConst (timeout, 1000);
MoveConst (watchsize, 5); // observe 5 characters
WaitBuschange (timeout, Watchsize);
// command waits max 1000 ms for changing busdata, 5 bytes are
observed.

Note
This command requires a word variable for the parameter Timeout and a word variable for the
parameter Watchsize. If those parameters are not word-variables you will get wrong results. If
your variables for Watchsize or Timeout have other types use a type conversion prior to using
this command.
7.10.10 Instruction manual Protocol Developer V. 2.1 67

Commands (selection of commands) Deutschmann Automation GmbH & Co. KG
8.38 WriteBus
Syntax
WriteBus (source=v1, NumberBytes=v2) ;

Description
This command refreshes the busdata. The given number of bytes are written to the fieldbus con-
troller hardware, software is no longer responsible for the data.

Errors
If you send more data than the bus is capable to send an error occurs.

Example
...
var size: byte;
var data: Buffer[5];
MoveConst (size, 5) ;
Moveconst (data, "Hello") ;
WriteBus (data, size) ;
...
68 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Commands (selection of commands)
8.39 WriteModbusSlave
Syntax
WriteModbusSlave (Source) ;

Description
This command writes response with Modbus RTU.

Example
An example is available from our website
www.deutschmann.de.

Return codes
MODBUS_ERROR
TX_19244_MODBUS_ERROR
SEND_LEN_ERROR
PARAM_RANGE_ERROR

See also
ReadModbusSlave
Parameter ModbusSlaveAddress
7.10.10 Instruction manual Protocol Developer V. 2.1 69

Parameters (selection of parameters) Deutschmann Automation GmbH & Co. KG
9 Parameters (selection of parameters)

Only the online help includes the descriptions of all parametrs!

9.1 3964RPriority
Description
Both partners of a 3964R connection need a Priority. One partner MUST have Low, the other
one MUST have High.

Commands
Init 3964R

Defaults
A default value for this parameter does not exist.

Example
...
Set (FieldbusID, 5); // Sets Id to 5
...
70 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Parameters (selection of parameters)
9.2 AvailableBusData
Description
For Ethernet, ARCNET and other busses which support different sizes it is necessary to deter-
mine how many data bytes are available by the bus

Commands
This parameter is available for the command Get.

Defaults
A default value is not available for this parameter.

Example
See file:

Note
This parameter is available from script revision 16 on.
7.10.10 Instruction manual Protocol Developer V. 2.1 71

Parameters (selection of parameters) Deutschmann Automation GmbH & Co. KG
9.3 Baudrate
Description
The baudrate of the RS interface is a read/write parameter. It is possible to change the baudrate
at any time. For all busses the value for the baudrate is a long-value.

Commands
Set baudrate
SetByVar
Get baudrate

Defaults
The default value for baudrate is 9600 baud.

Values
RS232 baudrates are allowed from 110 baud to 57600 baud. RS485 and RS422 baudrates are
allowed from 110 to 625000 Baud.

Example
...
Set (Baudrate 9600); // baudrate is now 9600 baud
...
72 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Parameters (selection of parameters)
9.4 BusBaudrate
Description
For some busses it is possible or necessary to set the bus baudrate.
The behaviour is bus-depending.
Profibus will always ignore this parameter because the Profibus baudrate is adjusted only by the
master.
You will get an error if the device does not support this parameter.

Commands

Defaults

Example
...
Set (BusBaudrate, 2500000);
// This command defines the bus baudrate to be 2.5 MBaud.
// This baudrate is available for ARCNET.
...

Note
If a bus does not support the parameter BusBaudrate the device will ignore the command.
This parameter is available from script revision 11 on.
7.10.10 Instruction manual Protocol Developer V. 2.1 73

Parameters (selection of parameters) Deutschmann Automation GmbH & Co. KG
9.5 BusDataChanged
Description
Reading this parameter returns 0 if busdata did not change since starting the gateway or last call
to ReadBus. If busdata changed since then the result of this parameter is 1.
Use this parameter to read and process busdata only if data has changed. This makes the script
more efficient.

Command
This parameter is available for the Get command. It is not possible to set this parameter. You will
get an error if you try to set this parameter.

Defaults
This parameter always returns an actual value and never a default value.
74 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Parameters (selection of parameters)
9.6 BusInputsize
Description
Read or write the actual size of the bus input side, input is seen from the gateways view.

Commands
set BusInputSize
get BusInputSize

Defaults
The default value for BusInputSize is 8, which means a default size of 8 bytes is transferred from
the bus master to the gateway.

Example
...
Set (BusInputsize, 12) ; // Now the BusInputSize is 12 bytes
...

Comments
This command is bus dependent, e.g. it is not possible to use more than 8 bytes Input size for a
small Interbus slave,
You should be aware of this problem if you design a script for more than one bus.
ProfibusDP ignores this command because bus input size is defined by the module from the
device's GSD file.
7.10.10 Instruction manual Protocol Developer V. 2.1 75

Parameters (selection of parameters) Deutschmann Automation GmbH & Co. KG
9.7 BusOutputSize
Description
It is possible to set the Bus Output size of a device. For some busses it must be set prior to
Busstart.

Command
SetParameter

Defaults
The default value for the BusOutputSize is 8 byte.

See also
Parameter BusInput Size
76 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Parameters (selection of parameters)
9.8 BusTimeout
Description
Some busses need a value for a bus timeout.

For ARCNET this is the reconfiguration timeout.

Commands
Set (BusTimeout, ...);
SetByVar (BusTimeout, ...);

Defaults
For ARCNET a default value is defined as a named constant ARCNET_DEFAULT.
This default value is 41 microseconds.

Example
Set (BusTimeout, ARNET_DEFAULT);

Note
If a bus does not support Set BusBaudrate the device will ignore this command.
This parameter is available from script revision 16 on.
7.10.10 Instruction manual Protocol Developer V. 2.1 77

Parameters (selection of parameters) Deutschmann Automation GmbH & Co. KG
9.9 BusType
Description
This parameter returns the bustype of the gateway running the script. Normally it is not neces-
sary to detect the bustype because all Script commands are executed by all Script Gateways.
It may be useful if you like to show on which device a script is running.

Return codes
See Bustypes for more information.
78 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Parameters (selection of parameters)
9.10 ChecksumCalculationMethods
Description
Following methods are defined for checksum calculation:

Xor: bytewise xor operation, result is a byte.

XorNot: bytewise xor operation, result is inverted and a byte.

Sum: bytewise add operation, result is a word.

SumNot: bytewise add operation, result is inverted and a word.

CRC_16: e. g. like Modbus RTU.

Command
Checksum

Defaults
A default value does not exist for checksum.
7.10.10 Instruction manual Protocol Developer V. 2.1 79

Parameters (selection of parameters) Deutschmann Automation GmbH & Co. KG
9.11 CommunicationChannel
Description
This parameter is used to select a communication channel.

Commands
Set
80 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Parameters (selection of parameters)
9.12 DataBits
Description
It is possible to set the number of data bits for the serial communication.

Defaults
Default value for data bits is 8.

Values
Possible values are:
7
8
9

Note
9 databits are available in script revision 13 and higher. You should know that the behavior of the
receive and send functions is different in 9 bit mode.
7.10.10 Instruction manual Protocol Developer V. 2.1 81

Parameters (selection of parameters) Deutschmann Automation GmbH & Co. KG
9.13 ErrorCode
Description
It is possible to display a user defined code. If an errorcode is set the RS-State-Led flashes
slowly red (1 per sec) in difference to fast red flashing if the gateway itself shows an error.

Defaults
No error is shown per default.

Values
Every value from 0 to 15 takes effect.
By setting the value to 0 all previously set errorcodes are deleted.

Bus and device specific behavior
Devices of our UNIGATE-SC series are capable of displaying an error with LED's directly.
UNIGATE IC’s only display the errorcode in the fieldbus diagnosis, if the bus has such a feature
(like ProfibusDP).
82 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Parameters (selection of parameters)
9.14 ErrorProgramcounter
Description
Every script command executed results in an error code. If an error occurs the position of the
last error is to be determined by this parameter.
Use this command only for debugging purposes.
7.10.10 Instruction manual Protocol Developer V. 2.1 83

Parameters (selection of parameters) Deutschmann Automation GmbH & Co. KG
9.15 EthernetDestinationPort
Description
An Ethernet communication always needs a port number; some port numbers are defined by
RFC's like Port 80 for http, but some numbers are free for custom usage.

Command
Set (EthernetDestinationPort, 2000) ;

Values
The port number may be in a range from 1 to 655535. Valid free port numbers are from 2000
upwards.

Defaults
No port number is the default number. If a UDP Message is received, the answer is at the same
Ethernet port.
84 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Parameters (selection of parameters)
9.16 EthernetSourcePort
Description
A Ethernet communication always needs an port number; some port numbers are defined by
RFC's like Port 80 for http, but some numbers are free for custom usage.
If the source port is different from 0 the gateway only reacts to messages for this port.

Command
Set (EthernetSourcePort, 2000) ;

Values
The port number may be in a range from 1 to 655535. Valid free port numbers are from 2000
upwards.

Defaults
No port number is the default number.
If a UDP Message is received, the port number is to be determined by this parameter.
7.10.10 Instruction manual Protocol Developer V. 2.1 85

Parameters (selection of parameters) Deutschmann Automation GmbH & Co. KG
9.17 FieldbusID
Description
It is possible to override the fieldbus ID determined by the value programmed with WINGATE or
selected by switches.

Commands
Set
Get
SetByVar

Defaults
A default value for this parameter does not exist.

Example
...
Set (FieldbusID, 5); // Sets Id to 5
...

Type
The type for the FieldbusID is long. If you use this parameter with the SetByVar command it is
absolutely necessary to use a long variable for the FieldbusID.
86 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Parameters (selection of parameters)
9.18 LonProgramID
Syntax
Set (LonProgramID =v1, Value=v2) ;

Description
Sets the LonProgramID to the value.

Program ID: it consists of eight 2-digit hex values, separated by colons (no spaces). The first hex
digit identifies the program ID format. If the first digit is 7 or less, the format is an ASCII string,
typically with the name of the program.

The first two ASCII char for this Lon Script UNIGATE is fixed to "SC" followed by the value v2.
SC = 53h, 43h
The first digit is 5.

Example
...
Set (ProgramID, 123456) ;

// You see the following string in the XIF file
// 53:43:31:32:33:34:35:36
// it means: SC123456
...

Values
The length of value 0 .. 999999

Errors
If a parameter or a value is not supported by the gateway it will show an error and stop all
actions. Script execution with such a problem makes no sense.
7.10.10 Instruction manual Protocol Developer V. 2.1 87

Parameters (selection of parameters) Deutschmann Automation GmbH & Co. KG
9.19 ModbusRTUTimeout
Description
When a Modbus frame is sent (with ModbusDataExchange) the gateway expects a response. If
this response is not received within the time specified by this parameter a script timeout occurs.
The script should check the result of a ModbusDataExchange before evaluating the response
data.

Command

Defaults
88 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Parameters (selection of parameters)
9.20 ModbusSlaveAddress
Description
For a Modbus RTU Slave protocol it is necessary to define a Modbus slave address. This
parameter is used to set the address. A valid Modbus slave address is in range 1-247.

Command
Set
SetByVar
Get

Return codes
The return code is Parameter_Range_Error if the Modbus Slave Address is not in the valid
range.

Defaults
There is no default value for the ModbusSlaveAddress.
7.10.10 Instruction manual Protocol Developer V. 2.1 89

Parameters (selection of parameters) Deutschmann Automation GmbH & Co. KG
9.21 MPIDBFetch
Description
This parameter describes the number of the data component within the PLC to be read out by the
gateway.

Defaults
Default value for this parameter is 0. If the data component 0 does not exist in the PLC the
behavior is dependent on the PLC.

Note
This command affects MPI only. All other gateways simply ignore this parameter and do not pro-
duce an error.
90 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Parameters (selection of parameters)
9.22 MPIDBSend
Description
This parameter describes the number of the data component within the PLC to be written.

Defaults
Default value for this parameter is 0. If the data component 0 does not exist in the PLC the
behavior is dependent on the PLC.

Note
This command affects MPI only. All other gateways simply ignore this parameter and do not pro-
duce an error.
7.10.10 Instruction manual Protocol Developer V. 2.1 91

Parameters (selection of parameters) Deutschmann Automation GmbH & Co. KG
9.23 MPIDWFetch
Description
This parameter is the address of the PLC’s data component to be written. The number of the
PLC’s data component is given by the DB Fetch Parameter.

Defaults
Default value is 0.

Note
This command affects MPI only. All other gateways simply ignore this parameter and do not pro-
duce an error.
92 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Parameters (selection of parameters)
9.24 MPIDWSend
Description
This parameter is the address of the PLC’s data component to be written.

Defaults
The default value for DW Send is 0. Normally counting starts with 0 so no problem should occur.

Note
This command affects MPI only. All other gateways simply ignore this parameter and do not pro-
duce an error.
7.10.10 Instruction manual Protocol Developer V. 2.1 93

Parameters (selection of parameters) Deutschmann Automation GmbH & Co. KG
9.25 MPIFetchOn
Description
This parameter describes the time in milliseconds between to fetch commands automatically per-
formed by the gateway. If this parameter is 0 no fetch is performed by the gateway.

Defaults
Default value for this parameter is 0.

Note
This command affects MPI only. All other gateways simply ignore this parameter and do not pro-
duce an error.
94 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Parameters (selection of parameters)
9.26 MPIFetchType
Description
This parameter describes the kind of data to be fetched by the gateway. If this parameter is 0 no
fetch is performed by the gateway.

Defaults
Default value is 0.

Values
No send type = 0
Data module = 68
Input bytes = 69
Marker bytes = 77
Meter cells = 90
Absolute addresses = 83
Extended data module = 88
Output bytes = 65
Periphery bytes = 80
Time cells = 84
System addresses = 66

Note
This command affects MPI only. All other gateways simply ignore this parameter and do not pro-
duce an error.
7.10.10 Instruction manual Protocol Developer V. 2.1 95

Parameters (selection of parameters) Deutschmann Automation GmbH & Co. KG
9.27 MPIGapFactor
Description
No description available at the moment.

Defaults
Default value is 5. Normally it should not be necessary to change this value.

Note
This command affects MPI only. All other gateways simply ignore this parameter and do not pro-
duce an error.
96 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Parameters (selection of parameters)
9.28 MPIMax.Station
Description
No description available at the moment.

Defaults
Default value is 31. Normally it is not necessary to change this value.

Note
This command affects MPI only. All other gateways simply ignore this parameter and do not pro-
duce an error.
7.10.10 Instruction manual Protocol Developer V. 2.1 97

Parameters (selection of parameters) Deutschmann Automation GmbH & Co. KG
9.29 MPIPartnerAddress
Description

Command

Defaults
No default value for this parameter.

Note
This command affects MPI only. All other gateways simply ignore this parameter and do not pro-
duce an error.
98 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Parameters (selection of parameters)
9.30 MPISendType
Description

Command

Defaults

Note

This command affects MPI only. All other gateways simply ignore this parameter and do not pro-
duce an error.
7.10.10 Instruction manual Protocol Developer V. 2.1 99

Parameters (selection of parameters) Deutschmann Automation GmbH & Co. KG
9.31 Parity
Description
Every character sent and received at the RS-interface has a parity bit. It is possible to select the
kind of generation for the parity.

Defaults
The default value for parity is none.

Values
Possible values are:
none
even
odd
mark
space

Note
Parity mark and space are available from script revision 13 on.
100 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Parameters (selection of parameters)
9.32 ProductCode
Description
It is possible to set a fixed product code for a script gateway.
If this value is set to 0 the gateway calculates its product code by 256 * consumed size + pro-
duced size.

Command
Set

Defaults
Default value is zero; the gateway calculates its product code.

Note
This parameter and its value affect DeviceNet only.
All other busses simply ignore this command and will not produce an error on executing this
statement.
7.10.10 Instruction manual Protocol Developer V. 2.1 101

Parameters (selection of parameters) Deutschmann Automation GmbH & Co. KG
9.33 RSInCharacter
Description
Determines the number of characters in the RS input buffer.The result value is a word value.
The number of bytes in a serial input buffer may not exceed 255 in a standard device; some
devices may have smaller or larger input buffers. Please refer to the device’s specification for
details.

Command
Get

Note
This parameter is read only.
102 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Parameters (selection of parameters)
9.34 RSOutFree
Description
The RS output buffer may only get hold of 255 bytes. If you like to send more data, you need to
wait until the number of bytes available in the device’s output buffer is big enough to keep the
new message.
Use this parameter to check if the output buffer has enough space for your data.

Command
Get

Note
Data in the output buffer is automatically sent by the device’s operating system.
Some devices will have a larger input buffer (>1kByte). For those devices use the parameters
RSOutFree16 instead.
7.10.10 Instruction manual Protocol Developer V. 2.1 103

Parameters (selection of parameters) Deutschmann Automation GmbH & Co. KG
9.35 RS_State_LED
Description
All UNIGATE SC devices - not depending of the bus type - have an LED called RS_State_LED. It
is possible to set the function of this LED by this script parameter.

Command
Set

Defaults
By default the LED is off.

Values
The parameter take one of the following values:
• off
• staticgreen
• staticred
• greenflashing
• redflashing
• redgreenflashing

Note
The function of the LED may be overridden by a system error or a user error.
This parameter does not affect devices of our UNIGATE IC series.
104 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Parameters (selection of parameters)
9.36 RSSwitch
Description
Determines the position of the switches S4 and S5 in a device which supports those switches
(this excludes all IC's).
S4 is in the high nibble, S5 is in the low nibble of the byte.

Command
Get

Example

// assume s4 = "1" and S5 = "5"
var v1: byte;
Get (RSSwitch, v1) ;
// the value v1 is now 0x15, which means the high nibble is1 (=S4) and
// the low nibble is 5 (= S5). Use logical AND and SHIFT operations to
// extract the single values.

Note
This parameter is read only.
You get an error when attempting to write this value.
7.10.10 Instruction manual Protocol Developer V. 2.1 105

Parameters (selection of parameters) Deutschmann Automation GmbH & Co. KG
9.37 RSType
Description
Determine the kind of the RS interface.
Possible values range from 0 to 2, reflecting RS232, RS422 and RS485. If you like to use a UNI-
GATE-SC in RS485 mode or if you like to use a UNIGATE-IC's TE pin set the corresponding RS-
type.

Command
This command is read only.

Note
A default value does not exist; the value always reflects the real hardware.
An error occurs if a device can not detect the hardware (e. G. UNIGATE IC's).

Values
0 = RS232
1 = RS485
2 = RS422
106 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Parameters (selection of parameters)
9.38 SelectID
Description
The gateway consists of 4 LED's. Those LED's signed with SelectID / Error No are accessible by
this parameter. Every binary number from 0 (all LED's off) to 15 (all LED's on) is possible.
Best is to set the value for this parameter as binary value.

Defaults
By default all LED's are off.

Example
...
Set SelectID to 0b1010;
// SelectID LED's No 8 and 2 are on. similar to :
// Set SelectID to 10;
// Set SelectID to 0x0A;
...
7.10.10 Instruction manual Protocol Developer V. 2.1 107

Parameters (selection of parameters) Deutschmann Automation GmbH & Co. KG
9.39 ShiftRegisterInputBitLength
Description
Specifies the exact bitlength of the connected hardware. The given value must fit the real hard-
ware; otherwise you will get an error.

Commands
Set
Get

Defaults
The default value is 8 bit.

Example
...
Set (ShiftRegisterOutputbitLength, 12); // Now the size is 12 bits
...
108 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Parameters (selection of parameters)
9.40 ShiftRegisterInputType
Description
Specifies the type of hardware connected to the device.

Commands
Set
Get

Defaults

Example
...
...
7.10.10 Instruction manual Protocol Developer V. 2.1 109

Parameters (selection of parameters) Deutschmann Automation GmbH & Co. KG
9.41 ShiftRegisterOutputBitLength
Description
Specifies the exact bitlength of the connected hardware. The given value must fit the real hard-
ware; otherwise you will get an error.

Commands
Set
Get

Defaults
The default value is 8 bit.

Example
...
Set (ShiftRegisterOutputbitLength, 12) ; // Now the Bit size
is 12 bytes
...
110 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Parameters (selection of parameters)
9.42 ShiftRegisterOutputType
Description
Specifies the type of hardware connected to the device.

Commands
Set
Get

Defaults

Example
...
...
7.10.10 Instruction manual Protocol Developer V. 2.1 111

Parameters (selection of parameters) Deutschmann Automation GmbH & Co. KG
9.43 StartBits
Description
Number of startbits for serial communication.

Defaults
The default value for the startbit is 1.

Values
At the moment only 1 startbit is allowed.
112 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Parameters (selection of parameters)
9.44 StopBits
Description
Every character sent over a serial connection is framed in start and stop bits. All devices support
1 or 2 stopbits.
If you are using 1 stopbit a character sent by the partner with 2 stopbit is received without an
error.

Command
Set

Defaults
The default is 1 stopbit.
7.10.10 Instruction manual Protocol Developer V. 2.1 113

Parameters (selection of parameters) Deutschmann Automation GmbH & Co. KG
9.45 Timer
Description
An internal timer runs with a frequency of 1 millisecond. It is possible to read and to write the
timer.

Commands
Set baudrate
Get baudrate

Defaults
The timer value is 0 at gateway startup. No other value is available as default.

Values
A timer can have values from 0 to 2^32-1. It is a long value (4 bytes). Assign this value only to
long variables.

Example
...
...

Note
A timer value is a long value. This means a timer starting by 0 runs to 2^32-1 and then runs over
to 0 again. The timer value increases every millisecond, so a runover occurs every 49 days. To
preserve such a behavior the timer value should be set to 0 before use. If you use a timer value
the condition always should be a greaterEqual condition.
114 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Parameters (selection of parameters)
9.46 WarningTime
Description
Under some circumstances the gateway may show an error. This indication may be a real hard-
ware error, a script error or a user defined state (a visual note). Normally it is not necessary to
change this time.
Changing this parameter does not have any effect on active errors.

Defaults
Default is 60000 = 60 * 1000 ms = 1 minute.
7.10.10 Instruction manual Protocol Developer V. 2.1 115

Miscellaneous Deutschmann Automation GmbH & Co. KG
10 Miscellaneous
10.1 Return codes
This may be an incomplete list of all errors generated. After a script line is executed the result is
available by the parameter Error code. The Protocol Developer software shows an error descrip-
tion for every error.

Only return codes from 0x10 to 0x7F are recognized by the OnError command. All other errors
are treated as "hints" instead of a real error.

A list that contains all Errors with description can be found in the online help Protocol Developer
under ”Return Codes”

10.2 Script revisions
This is a informative list of script revisions and implemented features. Functions which are not
listed here are implemented since initial script revision. This list may have errors, or may be
incomplete, and function names may not directly correspond to function names available in the
Protocol Developer software.
A topical list of Script revisions can be found in the online help Protocol Developer ”Script Revi-
sions”.

10.3 Script execution
Every script command is executed by the device’s script interpreter. After a command is exe-
cuted a return code (= errorcode) is available and can be read by the Get (ErrorCode, x) com-
mand.
116 Instruction manual Protocol Developer V 2.1 7.10.10

Deutschmann Automation GmbH & Co. KG Miscellaneous
10.4 Bus Types or Device Types

Device Decimal type value Hexadecimal value
UNIGATE SC Profibus DP 103 0x67
UNIGATE IC Profibus DP 173 0xAD
UNIGATE SC CANopen® 105 0x69
UNIGATE IC CANopen® 175 0xAF
UNIGATE SC DeviceNet 104 0x68
UNIGATE IC DeviceNet 174 0xAE
UNIGATE SC Interbus 106 0x6A
UNIGATE IC Interbus 176 0xB0
UNIGATE SC Ethernet 10 151 0x97
UNIGATE IC Ethernet 10 177 0xB1
UNIGATE SC LONWorks (512) 157 0x9D
UNIGATE SC MPI 152 0x98
UNIGATE SC Arcnet 150 0x96
UNIGATE IC Fast Ethernet 178 0xB2
UNIGATE SC Fast Ethernet 159 0x9F
UNIGATE IC LONWorks 179 0xB3
UNIGATE IC RS 180 0xB4
UNIGATE SC LONWorks S (62) 162 0xA2
UNIGATE CL Profinet 167 0xA7
UNIGATE IC Profinet 189 0xBD
UNIGATE CL EtherNet/IP 165 0xA5
UNIGATE IC EtherNet/IP 187 0xBB
UNIGATE CL Powerlink 188 0xA6
UNIGATE IC Powerlink 166 0xBC
UNIGATE CL EtherCAT 168 0xA8
UNIGATE IC EtherCAT 190 0xBE

There is no difference in bus type between a UNIGATE SC and a UNIGATE SC (Debugversion).
7.10.10 Instruction manual Protocol Developer V. 2.1 117

Miscellaneous Deutschmann Automation GmbH & Co. KG
118 Instruction manual Protocol Developer V 2.1 7.10.10

	1 Introduction
	2 What is a Script?
	2.1 Decision for an own Script language
	2.2 Memory efficiency of the programs

	3 Hardware
	3.1 UNIGATE SC in Debug-version
	3.2 Debug mode
	3.2.1 Setting the Debug mode
	3.2.1.1 Switch-on message of the Gateway

	3.3 UNIGATE IC

	4 What can you do with a Script device?
	4.1 Independence of buses
	4.2 Further settings at the Gateway
	4.3 The use of the Protocol Developer
	4.3.1 Main window

	4.4 Menu structure
	4.5 The Debugger
	4.6 Programming Scripts
	4.6.1 Spelling of Script commands
	4.6.1.1 Numbers
	4.6.1.2 Texts
	4.6.1.3 Comments
	4.6.1.4 Label

	4.7 About the Script development
	4.8 Special rules for Scripts
	4.9 Debugging
	4.9.1 Proceeding
	4.9.2 Debug commands

	5 Description of the Script Program Tool
	5.1 Manual mode
	5.2 Automatic mode
	5.2.1 Setting up the automatic mode

	6 Appendix
	7 Quick start
	7.1 Step-by-step
	7.1.1 Step 1
	7.1.2 Step 2
	7.1.3 Step 3
	7.1.4 Step 4
	7.1.5 Step 5
	7.1.6 Step 6
	7.1.7 Step 7
	7.1.8 Step 8

	8 Commands (selection of commands)
	8.1 BusStart
	8.2 CalculateByte
	8.3 CalculateWord
	8.4 Call
	8.5 Checksum
	8.6 Convert
	8.7 Copy
	8.8 Delay
	8.9 DIN19244DataExchange
	8.10 ExchangeModbusRTUMaster
	8.11 FillMemory
	8.12 GetParameter
	8.13 If - then - else
	8.14 Init3964R
	8.15 InitCommunicationChannel
	8.16 Jump
	8.17 Label
	8.18 LONSelfDocString
	8.19 MoveConst
	8.20 ReadBus
	8.21 ReadModbusSlave
	8.22 Receive3964R
	8.23 ReceiveSomeCharRS
	8.24 ReceiveSpecialCharRS
	8.25 Return
	8.26 ScriptAuthor
	8.27 ScriptName
	8.28 ScriptRevision
	8.29 Send3964R
	8.30 SendRS
	8.31 Set
	8.32 SetByVar
	8.33 SetLonMapping
	8.34 Stop
	8.35 VariableDeclaration
	8.36 Wait
	8.37 WaitBusChange
	8.38 WriteBus
	8.39 WriteModbusSlave

	9 Parameters (selection of parameters)
	9.1 3964RPriority
	9.2 AvailableBusData
	9.3 Baudrate
	9.4 BusBaudrate
	9.5 BusDataChanged
	9.6 BusInputsize
	9.7 BusOutputSize
	9.8 BusTimeout
	9.9 BusType
	9.10 ChecksumCalculationMethods
	9.11 CommunicationChannel
	9.12 DataBits
	9.13 ErrorCode
	9.14 ErrorProgramcounter
	9.15 EthernetDestinationPort
	9.16 EthernetSourcePort
	9.17 FieldbusID
	9.18 LonProgramID
	9.19 ModbusRTUTimeout
	9.20 ModbusSlaveAddress
	9.21 MPIDBFetch
	9.22 MPIDBSend
	9.23 MPIDWFetch
	9.24 MPIDWSend
	9.25 MPIFetchOn
	9.26 MPIFetchType
	9.27 MPIGapFactor
	9.28 MPIMax.Station
	9.29 MPIPartnerAddress
	9.30 MPISendType
	9.31 Parity
	9.32 ProductCode
	9.33 RSInCharacter
	9.34 RSOutFree
	9.35 RS_State_LED
	9.36 RSSwitch
	9.37 RSType
	9.38 SelectID
	9.39 ShiftRegisterInputBitLength
	9.40 ShiftRegisterInputType
	9.41 ShiftRegisterOutputBitLength
	9.42 ShiftRegisterOutputType
	9.43 StartBits
	9.44 StopBits
	9.45 Timer
	9.46 WarningTime

	10 Miscellaneous
	10.1 Return codes
	10.2 Script revisions
	10.3 Script execution
	10.4 Bus Types or Device Types

