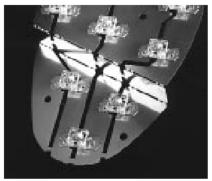
HPWS-TH00 HPWS-FL00 HPWS-FL00


SnapLED 150

Technical Data DS08

Using Lumileds' patented solderless clinch technology, SnapLED 150 emitters are attached to a formable metal substrate that offers both styling flexibility and ruggedness unmatched by any other LED assembly.

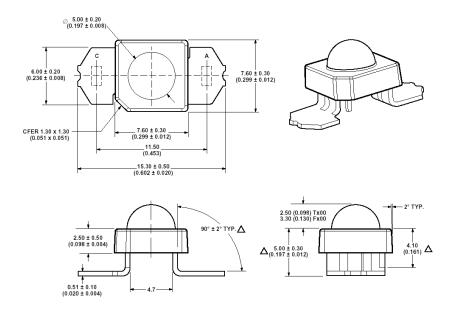
SnapLED's brilliant luminance, flexibility, and reliability enable distinctive and durable lighting designs for vehicles, signals, and specialty lighting.

Benefits

- Rugged Lighting Products
- Electricity Savings
- Maintenance Savings
- 3-Dimensional Array Design
- Environmental Conformance

Features

- High Luminance
- Low Power Consumption
- Low Thermal Resistance
- Low Profile
- Solderless Mounting Technique
- Formable Substrate
- Meets SAE/ECE/JIS
 Automotive
 Color Requirements
- Packaged in tubes for use with automatic insertion equipment


Typical Applications

- Automotive Lighting
 - Rear Combination Lamps
 - Front Turn Signal Lamps
 - High Mount Stop Lamps
 - Indirect Lighting
- Solid State Lighting and Signaling

Selection Guide

Part Number	LED Color	Total flux $\Phi_{ m V}$ (lm) @ I 50 mA $^{ m III}$ Min.	Total Included angle $\theta_{\text{0.90 V}}$ (Degrees) [2] Typ.	
HPWS-TH00-00000 HPWS-FH00-00000	TS ALINGAP RED-ORANGE	6.0	l 20 70	
HPWS-TL00-00000 HPWS-FL00-00000	TS ALINGAP AMBER	3.0	120 70	

Outline Drawings

Notes:

- $1.~\Phi_{V}$ is the total luminous flux output as measured with an integrating sphere after the device has stabilized $R\theta_{j-a}$ = 100°C/W, T_{A} = 25°C).
- $\overline{2}$. $\theta_{0.90\ V}$ is the included angle at which 90% of the total luminous flux is captured. See Figure 5.

Notes:

- 1. Dimensions are in millimeters (inches).
- 2. Dimensions without tolerances are nominal
- 3. Cathode lead is indicated with a "C" and anode lead is indicated with an "A."
- 4. Special characteristics are designated with a triangle.
- Clinch joint locations shown in dashed lines on top view of part (11.50 mm spacing).

Absolute Maximum Ratings at T_A = 25°C

Parameter	HPWS-Tx00/Fx00	Units	
DC FORWARD CURRENT [1,2]	150	мА	
Pulsed Forward Current ^[3,4]	200	мА	
Power Dissipation	473	мW	
Reverse Voltage ($I_R = 100~\mu_{\text{A}}$)	10	V	
OPERATING TEMPERATURE RANGE	-40 to +100	°C	
STORAGE TEMPERATURE RANGE	-55 то +100	°C	
HIGH TEMPERATURE CHAMBER	I 25 (2 HRS.)	°C	
LED JUNCTION TEMPERATURE	125	°C	

Notes:

- 1. Operation at currents below 20 mA is not recommended.
- 2. Derate linearly as shown in Figure 3a.
- 3. Amber only at simulated turn signal conditions of f = 0.5 2 Hz and 50% duty factor.
- 4. Derate linearly as shown in Figure 3b.

Optical Characteristics at TA = 25°C, I_F = 150 mA, $R_{\theta J\text{-}A}$ = 100°C/W

Device Type	Total flux Φ_{V} (lm) min.	Peak wavelength λρεακ (nm) Typ.	Color, Dominant Wavelength $\lambda_{_{D}}$ (nm) $^{[2]}$ Typ.	TOTAL INCLUDED ANGLE (DEGREES) ^[3] TYP.	RATIO OF LUMINOUS INTENSITY TO TOTAL FLUX $I_{\rm V}({\rm CD})$ / $\Phi_{\rm V}({\rm LM})$ Typ.	VIEWING ANGLE 20 1/2 (DEGREES) TYP.
HPWS-THOO		630	621	l 20 70	0.6 2.0	85 30
HPWS-TLOC		596	594	1 20 70	0.6 2.0	85 30

Electrical Characteristics at $T_A = 25^{\circ}C$

	FORWARD VOLTAGE $V_{F} (VOLTS)$ @ $I_{F} = 150$ mA		Reve Break V _r (Vo @ I _I I OC	(DOWN	CAPACITANCE $C (PF)$ $V_F = O,$ $F = I MHz.$	Thermal resistance Rθ _{J-PIN} (°C/W)	SPEED OF RESPONSE T _S (NS) [1]	
DEVICE TYPE	Min	Typ	Max	Min.	Typ.	Typ.	Typ.	TYP.
HPWS-xHOO HPWS-xLOO		2.55 2.65	3.15 3.15	10 10	20 20	80 80	60 75	20 20

Notes:

- 1. Φ_v is the total luminous flux output as measured with an integrating sphere after the device has stabilized.
- The dominant wavelength is derived from the CIE Chromaticity Diagram and represents the perceived color of the device.
- 3. $\theta_{\text{loo} \text{ V}}$ is the included angle at which 90% of the total luminous flux is captured. See Figure 5.

Figures

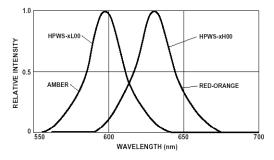


Figure 1. Relative Intensity vs. Wavelength

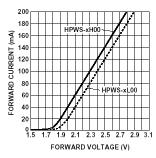


Figure 2. Forward Current vs. Forward Voltage.

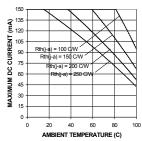


Figure 3a. HPWS-xx00 Maximum DC Forward Current vs. Ambient Temperature.

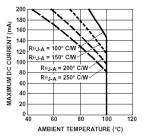


Figure 3b. HPWS-xx00 Maximum Pulsed Forward Current vs. Ambient Temperature.

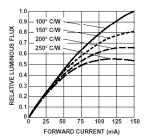


Figure 4. HPWS-xx00 Relative Luminous Flux vs. Forward Current.

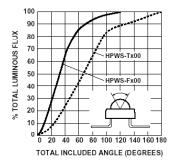


Figure 5. HPWS-xx00 Percent Total Luminous Flux vs. Total Included Angle.

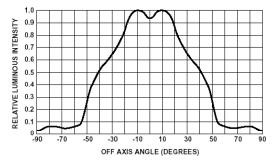


Figure 6a. HPWS-Tx00 Relative Intensity vs. Off Axis Angle.

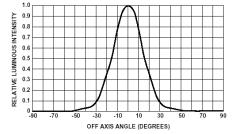


Figure 6b. HPWS-Fx00 Relative Intensity vs. Off Axis Angle.

Note: For addition

For additional information, please refer to the Lumileds AN 1149 Series.

Company Information

SnapLED™ is developed, manufactured and marketed by Lumileds Lighting, LLC. Lumileds is a world-class supplier of Light Emitting Diodes (LEDs) producing billions of LEDs annually. Lumileds is a fully integrated supplier, producing core LED material in all three base colors (Red, Green, Blue) and White. Lumileds has R&D development centers in San Jose, California and Best, The Netherlands and production capabilities in San Jose, California and Malaysia.

Lumileds is pioneering high-flux LED technology and bridging the gap between solid-state LED technology and the lighting world. Lumileds is absolutely dedicated to bringing the best and brightest LED technology to enable new applications and markets in the lighting world.

Lumileds may make process or materials changes affecting the performance or other characteristics of our products. These products supplied after such changes will continue to meet published specifications, but may not be identical to products supplied as samples or under prior orders.

LUMILEDS

www.luxeon.com www.lumileds.com

For technical assistance or the location of your nearest Lumileds sales office, call:

Worldwide: +1 408-435-6044 US Toll free: 877-298-9455 Europe: +31 499 339 439 Fax: 408-435-6855 Email us at info@lumileds.com

Lumileds Lighting, LLC 370 West Trimble Road San Jose, CA 95131

©2002 Lumileds Lighting. All rights reserved. Lumileds Lighting is a joint venture between Agilent Technologies and Philips Lighting. Luxeon is a trademark of Lumileds Lighting, LLC. Product specifications are subject to change without notice.