

Federal 3535 UV & IR Datasheet

- High power performance
- Promising power maintenance characteristics
- High efficiency package
- Level 1 on JEDEC moisture sensitivity analysis
- RoHS compliant

Table of Contents

General Information	3
Introduction	3
Product Nomenclature	3
Mechanical Dimensions	
Star PCB Type Dimension	4
Circuit	
PCB Layout	5
Solder Pad	5
Absolute Maximum Ratings	6
Luminous Flux Characteristic	7
Characteristics	7
Characteristic Curve	8
Spectrum	8
Radiation Diagram	8
Forward Voltage & Forward Current	8
Luminous Flux & Forward Current	9
Wavelength & Forward Current	9
Luminous Flux & Junction Temperature	10
Product Packaging Information	11
Revision History	13
About Edison Opto	13

General Information

Introduction

Federal 3535 UV&IR Series is a smaller and brighter single-chip LED. Federal is a surface mount, compact, high brightness LED that is suitable for various illumination needs such as Machine Vision.

Product Nomenclature

The following table describes the available color, power, and lens type. For more flux and forward voltage information, please consult the Bin Group document.

Table 1 . Federal 3535 UV & IR Nomenclature

	X1 LED Item		X2 odule		X3 Emitting Color		(4 Number	Din	X5 nension
Code	Туре	Code	Туре	Code	Туре	Code	Туре	Code	Туре
EF	Edixeon® Federal	Е	Emitter	V	Ultraviolet	-	-	В	3.5 x 3.5mm
		S	Star	E	Deep Red				
				1	IR850				

	(6 ng Item	X Serial N	7 Number
Code	Туре	Code	Туре
Е	E-type	-	_

Mechanical Dimensions

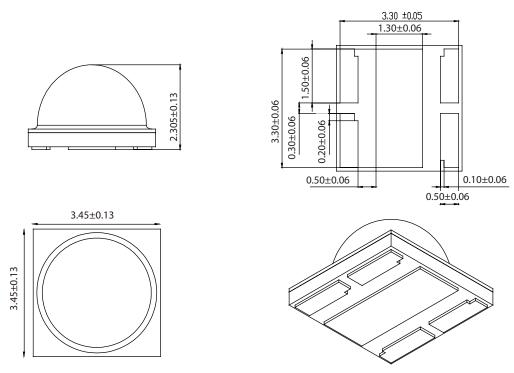


Figure 1. Federal 3535 series Dimension

Notes:

- 1. All dimensions are measured in mm.
- 2. Drawings are not to scale.

Star PCB Type Dimension

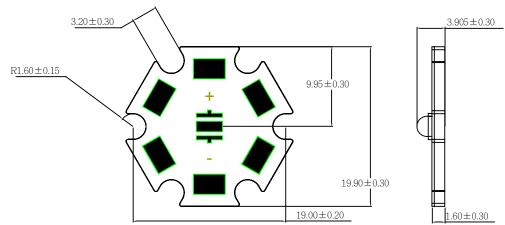
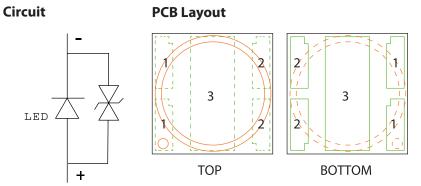



Figure 2. Federal 3535 sereis Star PCB type Dimension Notes:

- 1. All dimensions are measured in mm.
- 2. Drawings are not to scale.

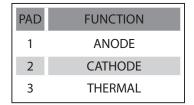


Figure 3. Federal 3535 series circuit and pcb layout

Note:

The thermal pad is electrically isolated from anode and cathode.

Solder Pad

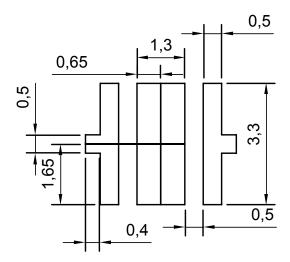


Figure 4. Federal 3535 series solder pad

Absolute Maximum Ratings

The following tables describe flux of Federal 3535 UV&IR series under various current and different color.

Table 2. Federal 3535 UV&IR series absolute maximum ratings

Parameter	Symbol	EFEV/EFEE	EFEI	Units
DC Forward Current	$I_{\rm F}$	350	700	mA
Peak Pulsed Current; (tp≤100µs, Duty cycle=0.25)	l _{pulse}	700	1000	mA
Transient Surge Voltage		8	3	V
Reverse Voltage	V_R	Note 2	Note 2	V
LED Junction Temperature	T_{J}	125	125	°C
Operating Temperature		-40 ~ +80	-40 ~ +80	°C
Storage Temperature		-40 ~ +120	-40 ~ +120	°C
Soldering Temperature		260	260	°C

Notes:

- 1. Proper current derating must be observed to maintain junction temperature below the maximum at all time.
- 2. LEDs are not designed to drive in reverse bias.
- 3. Allowable reflow cycles are 3 times for each LED
- 4. tp: Pulse width time

Warning:

1. The transient surge voltage of EFE4I must < 3V, otherwise the compnents get damaged!

Luminous Flux Characteristic

The following tables describe flux of Federal 3535 UV&IR series under various current and different color.

Table 3. Luminous Flux Characteristics, I_F =350mA/700mA(IR) and Thermal Pad=25°C

Part Name	Color	Forward	Min Luminous Flux@350mA/700mA(IR)		
raitivaille	Color	Current (mA)	Group	Power (mW)	
EFEV-1BE1	Ultraviolet	350	Н	170	
ELEA-IDE!	Oltraviolet	330	J	256	
EFEE-1BE1	Deep Red	350	F	75	
EFEE-IDEI	Deep ked	330	G	113	
EFEI-1BE2	IR 850	700	K	384	

Note:

1. The luminous flux performance is guaranteed within published operating conditions. Edison maintains a tolerance of ±10% on flux measurements.

Characteristics

Table 4. Electrical and optical characteristics, I_F =350mA/700mA(IR) and Thermal Pad=25°C

Davit Nama Calau		CCT/ Wavelength Range		Viewing Anlge	V _F (V) /per chip		Thermal Resistance	
Part Name	Color	Min.	Max.	(Degree)	Min.	Max.	(°C/W)	
EFEV-1BE1	Ultraviolet	390nm	410nm	135	3.0	4.0	10	
EFEE-1BE1	Deep Red	650 nm	670 nm	125	2.0	3.0	10	
EFEI-1BE2	IR 850	835nm	870nm	125	1.4	2.4	10	

- 1. Wavelengths are stated as peak wavelength.
- 2. Edison maintains a tolerance of ± 2 nm for peak wavelength.

Characteristic Curve

Spectrum

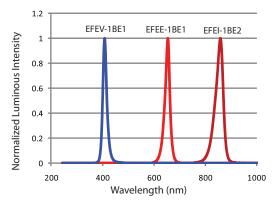


Figure 5. Color Spectrum for White series at T_J=25 °C

Radiation Diagram

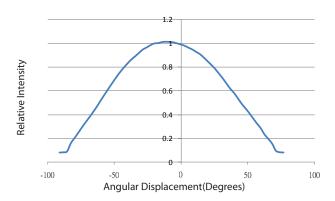


Figure 6. Emission Angle for Federal 3535 IR850

Forward Voltage & Forward Current

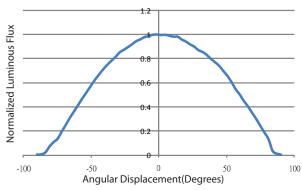


Figure 7. Emission Angle for Federal 3535 UV

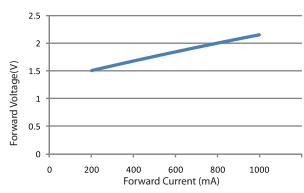


Figure 8. Forward voltage vs. forward current for Federal 3535 IR850 $\,$

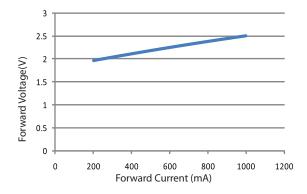


Figure 9. Forward voltage vs. forward current for Federal 3535 IR660

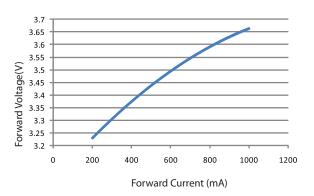


Figure 10. Forward voltage vs. forward current for Federal 3535

Luminous Flux & Forward Current

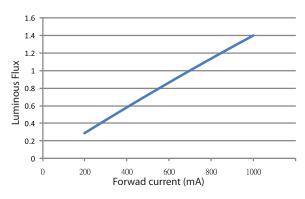


Figure 11. Relative luminous flux vs. forward current for Federal 3535 IR850

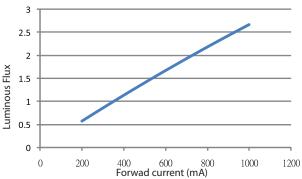


Figure 12. Relative luminous flux vs. forward current for Federal 3535 IR660 $\,$

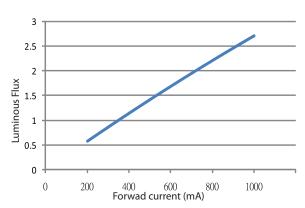


Figure 13. Relative luminous flux vs. forward current for Federal 3535 UV

Wavelength & Forward Current

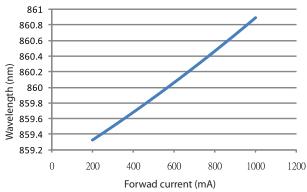


Figure 14. Wavelength vs. forward current for Federal 3535 IR850

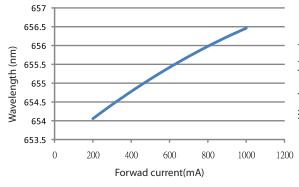


Figure 15. Wavelength vs. forward current for Federal 3535 IR660 $\,$

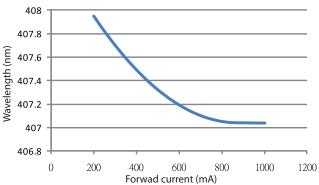


Figure 16. Wavelength vs. forward current for Federal 3535 UV

Luminous Flux & Junction Temperature

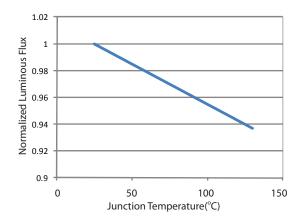
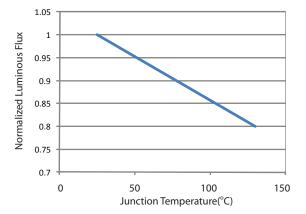
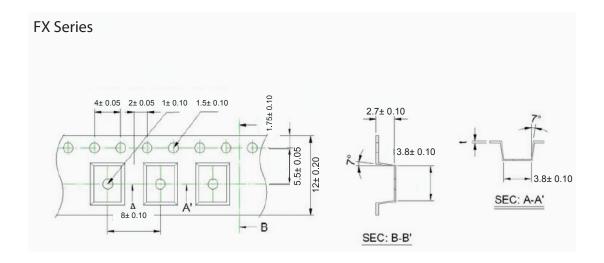
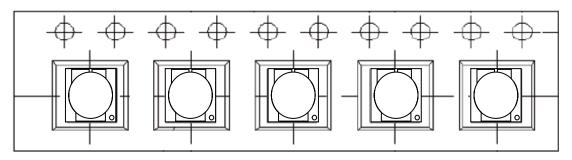


Figure 17. Luminous Flux vs. Junction temperature for Federal 3535 IR850


Figure 18. Luminous Flux vs. Junction temperature for Federal 3535 UV

Product Packaging Information

CATHODE SIDE

ANODE SIDE

Figure 19. Federal 3535 Reel Dimensions.

Table 5. Federal 3535 quantity and dimension of product package

Item	Quantity	Total	Dimensions(mm)			
Reel	500pcs	500pcs	R-178			
Вох	4 Reels	2,000pcs	240*235*67			
Carton	5 boxes	10,000pcs	353*354*256			
Starting with 50pcs empty, and 50pcs empty at the last						

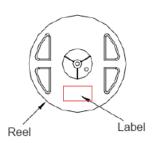


Figure 20. Taping reel dimensions

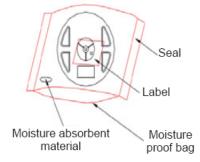


Figure 21. Federal 3535 Package

Revision History

Table 6. Revision history of Federal 3535 UV&IR series datasheet

Version	Description	Release Date	
1	Establish a datasheet	2012/01/10	

About Edison Opto

Edison Opto is a leading manufacturer of high power LED and a solution provider experienced in LDMS. LDMS is an integrated program derived from the four essential technologies in LED lighting applications- Thermal Management, Electrical Scheme, Mechanical Refinement, Optical Optimization, to provide customer with various LED components and modules. More Information about the company and our products can be found at www.edison-opto.com

Copyright©2011 Edison Opto. All rights reserved. No part of publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photo copy, recording or any other information storage and retrieval system, without prior permission in writing from the publisher. The information in this publication are subject to change without notice.

www.edison-opto.com

For general assistance please contact: service@edison-opto.com.tw

For technical assistance please contact: LED.Detective@edison-opto.com.tw