
A product of SEGGER Microcontroller GmbH & Co. KG

emFile

Software version 3.22
Document revision 1

Date: October 11, 2010

User Guide

CPU independent
File System for

embedded applications

www.segger.com

2

Disclaimer

Specifications written in this document are believed to be accurate, but are not guar-
anteed to be entirely free of error. The information in this manual is subject to
change for functional or performance improvements without notice. Please make sure
your manual is the latest edition. While the information herein is assumed to be
accurate, SEGGER Microcontroller GmbH & Co. KG (the manufacturer) assumes no
responsibility for any errors or omissions. The manufacturer makes and you receive
no warranties or conditions, express, implied, statutory or in any communication with
you. The manufacturer specifically disclaims any implied warranty of merchantability
or fitness for a particular purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without
the prior written permission of the manufacturer. The software described in this doc-
ument is furnished under a license and may only be used or copied in accordance
with the terms of such a license.

© 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG, Hilden / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respec-
tive holders.

Contact address

SEGGER Microcontroller GmbH & Co. KG

In den Weiden 11
D-40721 Hilden

Germany

Tel.+49 2103-2878-0
Fax.+49 2103-2878-28
Email: support@segger.com
Internet: http://www.segger.com
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

3

Manual versions

This manual describes the latest software version. If any error occurs, please inform
us and we will try to assist you as soon as possible.

For further information on topics or routines not yet specified, please contact us.

Manual version Date By Explanation

3.22 R1 101001 MD

Chapter "API functions -> File system control functions"
 * FS_SetAutoMount prototype corrected.
Chapter "API functions -> File access functions"
 * FS_Read prototype corrected.
Chapter "Device drivers -> NOR flash driver
 -> Resource usage -> Runtime (dynamic) RAM usage"
 * Simplified the forumula.
 * Added table showing the RAM usage.
Chapter "API functions"
 * Function "FS_AddOnExitHandler()" added.
 * Function "FS_EFS_CheckDisk()" added.
 * Function "FS_EFS_CheckDisk_ErrorCode2Text()" added.
Chapter "Introduction to emFile -> Basic concepts"
 * Section "Fail safety" added
 * Section "Wear leveling" added
 * Section "Implemenation notes" added
Chapter "Device drivers -> MultiMedia and SD card driver
 -> Hardware functions - Card mode"
 * Revised the description of all functions
Chapter "Device drivers -> NAND flash driver
 -> Fail-safe operation"
 * Diagram and explanation of power loss added

3.22 R0 100708 AG

Chapter "Running emFile on target hardware"
 * Section "Adjusting the RAM usage" updated.
Chapter "API functions"
 * Function "FS_Mount()" updated.
 * Function "FS_Sync()" added.
 * Structure "FS_FORMAT_INFO" description updated.
 * Function "FS_ConfigFileBufferDefault()" added.
 * Function "FS_ConfigFileBufferFlags()" added.
 * Function "FS_SetFileWriteMode()" added.
Chapter "Device drivers"
 * Section "NAND flash driver" updated.
 * Section "WinDrive driver" updated/corrected.
Chapter "Performance & resource usage"
 * Section "Memory footprint" updated.
Chapter "Journaling (Add-on)"
 * Section "Resource usage" added.
Chapter "Device drivers"
 * Section "NOR flash driver",
 subsection "Resource usage" added.
Chapter "Porting emFile 2.x to 3.x"
 * Section "Configuration differences" updated.
Chapter "Configuration of emFile"
 * Section "Compile time configuration" updated.

3.20 R2 100326 AG

Chapter "Device drivers -> NOR flash driver
 -> configuring the driver"
 * Section "Configuration API" added.
 * Section "Sample configurations" added.

3.20 R1 091130 AG
Chapter "API functions"
 * Function "FS_DeInit()" added.

3.14 081215 SK/SR

Chapter "API functions":
 * "Cache functions removed.
Chapter "Optimizing performance - Caching and buffering"
added.
Chapter "Introduction to emFile":
 * Basic concepts updated.
Chapter "Performance and resource usage"
 * RAM requirements added.

3.12 R3 080710 SR

Chapter "Performance and Resource Usage":
 * Divided Memory requirements into different sections.
Chapter "API functions":
 * Changed Prototype of FS_Mount.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

4

3.12 R2 080605 SR

Chapter "Configuration of emFile":
 * All configuration samples updated:
 * Added FS_AssignMemory.
 * Removed non existing marco:
 * FS_FAT_OPTIMIZE_SEQ_CLUSTERS
 * Added FS_DRIVER_ALIGNMENT macro.

3.12 R1 080505 SK

Chapter "Introduction":
 * emFile structure updated.
Chapter "Journaling (Add-on)":
 * FAQ added.

3.12 R0 080424 SK

Chapter "Configuration of emFile":
 * FS_FAT_FWRITE_UPDATE_DIR removed.
 * FS_EFS_FWRITE_UPDATE_DIR removed.
Chapter "API functions":
Chapter "Device driver":
 MMC:
 * Section "Configuration" updated.
 * FS_MMC_CM_Allow4bitMode() added.
 NOR:
 * Serial NOR flash hardware functions added.
 Chapter "Journaling (Add-on)" added.

3.10 R2 071022 SR

Chapter "Configuration of emFile":
 * Updated runtime configuration.
 * Updated Compiletime configuration.
Chapter "API functions":
 * Added new functions:
 FS_AssignMemory, FS_SetMemHandler,
 FS_SetMaxSectorSize()
 FS_DeInit().
 * Updated function description:
 FS_Mount().
 Chapter "OS integration":
 * Added new function FS_X_OS_DeInit().

3.10 R1 071008 SK
Chapter "Device driver":
 * Typos removed.

3.10 R0 070927 SK

Chapter "API functions":
 * Storage layer functions added.
Chapter "Running emFile on target hardware":
 * Structure/Directory names updated.
Chapter "Device drivers":
 * Structure changed
 * Subsection "Resource usage" added to every driver section.
 * Section "NAND flash driver" updated and enhanced.
 * Section "NOR flash driver" updated and enhanced.
 * Section "Multimedia & SD card driver" enhanced.
 * Graphics updated.
 * Subsection Troubleshooting added.
 * Section "DataFlash driver" removed. The DataFlash driver
 is now integrated in the NAND driver.
Chapter "Performance and resource usage":
 * Section "Memory footprint" updated.

3.08 R5 070719 SK

Chapter "Device drivers":
 * NAND: Pin description updated.
 * NAND: Illustrations added.
 * NOR: Illustrations added.

3.08 R4 070716 SK
Chapter "Introduction":
 * emFile structure picture changed.
 * Layer description updated.

3.08 R3 070703 SK

Chapter "API functions":
 * FS_InitStorage() updated.
 * FS_ReadSector() added.
 * FS_WriteSector() added.
 * FS_GetDeviceInfo() added.
Chapter "Index"
 * Index updated.

3.08 R2 070703 SK
Chapter "Device drivers":
 * "NAND flash driver" section enhanced.

Manual version Date By Explanation
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

5

Software versions

Refers to Release.html for information about the changes of the software versions.

3.08 R1 070618 SK

Chapter "API functions":
 * FS_UnmountLL added.
 * FS_GetVolumeStatus() added.
 * FS_InitStorage() added.
Chapter "Porting emFile 2.x to 3.x" chapter.

3.08 R0 070618 SK

Chapter "Introduction":
 * Section "Development environment" added.
Chapter "API functions" updated.
 * FS_Mount() added.
 * FS_SetAutoMount() added.
 * FS_UnmountForced() added.

3.04 R0 070427 SK

Various improvements.
Chapter "Running emFile on target hardware" updated.
 * Structural changes.
 * Section "Adjusting the RAM usage" added.
Chapter "API functions" updated.
 * Samples updated.
Chapter "Device driver" updated.
 * Generic flash driver renamed to NOR flash driver.
 - FS_FLASH_* replaced with FS_NOR_*.
 - NOR - additional driver functions added.
 * DataFlash driver added.

3.02 R0 070405 SK

Chapter "Running emFile on target hardware" updated.
 * Some smaller structural changes.
 * Section "Step 3: Add device driver" simplified.
 * Section "Step 4: Implement hardware routines" simplified.
 * Section "Troubleshooting" moved to chapter debugging.
Chapter "API functions":
 * Section "File system configuration functions" added.
 - FS_AddDevice() moved into this section.
 - FS_AddPhysDevice() added.
 - FS_LOGVOL_Create() added.
 - FS_LOGVOL_AddDevice() added.
Chapter "Device drivers":
 * Section "NAND":
 - FS_NAND_SetBlockRange() added.
Chapter "Configuration of emFile":
 * Section "Compile-time configuration"
 - "Miscellaneous configuration"
 - "FS_NO_CLIB" default value corrected.
Chapter "Debugging"
 - "FS_X_Log()", "FS_X_Warn()", "FS_X_ErrorOut()" :
 function description enhanced.
Chapter "OS Support" updated.

Manual version Date By Explanation
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

6

emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

7

About this document
Assumptions

This document assumes that you already have a solid knowledge of the following:

� The software tools used for building your application (assembler, linker, C com-
piler)

� The C programming language
� The target processor
� DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Program-
ming Language by Kernighan and Richie (ISBN 0-13-1103628), which describes the
standard in C-programming and, in newer editions, also covers the ANSI C standard.

How to use this manual
This manual explains all the functions and macros that emFile offers. It assumes you
have a working knowledge of the C language. Knowledge of assembly programming
is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command-prompt or that appears on the
display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.

Sample Sample code in program examples.

Reference Reference to chapters, sections, tables and figures or other docu-
ments.

GUIElement Buttons, dialog boxes, menu names, menu commands.

Emphasis Very important sections

Table 1.1: Typographic conventions
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

8

EMBEDDED SOFTWARE
(Middleware)

emWin
Graphics software and GUI
emWin is designed to provide an effi-
cient, processor- and display control-
ler-independent graphical user
interface (GUI) for any application that
operates with a graphical display.
Starterkits, eval- and trial-versions are
available.

embOS
Real Time Operating System
embOS is an RTOS designed to offer
the benefits of a complete multitasking
system for hard real time applications
with minimal resources. The profiling
PC tool embOSView is included.

emFile
File system
emFile is an embedded file system with
FAT12, FAT16 and FAT32 support.
emFile has been optimized for mini-
mum memory consumption in RAM and
ROM while maintaining high speed.
Various Device drivers, e.g. for NAND
and NOR flashes, SD/MMC and Com-
pactFlash cards, are available.

USB-Stack
USB device stack
A USB stack designed to work on any
embedded system with a USB client
controller. Bulk communication and
most standard device classes are sup-
ported.

SEGGER TOOLS

Flasher
Flash programmer
Flash Programming tool primarily for microcon-
trollers.

J-Link
JTAG emulator for ARM cores
USB driven JTAG interface for ARM cores.

J-Trace
JTAG emulator with trace
USB driven JTAG interface for ARM cores with
Trace memory. supporting the ARM ETM (Embed-
ded Trace Macrocell).

J-Link / J-Trace Related Software
Add-on software to be used with SEGGER�s indus-
try standard JTAG emulator, this includes flash
programming software and flash breakpoints.

SEGGER Microcontroller GmbH & Co. KG develops
and distributes software development tools and ANSI
C software components (middleware) for embedded
systems in several industries such as telecom, medi-
cal technology, consumer electronics, automotive
industry and industrial automation.

SEGGER�s intention is to cut software development-
time for embedded applications by offering compact flexible and easy to use middleware,
allowing developers to concentrate on their application.

Our most popular products are emWin, a universal graphic software package for embed-
ded applications, and embOS, a small yet efficent real-time kernel. emWin, written
entirely in ANSI C, can easily be used on any CPU and most any display. It is comple-
mented by the available PC tools: Bitmap Converter, Font Converter, Simulator and
Viewer. embOS supports most 8/16/32-bit CPUs. Its small memory footprint makes it
suitable for single-chip applications.

Apart from its main focus on software tools, SEGGER developes and produces program-
ming tools for flash microcontrollers, as well as J-Link, a JTAG emulator to assist in devel-
opment, debugging and production, which has rapidly become the industry standard for
debug access to ARM cores.

Corporate Office:
http://www.segger.com

United States Office:
http://www.segger-us.com
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

9

Table of Contents
1 Introduction to emFile ..13

1.1 What is emFile ..14
1.2 Features...14
1.3 Basic concepts ..15
1.3.1 emFile structure ..15
1.3.2 Choice of file system type: FAT vs. EFS ..16
1.3.3 Fail safety...16
1.3.4 Wear leveling ..17
1.4 Implementation notes ..18
1.4.1 File system configuration ..18
1.4.2 Runtime memory requirements ...18
1.4.3 Initializing the file system ...18
1.5 Development environment (compiler)...19

2 Getting started ...21

2.1 Installation ...22
2.2 Using the Windows sample..22
2.2.1 Building the sample program...22
2.2.2 Stepping through the sample ..22
2.2.3 Further source code examples ...26

3 Running emFile on target hardware...27

3.1 Step 1: Creating a simple project without emFile ...29
3.2 Step 2: Adding emFile to the start project...30
3.3 Step 3: Adding the device driver..32
3.3.1 Adding the device driver source to project...32
3.3.2 Adding hardware routines to project...33
3.4 Step 4: Activating the driver ...34
3.4.1 Modifying the runtime configuration ...35
3.5 Step 5: Adjusting the RAM usage...37

4 API functions..39

4.1 API function overview...40
4.2 File system control functions ...43
4.3 File system configuration functions...51
4.4 File access functions ..64
4.5 File positioning functions ..71
4.6 Operations on files...75
4.7 Directory functions ..88
4.8 Formatting a medium...94
4.9 Extended functions .. 102
4.10 Storage layer functions... 117
4.11 FAT related functions ... 125
4.12 EFS related functions ... 132
4.13 Error handling functions ... 135
4.14 Obsolete functions ... 139

5 Optimizing performance - Caching and buffering ..153

5.1 Introduction.. 154
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

10
5.2 Types of caches ...155
5.3 Cache API functions..156
5.4 Example applications ..162
5.4.1 Example application: FS_50Files.c ..162

6 Device drivers ..165

6.1 General information..166
6.1.1 Default device driver names ..166
6.1.2 Unit number ..166
6.1.3 Hardware layer ..167
6.2 RAM disk driver..169
6.2.1 Supported hardware ...169
6.2.2 Theory of operation ..169
6.2.3 Fail-safe operation..169
6.2.4 Wear leveling ..169
6.2.5 Configuring the driver ...170
6.2.6 Hardware functions ..172
6.2.7 Addition information ...172
6.3 NAND flash driver...173
6.3.1 Supported hardware ...174
6.3.2 Theory of operation ..178
6.3.3 Fail-safe operation..180
6.3.4 Wear leveling ..181
6.3.5 Configuring the driver ...182
6.3.6 Physical layer ..184
6.3.7 Hardware layer ..194
6.3.8 Resource usage ...214
6.3.9 FAQs ..215
6.4 MultiMedia and SD card driver..216
6.4.1 Supported hardware ...216
6.4.2 Theory of operation ..219
6.4.3 Fail-safe operation..219
6.4.4 Wear leveling ..220
6.4.5 Configuration...220
6.4.6 Hardware functions - SPI mode..223
6.4.7 Hardware functions - Card mode ...232
6.4.8 Hardware functions - Card mode for ATMEL devices247
6.4.9 Additional information...257
6.4.10 Additional driver functions ...257
6.4.11 Resource usage ...257
6.4.12 FAQs ..257
6.4.13 Troubleshooting ...258
6.5 CompactFlash card & IDE driver ...262
6.5.1 Supported Hardware...262
6.5.2 Theory of operation ..267
6.5.3 Fail-safe operation..272
6.5.4 Wear-leveling ..273
6.5.5 Configuring the driver ...273
6.5.6 Hardware functions ..274
6.5.7 Additional information...282
6.5.8 Resource usage ...282
6.5.9 FAQs ..282
6.6 NOR flash driver...283
6.6.1 Supported hardware ...283
6.6.2 Theory of operation ..284
6.6.3 Fail-safe operation..286
6.6.4 Wear leveling ..286
6.6.5 Configuring the driver ...287
6.6.6 Physical layer ..292
6.6.7 Hardware functions ..301
6.6.8 Additional Information ..307
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

11
6.6.9 Additional driver functions .. 307
6.6.10 Resource usage... 311
6.7 WinDrive driver ... 313
6.7.1 Supported hardware .. 313
6.7.2 Theory of operation ... 313
6.7.3 Fail-safe operation ... 313
6.7.4 Wear leveling .. 313
6.7.5 Configuring the driver .. 313
6.7.6 Hardware functions.. 314
6.7.7 Additional information .. 314
6.8 Writing your own driver .. 315
6.8.1 Device driver functions ... 315
6.8.2 Integrating a new driver ... 317

7 Configuration of emFile..319

7.1 Runtime configuration .. 320
7.1.1 Driver handling ... 320
7.1.2 System configuration ... 321
7.2 Compile time configuration ... 322
7.2.1 General file system configuration ... 323
7.2.2 FAT configuration .. 325
7.2.3 EFS configuration .. 326
7.2.4 OS support ... 326
7.2.5 Debugging.. 327
7.2.6 Miscellaneous configurations ... 327
7.2.7 Sample configuration ... 328

8 OS integration ..329

8.1 OS layer API functions.. 330
8.1.1 Examples ... 335

9 Debugging..337

9.1 FS_X_Log() .. 338
9.2 FS_X_Warn() .. 339
9.3 FS_X_ErrorOut() ... 340
9.4 Troubleshooting .. 341

10 Performance & resource usage ...343

10.1 Memory footprint... 344
10.1.1 System .. 344
10.1.2 File system configuration .. 344
10.1.3 Sample project.. 344
10.1.4 Static ROM requirements .. 346
10.1.5 Static RAM requirements .. 347
10.1.6 Dynamic RAM requirements .. 347
10.1.7 RAM usage example... 347
10.2 Performance ... 348
10.2.1 Configuration and performance table.. 348

11 Journaling (Add-on) ...351

11.1 Introduction.. 352
11.2 Features... 353
11.3 Backgrounds... 354
11.3.1 File System Layer error scenarios .. 354
11.4 How to use journaling .. 356
11.4.1 What do I need to do to use journaling? ... 356
11.4.2 How can I use journaling in my application? .. 356
11.5 Configuration .. 357
11.5.1 Journaling file system configuration.. 357
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

12
11.6 Journaling API ...358
11.7 Resource usage ...362
11.7.1 ROM usage..362
11.7.2 Static RAM usage ...362
11.7.3 Runtime (dynamic) RAM usage ..362

12 Porting emFile 2.x to 3.x ..363

12.1 Differences from version 2.x to 3.x ...364
12.2 API differences ..364
12.3 Configuration differences...365
12.4 Device driver ...366
12.4.1 Renamed drivers..366
12.4.2 Integrating a device driver into emFile ..366
12.4.3 RAM disk driver differences ...366
12.4.4 NAND driver differences ..367
12.4.5 NAND driver differences ..368
12.4.6 MMC driver differences..368
12.4.7 CF/IDE driver differences ..369
12.4.8 Flash / NOR flash differences ...370
12.4.9 Serial Flash / DataFlash differences ..370
12.4.10 Windrive differences ...370
12.5 OS Integration...371

13 FAQs..373

13.1 FAQs ..374
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

13
Chapter 1

Introduction to emFile
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

14 CHAPTER 1 Introduction to emFile
1.1 What is emFile
emFile is a file system that can be used on any media for which you can provide basic
hardware access functions.

emFile is a high-performance library that has been optimized for speed, versatility
and memory footprint.

1.2 Features
emFile is written in ANSI C and can be used on virtually any CPU.
Some features of emFile:

� MS DOS/MS Windows-compatible FAT12, FAT16 and FAT32 support.
� An optional module that handles long file names of FAT media.
� Multiple device driver support. You can use different device drivers with emFile,

which allows you to access different types of hardware with the file system at the
same time.

� MultiMedia support. A device driver allows you to access different media at the
same time.

� OS support. emFile can be easily integrated into any OS. This allows using emFile
in a multi-threaded environment.

� ANSI C stdio.h-like API for user applications. An application using the standard
C I/O library can easily be ported to use emFile.

� Very simple device driver structure. emFile device drivers need only basic func-
tions for reading and writing blocks. There is a template included. See /Sample/
Driver/DriverTemplate/Driver_Template.c for more details.

� An optional device driver for NAND flash devices, which can be easily used with
any kind of NAND flashes.

� An optional device driver for MultiMedia & SD cards using SPI mode or card mode
that can be easily integrated.

� An optional IDE driver, which is also suitable for CompactFlash using either �True
IDE� or �Memory Mapped� mode.

� An optional NOR flash (EEPROM) driver that handles different flash sector sizes.
� An optional proprietary file system (EFS) with native long file name support.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

15
1.3 Basic concepts

1.3.1 emFile structure
emFile is organized in different layers, illustrated in the diagram below. A short
description of each layer�s functionality follows below.

API Layer

The API Layer is the interface between emFile and the user application. It is divided
in two parts Storage API and File System API. The File System API declares file func-
tions in ANSI C standard I/O style, such as FS_FOpen(), FS_FWrite() etc. The API
Layer transfers any calls to these functions to the File System Layer. Currently the
FAT file system or an optional file system, called EFS, are available for emFile. Right
now they cannot be used simultaneously. The Storage API declares the functions
which are required to initialize and access a storage medium. The Storage API allows
sector read and write operations. The API Layer transfers these calls to the Storage
Layer. The Storage API is optimized for applications which do not require file system
functionality like file and directory handling. A typical application which uses the
Storage API could be a USB mass storage device, where data has to be stored on a
medium, but all file system functionality is handled by the host PC.

File System Layer

Storage Layer

Low level routines to access
sectors of a device and check

status.

Synchronisation of device
operations for different file
operations and chaching.

Translation of file operations
to sector operations.

<stdio.h> like functions like
FS_FOpen(), FS_FRead(),

FS_FWrite().

Application Layer
App. Program using

Storage API or FS API.
Responsibility of app.

programmer

Hardware Layer

e
m

F
ile

Low level routines to access
your hardware.

Responsibility of app.
programmer

File System API:

File System APIStorage API
API Layer

Device Driver
(CF / IDE / MMC / NAND / NOR / SD /...)

Driver Layer

Journaling (optional)

FAT / EFS
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

16 CHAPTER 1 Introduction to emFile
File System Layer

The file system layer translates file operations to logical block (sector) operations.
After such a translation, the file system calls the logical block layer and specifies the
corresponding device driver for a device.

Storage Layer

The main purpose of the Storage Layer is to synchronize accesses to a device driver.
Furthermore, it provides a simple interface for the File System API. The Storage
Layer calls a device driver to perform a block operation. It also contains the cache
mechanism.

Driver Layer

Device drivers are low-level routines that are used to access sectors of the device
and to check status. It is hardware independent but depends on the storage medium.

Hardware Layer

These layer contains the low-level routines to access your hardware. These routines
simply read and store fixed length sectors. The structure of the device driver is sim-
ple in order to allow easy integration of your own hardware.

1.3.2 Choice of file system type: FAT vs. EFS
Within emFile, there is a choice among two different file systems. The first, the FAT
file system, is divided into three different sub types, FAT12, FAT16 and FAT32. While
the other, EFS, is a proprietary file system developed by Segger. Choosing a suitable
file system will depend on the environment in which the end application is to operate.

The FAT file system was developed by Microsoft to manage file segments, locate
available clusters and reassemble file for use. Released in 1976, the first version of
the FAT file system was FAT12, which is no longer widely used. It was created for
extremely small storage devices. (The early version of FAT12 did not support manag-
ing directories).

FAT16 is good for use on multiple operating systems because it is supported by all
versions of Microsoft Windows, including DOS, OS/2 and Linux. The newest version,
FAT32, improves upon the FAT16 file system by utilizing a partition/disk much more
efficiently. It is supported by Microsoft Windows 98/ME/2000/XP/2003 and Vista and
as well on Linux based systems.

The EFS file system has been added to emFile as an alternative to the FAT file sys-
tem. EFS has been designed for embedded devices. This file system reduces frag-
mentation of the data by utilizing drive space more efficiently, while still offering
faster access to embedded storage devices. Another benefit of EFS is that there are
no issues concerning long file name (LFN) support. The FAT file system was not
designed for long file name support, limiting names to twelve characters (8.3). LFN
support may be added to any of the FAT file systems, but there are legal issues that
must be settled with Microsoft before end applications make use of this feature. Long
file names are inherent to this proprietary file system relieving it of any legal issues.

1.3.3 Fail safety
Fail safety is the feature of emFile that ensures the consistency of data in case of
unexpected loss of power during a write access to a storage medium. emFile will be
fail-safe only when both the file system (FAT/EFS) and the device driver are fail-safe.
The journaling add-on of emFile to makes the FAT/EFS file systems fail-safe. The
device drivers of emFile are all from design fail-safe. You can find detailed informa-
tion about how the fail-safety works on chapter Journaling (Add-on) on page 351 and
of the description of individual device drivers.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

17
1.3.4 Wear leveling
This is a feature of the NAND and NOR flash device drivers that increase the lifetime
of a storage medium by ensuring that all the storage blocks are equally well used.
The flash storage memories have a limited number of program/erase cycles, typically
around 100000. The manufacturers do not guarantee that the storage device will
work properly if this limit is exceeded. The wear leveling logic implemented in the
device drivers tries to keep the number of program-erase cycles of a storage block as
low as possible. You can find additional information in the description of the respec-
tive device drivers.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

18 CHAPTER 1 Introduction to emFile
1.4 Implementation notes

1.4.1 File system configuration
The file system is designed to be configurable at runtime. This has various advan-
tages. Most of the configuration is done automatically; the linker links in only code
that is required. This concept allows to putting the file system in a library. The file
system need not to be recompiled when the configuration changes, e.g. a different
driver is used. Compile time configuration is kept to a minimum, primarily to select
the level of multitasking support and the level of debug information. For detailed
information about configuration of emFile, refer to Configuration of emFile on
page 319.

1.4.2 Runtime memory requirements
Because the configuration is selected at runtime the amount of memory required is
not known at compile-time. For this reason a mechanism for runtime memory assign-
ment is required. Runtime memory is typically allocated when required during the
initialization and in most embedded systems never freed.

1.4.3 Initializing the file system
The first thing that needs to be done after the system start-up and before any file
system function can be used, is to call the function FS_Init(). This routine initializes
the internals of the file system.While initializing the file system, you have to add your
target device to the file system. The function FS_X_AddDevices() adds and initializes
the device.

FS_Init()
FS_X_AddDevices()
FS_AssignMemory()
FS_AddDevice()
Optional: Other configuration functions
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

19
1.5 Development environment (compiler)
The CPU used is of no importance; only an ANSI-compliant C compiler complying with
at least one of the following international standard is required:

� ISO/IEC/ANSI 9899:1990 (C90) with support for C++ style comments (//)
� ISO/IEC 9899:1999 (C99)
� ISO/IEC 14882:1998 (C++)

If your compiler has some limitations, let us know and we will inform you if these will
be a problem when compiling the software. Any compiler for 16/32/64-bit CPUs or
DSPs that we know of can be used; most 8-bit compilers can be used as well.

A C++ compiler is not required, but can be used. The application program can there-
fore also be programmed in C++ if desired.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

20 CHAPTER 1 Introduction to emFile
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

21
Chapter 2

Getting started
This chapter provides an introduction to using emFile. It explains how to use the Win-
dows sample, which is an easy way to get a first project with emFile up and running.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

22 CHAPTER 2 Getting started
2.1 Installation
emFile is shipped as a CD-ROM or as a .zip file in electronic form.
In order to install it, proceed as follows:

� If you received a CD, copy the entire contents to your hard drive into any folder
of your choice. When copying, keep all files in their respective sub- directories.
Make sure the files are not read-only after copying.

� If you received a .zip file, extract it to any folder of your choice, preserving the
directory structure of the .zip file.

2.2 Using the Windows sample
If you have MS Visual C++ 6.00 or any later version available, you will be able to
work with a Windows sample project using emFile. Even if you do not have the
Microsoft compiler, you should read this chapter in order to understand how an appli-
cation can use emFile.

2.2.1 Building the sample program
Open the workspace FS_Start.dsw with MS Visual Studio (for example double-click-
ing it). There is no further configuration necessary. You should be able to build the
application without any error or warning message.

2.2.2 Stepping through the sample
The sample project uses the RAM disk driver for demonstration. The main function of
the sample application Start.c calls the function MainTask(). MainTask() initializes
the file system and executes some basic file system operations.

The sample application Start.c step-by-step:

1. main.c calls MainTask(),
2. MainTask() initializes and adds a device to emFile,
3. checks if volume is low- level formatted and formats if required,
4. checks if volume is high-level formatted and formats if required,
5. outputs the volume name,
6. calls FS_GetFreeVolumeSpace() and outputs the return value - the available free

space of the RAM disk - to console window,
7. creates and opens a file test with write access (File.txt) on the device,
8. writes 4 bytes into the file and closes the file handle or outputs an error mes-

sage,
9. calls FS_GetFreeVolumeSpace() and outputs the return value - the available free

space of the RAM disk - again to console window,
10. outputs an quit message and runs into an endless loop.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

23
The sample step-by-step
1. After starting the debugger by stepping into the application, your screen should look

as the screenshot below. The main function calls MainTask().

Figure 2.1: FS_Start project - main()
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

24 CHAPTER 2 Getting started
2. The first things called from MainTask() is the emFile function FS_Init(). This
function initializes the file system and calls FS_X_AddDevices(). The function
FS_X_AddDevices() is used to add and configure the used device drivers to the
file system. In the example configuration only the RAM disk driver is added.
FS_Init() must be called before using any other emFile function. You should
step over this function.

Figure 2.2: FS_Start project - MainTask()

3. If the initialization was successfully, FS_FormatLLIfRequired() is called. It
checks if the volume is low-level formatted and formats the volume if it is
required. You should step over this function.

4. Afterwards FS_IsHLFormatted() is called. It checks if the volume is high-level
formatted and formats the volume if this is required. You should step over this
function.

5. The volume name is printed in the console window.
6. The emFile function FS_GetVolumeFreeSpace() is called and the return value is

written into the console window.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

25
7. Afterwards, you should get to the emFile function call FS_FOpen(). This function
creates a file named file.txt in the root directory of your RAM disk. Stepping
over this function should return the address of an FS_FILE structure. In case of
any error, it would return 0, indicating that the file could not be created.

Figure 2.3: FS_Start project - MainTask()

8. If FS_FOpen() returns a valid pointer to an FS_FILE structure, the sample appli-
cation will write a small ASCII string to this file by calling the emFile function
FS_FWrite(). Step over this function. If a problem occurs, compare the return
value of FS_FWrite() with the length of the ASCII string, which should be writ-
ten. FS_FWrite() returns the number of elements which have been written.
If no problem occurs the function emFile function FS_FClose() should be
reached. FS_FClose() closes the file handle for file.txt. Step over this func-
tion.

9. Continue stepping over until you reach the call to the call of
FS_GetVolumeFreeSpace().The emFile function FS_GetVolumeFreeSpace()
returns available free drive space in bytes. After you step over this function, the
variable v should have a value greater than zero.

10. The return value is written in the console window.

Figure 2.4: FS_Start project - console output
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

26 CHAPTER 2 Getting started
2.2.3 Further source code examples
Further source code examples which demonstrate directory operations and perfor-
mance measuring are available. All emFile source code examples are located in
the.\Sample\API\ directory under your emFile directory.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

27
Chapter 3

Running emFile on target hard-
ware
This chapter explains how to integrate and run emFile on your target hardware.
It explains this process step-by-step.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

28 CHAPTER 3 Running emFile on target hardware
Integrating emFile

The emFile default configuration contains a single device: a RAM disk. This should
always be the first step to check the proper function of emFile with your target hard-
ware.

We assume that you are familiar with the tools you have selected for your project
(compiler, project manager, linker, etc.). You should therefore be able to add files,
add directories to the include search path, and so on. It is also assumed that you are
familiar with the OS that you will be using in your target system (if you are using
one). In this document the IAR Embedded Workbench® IDE is used for all examples
and screenshots, but every other ANSI C toolchain can also be used. It is also possi-
ble to use make files; in this case, when we say �add to the project�, this translates
into �add to the make file�.

Procedure to follow

Integration of emFile is a relatively simple process, which consists of the following
steps:

� Step 1: Creating a start project without emFile
� Step 2: Adding emFile to the start project
� Step 3: Adding the device driver
� Step 4: Activating the driver
� Step 5: Adjusting the RAM usage
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

29
3.1 Step 1: Creating a simple project without emFile
We recommend that you create a small �hello world� program for your system. That
project should already use your OS and there should be a way to display text on a
screen or serial port.

If you are using embOS, you can use the start project shipped with the OS for this
purpose.

Figure 3.1: Start project
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

30 CHAPTER 3 Running emFile on target hardware
3.2 Step 2: Adding emFile to the start project
Add all source files in the following directories (and their subdirectories) to your
project:

• Application
• Config
• FS
• Sample\Driver\RAM
• Sample\OS\ (Optional, add if you use an RTOS. Add only the file compatible to

the used operating system.)

It is recommended to keep the provided folder structure.

Figure 3.2: emFile project structure
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

31
Configuring the include path

The include path is the path in which the compiler looks for include files. In cases
where the included files (typically header files, .h) do not reside in the same direc-
tory as the C file to compile, an include path needs to be set. In order to build the
project with all added files, you will need to add the following directories to your
include path:

• Config
• FS\

Figure 3.3: Configure the include path

Select the start application

For quick and easy testing of your emFile integration, start with the code found in the
folder Application. Exclude all files in the Application folder of your project except
the supplied main.c and Start.c.

The application performs the following steps:

1. main.c calls MainTask(),
2. MainTask() initializes and adds a device to emFile,
3. checks if volume is low- level formatted and formats if required,
4. checks if volume is high-level formatted and formats if required,
5. outputs the volume name,
6. calls FS_GetFreeVolumeSpace() and outputs the return value - the available

total space of the RAM disk - to console window,
7. creates and opens a file test with write access (File.txt) on the device,
8. writes 4 bytes into the file and closes the file handle or outputs an error mes-

sage,
9. calls FS_GetFreeVolumeSpace() and outputs the return value - the available free

space of the RAM disk - again to console window,
10. outputs an quit message and runs into an endless loop.

Build the project and test it

Build the project. It should compile without errors and warnings. If you encounter
any problem during the build process, check your include path and your project con-
figuration settings. The start application should print out the storage space of the
device twice, once before a file has been written to the device and once afterwards.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

32 CHAPTER 3 Running emFile on target hardware
3.3 Step 3: Adding the device driver
To configure emFile with a device driver 2 things need to be done at the same time:

� Adding device driver source to project
� Adding hardware routines to project

Every recommended step is explained in the following sections. For example, the
implementation of the MMC/SD driver is shown, but all steps should be easy to adapt
on every other device driver implementation.

3.3.1 Adding the device driver source to project
Add the driver sources to the project and add the directory to the include path.

Example

Figure 3.4: Add driver sources to project

Most drivers require additional hardware routines to work with the specific hardware.
If your driver requires low-level I/O routines to access the hardware, you will have to
provide them.

Drivers which require hardware routines are:

� NAND
� MMC/SD cards
� Compact flash / IDE

Drivers which not require hardware routines are:

� NOR flash
� RAM

Nearly all drivers have to be configured before they can be used. The runtime config-
uration functions which specify for example the memory addresses and the size of
memory are located in the configuration file of the respective driver. All required con-
figurations are explained in configuration section of the respective driver. If you use
one of the drivers which do not require hardware routines skip the next section and
refer to Step 4: Activating the driver on page 34.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

33
3.3.2 Adding hardware routines to project
A template with empty function bodies and in most cases one ore more sample
implementations are supplied for every driver which requires hardware routines. The
easiest way to start is to use one of the ready-to-use samples. The ready-to-use
samples can be found in the subfolders of Sample\Driver\<DRIVER_DIR>\. You
should check the Readme.txt file located in the driver directory to see which samples
are included. If there is one which is a good or close match for your hardware, it
should be used. Otherwise, use the template to implement the hardware routines.

The template is a skeleton driver which contains empty implementations of the
required functions and is the ideal base to start the implementation of hardware spe-
cific I/O routines.

What to do

Copy the compatible hardware function sample or the template into a subdirectory of
your work directory and add it to your project. The template file is located in the
Sample\Driver\<DRIVER_DIR>\ directory; the example implementations are located
in the respective directories. If you start the implementation of hardware routines
with the hardware routine template, refer to Device drivers on page 165 for detailed
information about the implementation of the driver specific hardware functions, else
refer to section Step 4: Activating the driver on page 34.

Note: You cannot run and test the project with the new driver on your hardware
as long as you have not added the proper configuration file for the driver to your
project. Refer to section Step 4: Activating the driver on page 34 for more informa-
tion about the activation of the driver with the configuration file.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

34 CHAPTER 3 Running emFile on target hardware
3.4 Step 4: Activating the driver
After adding the driver source, and if required the hardware function implementation
to the project, copy also the Config<DRIVERNAME>.c file (for example,
ConfigMMC_SPI.c for the MMC/SD card driver using the SPI mode) into the Config
directory of your emFile work directory. Add it afterwards to your project as show
below.

Example

Figure 3.5: Adding template to your project

In the configuration files are all runtime configuration functions of the file system
located. The configuration files include a start configuration which allows a quick and
easy start with every driver. The most important function for the beginning is
FS_X_AddDevices(). It activates and configures if required the driver. Driver which
not require hardware routines has to configured before they can be used.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

35
3.4.1 Modifying the runtime configuration
The example on the next page adds a single CFI compliant NOR flash chip with a 16-
bit interface and a size of 256 Mbytes to the file system. The base address, the start
address and the size of the NOR flash are defined using the macros
FLASH0_BASE_ADDR, FLASH0_START_ADDR and FLASH0_SIZE. Normally, only the
Defines, configurable section of the configuration files requires changes for typi-
cal embedded systems. The Public code section which includes the time and date
functions and FS_X_AddDevices() does not require modifications in most systems.

Example
/***
*
* Defines, configurable
*
* This section is the only section which requires changes for
* typical embedded systems using the NOR flash driver with a
* single device.
*
**
*/
#define ALLOC_SIZE 0x10000 // Size of memory dedicated to the file
 // system. This value should be fine-tuned
 // according for your system.
#define FLASH0_BASE_ADDR 0x40000000 // Base addr of the NOR flash device to
 // be used as storage
#define FLASH0_START_ADDR 0x40000000 // Start addr of the first sector be used
 // as storage. If the entire chip is
 // used for file system, it is identical to
 // the base addr.
#define FLASH0_SIZE 0x200000 // Number of bytes to be used for storage

/***
*
* Static data.
*
* This section does not require modifications in most systems.
*
**
*/
static U32 _aMemBlock[ALLOC_SIZE / 4]; // Memory pool used for semi-dynamic
 // allocation in FS_AssignMemory().
/***
*
* Public code
*
* This section does not require modifications in most systems.
*
**
*/
/***
*
* FS_X_AddDevices
*
* Function description
* This function is called by the FS during FS_Init().
* It is supposed to add all devices, using primarily FS_AddDevice().
*/
void FS_X_AddDevices(void) {
 FS_AssignMemory(&_aMemBlock[0], sizeof(_aMemBlock));
 //
 // Add driver
 //
 FS_AddDevice(&FS_NOR_Driver);
 //
 // Confgure the NOR flash interface
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

36 CHAPTER 3 Running emFile on target hardware
 //
 FS_NOR_SetPhyType(0, &FS_NOR_PHY_CFI_1x16);
 FS_NOR_Configure(0, FLASH0_BASE_ADDR, FLASH0_START_ADDR, FLASH0_SIZE);
}

After the driver has been added, the configuration functions (in this example
FS_NOR_SetPhyType()and FS_NOR_Configure()) should be called. Detailed informa-
tion about the driver configuration can be found in the configuration section of the
respective driver.

Refer to section Runtime configuration on page 320 for detailed information about
the other runtime configuration of the file system.

Before compiling and running the sample application with the added driver, you have
to exclude ConfigRAMDisk.c from project.

Note for drivers which require hardware routines:If you have only added the
template with empty function bodies until now, the project should compile without
errors or warning messages. But you can only run the project on your hardware if
you have finished the implementation of the hardware functions.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

37
3.5 Step 5: Adjusting the RAM usage
The file system needs RAM for management purposes in various places. The amount
of RAM required depends primarily on the configuration, especially the drivers used.
The drivers which have their own level of management (such as NOR / NAND drivers)
in general need more RAM than the �simple� drivers for hard drives, compact flash or
SD cards.

Every driver needs to allocate RAM. The file system allocates RAM in the initialization
phase and holds it while the file system is running. The macro ALLOC_SIZE which is
located in the respective driver configuration file specifies the size of RAM used by
the file system. This value should be fine-tuned according to the requirements of
your target system.

What to do

Per default, ALLOC_SIZE is set to a value which should be appropriate for most target
systems. Nevertheless, you should adjust it in order to avoid wasting. Once your file
system project is up and running, you can check the real RAM requirement of the
driver with the public auxiliary variable FS_NumBytesAllocated which is also located
in the configuration file of the respective driver. Check the value of
FS_NumBytesAllocated after the initialization of the file system (FS_Init()) and
after a volume has been mounted. At this point FS_NumBytesAllocated can be used
as reference for the dynamic memory usage of emFile. You should reserve a few
more bytes for emFile as the value of FS_NumBytesAllocated is at this point, since
every file which is opened needs dynamic memory for maintenance information. For
more information about resource usage of the file handlers, please refer to Dynamic
RAM requirements on page 347.

Note: If you define ALLOC_SIZE with a value which is smaller than the appropri-
ate size, the file system will run into FS_X_Panic(). If you define ALLOC_SIZE with a
value which is above the limits of your target system, the linker will give an error
during the build process of the project.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

38 CHAPTER 3 Running emFile on target hardware
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

39
Chapter 4

API functions
In this chapter, you will find a description of each emFile API functions. An application
should only access emFile by these functions.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

40 CHAPTER 4 API functions
4.1 API function overview
The table below lists the available API functions within their respective categories.

Function Description

File system control functions
FS_Init() Starts the file system.
FS_DeInit() De-initializes the file system.
FS_Mount() Mounts a volume.

FS_SetAutoMount()
Sets the mount behavior of the specified
volume.

FS_Unmount()
Closes all file/directory handles and
unmounts the volume.

FS_UnmountForced()
Invalidates all file/directory handles and
unmounts the volume.

FS_Sync() Synchronizes the given volume.

FS_AddOnExitHandler()
Registers a callback to be invoked when the
file system de-initializes.

File system configuration functions

FS_AddDevice()
Adds and makes a device driver accessible
to emFile.

FS_AddPhysDevice() Adds a device driver physical to emFile.
FS_AssignMemory() Adds a device driver physical to emFile.
FS_LOGVOL_Create() Creates a logical volume.
FS_LOGVOL_AddDevice() Adds a device to a logical volume.
FS_SetMaxSectorSize() Configures the max sector size.

FS_SetMemHandler()
Sets the memory allocation routines when
file system shall use external memory allo-
cation routines.

FS_ConfigUpdateDirOnWrite()
Enables that writing to a file always updates
the directory entry.

FS_ConfigFileBufferDefault()

Used to configure the file buffers which can
be used by emFile to improve reading/writ-
ing speed when reading/writing small
chunks of data.

FS_ConfigFileBufferFlags()
Changes the file buffer flags of a specified
file.

FS_SetFileWriteMode()
Allows the user to modify the file writing
mode emFile uses.

File access functions
FS_FClose() Closes a file.
FS_FOpen() Opens a file.
FS_FRead() Reads data from a file.
FS_Read() Reads data from a file.
FS_FWrite() Writes data to a file.
FS_Write() Writes data to a file.

File positioning functions
FS_FSeek() Sets position of a file pointer.
FS_FTell() Returns position of a file pointer.
FS_GetFilePos() Returns position of a file pointer.
FS_SetFilePos() Sets position of a file pointer.

Operations on files
FS_CopyFile() Copies a file.

Table 4.1: emFile API function overview
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

41
FS_GetFileAttributes()
Retrieves the attributes of a given file/
directory.

FS_GetFileTime()
Retrieves the creation, access or modify
timestamp of a given file/directory.

FS_GetFileTimeEx()
Retrieves the timestamp of a given file/
directory.

FS_Move()
Moves an existing file or a directory, includ-
ing its children.

FS_Remove() Deletes a file.
FS_Rename() Renames a file/directory.

FS_SetFileAttributes()
Sets the attributes of a given file or direc-
tory.

FS_SetFileTime()
Sets the timestamp of a given file or direc-
tory.

FS_SetFileTimeEx()
Sets the creation, access or modify times-
tamp of a given file or directory.

FS_SetEndOfFile() Sets the end of a file.
FS_Truncate() Truncates a file to a specified size.
FS_Verify() Verifies a file with a given data buffer.

Directory functions
FS_FindClose() Closes a directory.
FS_FindFirstFile() Searches for a file in a specified directory.
FS_FindNextFile() Continues file search in a directory.
FS_MkDir() Creates a directory.
FS_RmDir() Removes a directory.

Formatting a medium
FS_IsHLFormatted() Checks if a device is high-level formatted.
FS_IsLLFormatted() Checks if a device is low-level formatted.

FS_FormatLLIfRequired()
Checks if a device is low-level formatted
and formats it if required.

FS_FormatLow() Low-level formats a device.
FS_Format() High-level formats a device.

File system extended functions

FS_GetFileSize()
Retrieves the current file size of a given file
pointer.

FS_GetNumVolumes() Retrieves the available volumes.
FS_GetVolumeFreeSpace() Gets the free space of a given volume.

FS_GetVolumeInfo()
Get volume information (clusters, sectors
etc.).

FS_GetVolumeLabel() Retrieves the label of a given volume index.

FS_GetVolumeName()
Retrieves the name of a given volume
index.

FS_GetVolumeSize() Gets the size of a given volume.
FS_GetVolumeStatus Returns the status of a volume.

FS_IsVolumeMounted()
Returns if the volume is mounted and has
correct file system information.

FS_FileTimeToTimeStamp() Converts a file time to a timestamp.

FS_SetBusyLEDCallback()
Sets a BusyLED callback for a specific vol-
ume.

FS_SetVolumeLabel() Sets a label to a specific volume.
FS_GetNumFilesOpen() Converts a timestamp to a file time.
FS_GetNumFilesOpen() Returns the number of opened files.

Function Description

Table 4.1: emFile API function overview (Continued)
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

42 CHAPTER 4 API functions
Storage layer functions
FS_STORAGE_GetDeviceInfo() Returns the device info.
FS_STORAGE_Init() Initializes the driver and OS if necessary.
FS_STORAGE_ReadSector() Reads a sector from a device.
FS_STORAGE_ReadSectors() Reads multiple sectors from a device.
FS_STORAGE_Sync() Writes cached data to the storage medium.

FS_STORAGE_Unmount()
Low-level unmount. Unmounts a volume on
driver layer.

FS_STORAGE_WriteSector() Writes a sector from a device.
FS_STORAGE_WriteSectors() Writes multiple sectors from a device.

FAT related functions
FS_FAT_CheckDisk() Checks and repairs a FAT volume.

FS_FAT_CheckDisk_ErrCode2Text()
Returns an error string to a specific Check-
disk error code.

FS_FAT_GrowRootDir()
Lets the root directory of a FAT32 volume
grow.

FS_FAT_SupportLFN()
Add long file name support to the file sys-
tem.

FS_FAT_DisableLFN()
Disables the support for the long file
names.

FS_FormatSD()
High-level formats a device according to the
SD card file system specification.

EFS related functions
FS_EFS_CheckDisk() Checks and repairs a EFS volume.

FS_EFS_CheckDisk_ErrCode2Text()
Returns an error string to a specific Check-
disk error code.

Error-handling functions

FS_ClearErr()
Clears the error status of a given file
pointer.

FS_FEof() Tests for end-of-file on a given file pointer.

FS_FError()
Returns the error code of a given file
pointer.

FS_ErrorNo2Text() Retrieves text for a given error code.
Obsolete functions

FS_CloseDir() Closes a directory stream.
FS_DirEnt2Attr() Gets the directory entry attributes.
FS_DirEnt2Name() Gets the directory entry name.
FS_DirEnt2Size() Gets the directory entry file size.
FS_DirEnt2Time() Gets the directory entry timestamp.
FS_GetDeviceInfo() Returns the device info.
FS_GetNumFiles() Gets the number of files in a directory.
FS_InitStorage() Initializes the driver and OS if necessary.
FS_OpenDir() Opens a directory stream.
FS_ReadDir() Reads next directory entry.
FS_ReadSector() Reads a sector from a device.
FS_RewindDir() Resets position of directory stream.
FS_WriteSector() Writes a sector to a device.

FS_UnmountLL()
Low-level unmount. Unmounts a volume on
driver layer.

Function Description

Table 4.1: emFile API function overview (Continued)
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

43
4.2 File system control functions

4.2.1 FS_Init()
Description

Starts the file system.

Prototype
void FS_Init (void);

Additional Information

FS_Init() initializes the file system and creates resources required for an OS inte-
gration of emFile. This function must be called before any other emFile function.

Example

#include "FS.h"

void main(void) {
 FS_Init();
 /*
 Access file system
 */
 }
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

44 CHAPTER 4 API functions
4.2.2 FS_DeInit()
Description

De-initializes the file system. All resources which are occupied by the file system, are
freed. All static variables for each layer are reset in order to guarantee that emFile is
in a known state after de-initialization.

Please use this function when you are planning to reset emFile during run-time. For
example this is the case if your target application uses a software reboot which re-
initializes the target application.

Prototype
void FS_DeInit(void);

Additional information

In order to use this function the binary compile time switch FS_SUPPORT_DEINIT has
to be enabled (has to be set to �1�).
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

45
4.2.3 FS_Mount()
Description

Mounts a volume.

Prototype
int FS_Mount (const char * sVolume);

Return value

Additional Information

This function can be useful if the default auto mount behavior has been changed with
FS_AutoMount(). Normally, it is not required to mount a device with FS_Mount(),
since the file system auto mounts all accessible volumes in read/write mode. Refer to
FS_SetAutoMount() on page 46 for an overview about the different auto mount
types.

Parameter Description

sVolume
sVolume is the name of a volume. If not specified, the first device in
the volume table will be used.

Table 4.2: FS_Mount() parameter list

== 0 Volume is not mounted
== 1 Volume is mounted read only
== 3 Volume is mounted read/write
== -1 Error, Volume can not be mounted
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

46 CHAPTER 4 API functions
4.2.4 FS_SetAutoMount()
Description

Sets the mount behavior of the specified volume.

Prototype
void FS_SetAutoMount(const char * sVolume,

 U8 MountType);

Additional Information

The file system auto mounts all volumes default in read/write mode.

Parameter Description

sVolume
sVolume is the name of a volume. If not specified, the first device in
the volume table will be used.

MountType Specifies the auto mount behavior.
Table 4.3: FS_SetAutoMount() parameter list

Permitted values for parameter MountType

FS_MOUNT_R The volume will be read only auto mounted.
FS_MOUNT_RW The volume will be read/write auto mounted.
0 Disables auto mount for the volume.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

47
4.2.5 FS_Unmount()
Description

Closes all file/directory handles and unmounts the volume.

Prototype
void FS_Unmount (const char * sVolume);

Additional Information

FS_Unmount() should be called before a volume is removed. It guarantees that all file
handles to this volume are closed and the directory entries for the files are updated.
This function is also useful when shutting down the system.

Example

#include "FS.h"

void Shutdown(void) {
 FS_Unmount(""); /* Close all file handles and unmount the default volume. */
}

Parameter Description

sVolume
sVolume is the name of a volume. If not specified, the first device in
the volume table will be used.

Table 4.4: FS_Unmount() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

48 CHAPTER 4 API functions
4.2.6 FS_UnmountForced()
Description

Invalidates all file/directory handles and unmounts the volume.

Prototype
void FS_UnmountForced (const char * sVolume);

Additional Information

FS_UnmountForced() should be called if a volume has been removed before it could
be regular unmounted. It invalidates all file handles. If you use FS_UnmountForced()
there is no guarantee that all file handles to this volume are closed and the directory
entries for the files are updated.

Parameter Description

sVolume
sVolume is the name of a volume. If not specified, the first device in
the volume table will be used.

Table 4.5: FS_UnmountForced() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

49
4.2.7 FS_Sync()
Description

Synchronizes the given volume on the file-system level. This means, all caches are
synchronized, all information for each file handle is synchronized and the journal is
cleaned (if journaling is enabled).

Prototype
int FS_Sync(const char * sVolume);

Parameter Description

sVolume sVolume is the name of a volume.
Table 4.6: FS_Sync() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

50 CHAPTER 4 API functions
4.2.8 FS_AddOnExitHandler()
Description

Registers a callback to be invoked when the file system de-initializes.

Prototype
void FS_AddOnExitHandler(FS_ON_EXIT_CB * pCB,

 void (* pfOnExit)(void));

Additional Information

The memory location the pCB parameter points to is used internally by emFile. It
should remain valid from the moment the handler is registered until the FS_DeInit()
function is called.

The FS_DeInit() invokes all the registered callback function in reversed order that is
the last registered function is called first.

In order to use this function the binary compile time switch FS_SUPPORT_DEINIT has
to be enabled (has to be set to �1�).

Parameter Description

pCB
IN: Structure holding the callback information.
OUT: ---

pfOnExit Pointer to the callback function to invoke.
Table 4.7: FS_AddOnExitHandler() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

51
4.3 File system configuration functions
The file system control functions listed in this section can only be used in the runtime
configuration phase. This means in practice that they can only be called from within
FS_X_AddDevices(), refer to FS_X_AddDevices() on page 320 for more information
about this function.

4.3.1 FS_AddDevice()
Description

Adds a device to emFile.

This consists of 2 operations:

1. Add physical device. This initialises the driver, allowing the driver to identify the stor-
age device as far as required and allocate memory required for driver level manage-
ment of the device. This makes sector operations possible.

2. Add the devices as a logical device. This makes it possible to mount the device,
making it accessible for the file system and allowing file operations.

Prototype
FS_VOLUME * FS_AddDevice (const FS_DEVICE_TYPE * pDevType);

Return value

Pointer of the volume added to emFile.

Additional Information

This function can be used to add an additional device driver. You may also increase
FS_NUM_VOLUMES to add additional space for more drives.

Example

#include "FS.h"

static int _DevGetName(U8 Unit) {
 return ““;
}
static int _DevAddDevice(void) {
 if (_NumUnits >= NUM_UNITS) {
 return -1;
 }
 return _NumUnits++;
}

static int _DevRead(U8 Unit, U32 Sector, void *pBuffer) {
 return 0;
}

static int _DevWrite(U8 Unit, U32 Sector, void *pBuffer) {
 return 0;
}

static int _DevIoCtl(U8 Unit, I32 Cmd, I32 Aux, void *pBuffer) {
 return 0;
}

static int _DevIoCtl(U8 Unit, I32 Cmd, I32 Aux, void *pBuffer) {
 return 0;
}
static int _DevInitMedium(U8 Unit) {
 return 0;
}

Parameter Description

pDevType
Pointer to device driver table. See Device driver function table on
page 316 for additional information.

Table 4.8: FS_AddDevice() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

52 CHAPTER 4 API functions
static int _DevGetStatus(U8 Unit) {
 return 0;
}

static int _DevGetStatus(U8 Unit) {
 return 0;
}

struct FS_DEVICE_TYPE FS_xxx_Driver{
 const char *(*pfGetName) (U8 Unit);
 int (*pfAddDevice) (void);
 int (*pfRead) (U8 Unit, U32 SectorNo, void *pBuffer,
 U32 NumSectors);
 int (*pfWrite) (U8 Unit, U32 SectorNo, const void *pBuffer,
 U32 NumSectors, U8 RepeatSame);
 int (*pfIoCtl) (U8 Unit, I32 Cmd, I32 Aux, void *pBuffer);
 int (*pfInitMedium) (U8 Unit);
 int (*pfGetStatus) (U8 Unit);
 int (*pfGetNumUnits) (void);
};

void AddDevices(void) {
 FS_AddDevice(&FS_xxx_Driver);
}

emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

53
4.3.2 FS_AddPhysDevice()
Description

Adds a device physical to emFile. This initialises the driver, allowing the driver to identify
the storage device as far as required and allocate memory required for driver level man-
agement of the device. This makes sector operations possible.

Prototype
int FS_AddPhysDevice (const FS_DEVICE_TYPE * pDevType);

Return value

>= 0: Unit number of the device.
< 0: An error has occurred.

Additional Information

Devices that are only physically added to emFile can be combined to a logical vol-
ume. Refer to FS_LOGVOL_Create() on page 55 and FS_LOGVOL_AddDevice() on
page 56 for information about logical volumes.

Parameter Description

pDevType
Pointer to device driver table. See Device driver function table on
page 316 for additional information.

Table 4.9: FS_AddDevice() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

54 CHAPTER 4 API functions
4.3.3 FS_AssignMemory()
Description

Assigns memory to the file system.

Prototype
void FS_AssignMemory(U32 *pMem, U32 NumBytes);

Additional Information

If the internal memory allocation functions (FS_SUPPORT_EXT_MEM_MANAGER ==
0) are used, this function is the first function that is called in FS_X_AddDevices().
Otherwise this function does nothing. The memory assigned is used by the file sys-
tem to satisfy runtime memory requirements.

Parameter Description

pMem
A pointer to the start of the memory region which should be
assigned.

NumBytes Number of bytes which should be assigned.
Table 4.10: FS_AssignMemory() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

55
4.3.4 FS_LOGVOL_Create()
Description

Creates a logical volume. A logical volume is the representation of one or more phys-
ical devices as a single device. It allows treating multiple physical devices as one
larger device; the file system takes care of selecting the correct location on the cor-
rect physical device when reading or writing to the logical volume. Logical volumes
are typically used if multiple flash devices (NOR or NAND) are present, but should be
presented to the application the same way as single device with the combined capac-
ity.

Prototype
int FS_LOGVOL_Create (const char * sVolName);

Additional Information

Normally, all devices are added indi-
vidually using FS_AddDevice(). This
function adds the devices physically
and logically to the file system, this
means that every 1 Gbyte NAND
devices can be accessed individually.
Refer to FS_AddDevice() on page 51
for detailed information.

In contrast to adding all devices
individually, all devices can be com-
bined in a logical volume with a total
size of all combined devices.

To create a logical volume the fol-
lowing steps have to be done:

1.The available device has to be physi-
cally added to the file system with
FS_AddPhysDevice().
2.A logical volume has to be cre-
ated. with FS_LOGVOL_Create().
3.The devices which are physically
added to the file system has to be
added to the logical volume with
FS_LOGVOL_AddDevice().

Parameter Description

sVolName Name for the logical volume.
Table 4.11: FS_LOGVOL_Create() parameter list

N
A

N
D

:2
1 G

b
yte

N
A

N
D

:3
1 G

b
yte

N
A

N
D

:0
1 G

b
yte

N
A

N
D

:1
1 G

b
yte

NAND devices - 4x1 Gbyte
1 G

b
yte

1 G
b
yte

1 G
b
yte

1 G
b
yte

NAND device - 1x4 Gbytes
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

56 CHAPTER 4 API functions
4.3.5 FS_LOGVOL_AddDevice()
Description

Adds a device to a logical volume.

Prototype
int FS_LOGVOL_AddDevice(const char * sLogVolName,
 const FS_DEVICE_TYPE * pDevice,
 U8 Unit,
 U32 StartOff,

 U32 NumSectors);

Additional information

Only devices with an identical sector size can be combined to a logical volume. All
additional added devices need to have the same sector size as the first physical
device of the logical volume.

Example

void FS_X_AddDevices(void) {
 void * pRAM;
 U8 Unit1, Unit2;
 //
 // Add the RAM drives physical to FS
 //
 Unit1 = FS_AddPhysDevice(&FS_RAMDISK_Driver);
 Unit2 = FS_AddPhysDevice(&FS_RAMDISK_Driver);
 //
 // Allocate the required memory and configure the RAM drives
 //
 pRAM = FS_Alloc(RAMDISK_NUM_SECTORS * RAMDISK_BYTES_PER_SECTOR);
 FS_RAMDISK_Configure(Unit1, pRAM, RAMDISK_BYTES_PER_SECTOR, RAMDISK_NUM_SECTORS);
 pRAM = FS_Alloc(RAMDISK_NUM_SECTORS * RAMDISK_BYTES_PER_SECTOR);
 FS_RAMDISK_Configure(Unit2, pRAM, RAMDISK_BYTES_PER_SECTOR, RAMDISK_NUM_SECTORS);
 //
 // Create a logical volume to composite the RAM drives
 //
 FS_LOGVOL_Create("ramc");
 //
 // Add the devices
 //
 FS_LOGVOL_AddDevice("ramc", &FS_RAMDISK_Driver, Unit1, 0, 0);
 FS_LOGVOL_AddDevice("ramc", &FS_RAMDISK_Driver, Unit2, 0, 0);

 if (FS_IsHLFormatted("ramc") == 0) {
 FS_Format("ramc", NULL);
 }
}

Parameter Description

sVolName Name of the logical volume.
pDevice Pointer to device type that should be added.
Unit Number of unit that should be added.
StartOff Offset to define the start of sector range that should be used.
NumSector Number of sectors that should be used.

Table 4.12: FS_LOGVOL_AddDevice() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

57
4.3.6 FS_SetMaxSectorSize()
Description

Configures the maximum sector size.

Prototype
void FS_SetMaxSectorSize(unsigned MaxSectorSize);

Additional Information

The default value for a the max sector size is set 512 bytes. Therefore this function
only needs to be called when a device driver is added that handles sector sizes
greater than 512 bytes.
This function needs to be called within FS_X_AddDevices().

Parameter Description

MaxSectorSize The max sector size in bytes.
Table 4.13: FS_SetMaxSectorSize() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

58 CHAPTER 4 API functions
4.3.7 FS_SetMemHandler()
Description

Sets the memory allocation routines when file system shall use external memory
allocation routines.

Prototype
void FS_SetMemHandler (FS_PF_ALLOC * pfAlloc, FS_PF_FREE * pfFree);

Additional Information

If the external memory allocation functions (FS_SUPPORT_EXT_MEM_MANAGER ==
1) should be used, this function is the first function that is called in
FS_X_AddDevices() to setup the memory allocation functions. Otherwise this func-
tion does nothing.

Parameter Description

pfAlloc Pointer to the allocation function (e.g. malloc()).
pfFree Pointer to the allocation function (e.g. free()).

Table 4.14: FS_SetMemHandler() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

59
4.3.8 FS_ConfigUpdateDirOnWrite()
Description

Sets if the directory entry after writing the data to file shall be updated or not.

Prototype
void FS_ConfigUpdateDirOnWrite(char OnOff);

Additional Information

ON: Directory entry is updated with every write operation.This is slower, but has the
advantage that data written without close (in case of unexpected RESET) is not lost.
OFF: Directory entry is updated when file is closed. This is faster, but has the disad-
vantage that any data written between open and unexpected RESET is lost.
If FS_ConfigUpdateDirOnWrite() is enabled, writing to a file updates the directory
entry of the file always after writing to the file (guarding the new data against unex-
pected RESET). If FS_WriteUpdateDir() is disabled, FS_FClose() will update the
directory entry.

Parameter Description

OnOff
1 means enable update directory after write (Default).
0 means do not update directory.

Table 4.15: FS_ConfigUpdateDirOnWrite() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

60 CHAPTER 4 API functions
4.3.9 FS_ConfigFileBufferDefault()
Description

emFile can make use of file buffers in order to increase reading/writing speeds when
reading/writing a file in small chunks. In order to use file buffers the compile time
switch FS_USE_FILE_BUFFER has to be set to 1. For more information about compile
time switches, please refer to Compile time configuration on page 322.

In order to make file buffers usable for emFile, you have to configure a buffer size,
using this function. It is also possible to configure

Prototype
void FS_ConfigFileBufferDefault(int BufferSize, int Flags);

Additional information

It is only allowed to call this function once, in FS_X_AddDevices(). Every file has its
own file buffer, but the buffer size given in this function is the same for all files. In
order to change the buffer flags for a specific file, please use
FS_ConfigFileBufferFlags() on page 61.

Parameter Description

BufferSize Size of the file buffer. This buffer size will be used for every file.

Flags

Allows more specific configuration of file buffer usage
Allowed values:
FS_FILE_BUFFER_WRITE File buffer is allowed to be used as read
 and write buffer.
By default (if flags is 0) the file buffers are used as read buffers
only.

Table 4.16: FS_ConfigFileBufferDefault() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

61
4.3.10 FS_ConfigFileBufferFlags()
Description

Allows to change the file buffer flags for a specific file. This allows the user to have
different file buffers (read-only, read/write, ...) for different files.

Prototype
void FS_ConfigFileBufferFlags(FS_FILE * pFile, int Flags);

Additional information

It is only allowed to call this function immediately after opening a file. If read/write
operations to the file have already been performed, the file has to be closed and re-
opened in order to change the file buffer settings. This is necessary to guarantee,
that all the file buffer is synchronized before changing the usage flags.

Parameter Description

pFile Handle of file which buffer flags shall be changed

Flags
The same values as for FS_ConfigFileBufferDefault() are
allowed.

Table 4.17: FS_ConfigFileBufferFlags() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

62 CHAPTER 4 API functions
4.3.11 FS_SetFileWriteMode()
Description

This function is used to configure the write mode emFile uses when writing files. By
default emFile uses the safe write mode which allows maximum fail safe behavior,
since the FAT and the directory entry is updated on every write. There are different
write modes available, which are described in the following, in detail.

Prototype
void FS_SetFileWriteMode(FS_WRITEMODE WriteMode);

Parameter Description

WriteMode Write mode which is used by emFile when writing files.
Table 4.18: FS_SetFileWriteMode() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

63

Valid values for parameter WriteMode are:

Permitted values for parameter WriteMode

FS_WRITEMODE_SAFE
Allows maximum fail-safe behavior. FAT and
directory entry are modified after each file
write access. (Slowest performance)

FS_WRITEMODE_MEDIUM

Medium fail-safe. FAT is modified after each
file write access. Directory entry is written if
file is synchronized. This is done when closing
a file (FS_FClose()) or synchronizing a vol-
ume (FS_Sync()).

FS_WRITEMODE_FAST

Maximum performance. Directory entry is
written if file is synchronized. This is done
when closing a file (FS_FClose()) or synchro-
nizing a volume (FS_Sync()). FAT is modified
if necessary. This means: When writing to the
file the first time, emFile checks how many
clusters in series are empty from the first one
the file occupies. emFile remembers this clus-
ter chain, so if the file grows and needs an
additional cluster, the FAT has not to be read
again in order to find the next free cluster. The
FAT is only modified if necessary, which is the
case when:

� All clusters of the cached free-clus-
ter-chain are occupied

� A volume / The file is synchronized
(FS_Sync(), FS_FClose())

� A different file is written.
Especially when writing big files, the fast write
mode allows maximum performance, since
usually emFile has to search for a free cluster
in the FAT and link it with the last one the file
occupied, so in worst case multiple FAT sectors
have to be read in order to find a free cluster.
If you use the pre-allocation method, emFile
does not need to search for free clusters over-
time the file grows, but the file position
pointer needs to be modified (a new file end is
specified, then the file-position pointer is set
back to the old file end, so writing to the file
can be resumed there). Moving the file posi-
tion pointer back for resume writing, forces
emFile to go though the complete cluster chain
of the file in order to find the last cluster
where writing shall be resumed. Especially on
big files the cluster chain can be very long so
going through it can cause multiple read-
accesses to the FAT and take some time.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

64 CHAPTER 4 API functions
4.4 File access functions

4.4.1 FS_FClose()
Description

Closes an open file.

Prototype
int FS_FClose (FS_FILE * pFile);

Return value

== 0: File pointer has successfully been closed.
== 1: Failed to close the file pointer.

Example

void MainTask(void) {
 FS_FILE *pFile;

 pFile = FS_FOpen("test.txt", "r");
 if (pFile != 0) {
 /*
 access file
 */
 FS_FClose(pFile);’
 }
}

Parameter Description

pFile Pointer to a data structure of type FS_FILE.
Table 4.19: FS_FClose() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

65
4.4.2 FS_FOpen()
Description

Opens an existing file or creates a new file depending on the parameters.

Prototype
FS_FILE *FS_FOpen (const char * pName,
 const char * pMode);

Return value

Returns the address of an FS_FILE data structure, if the file could be opened in the
requested mode. NULL in case of any error.

Additional Information

A fully qualified file name looks like:
[DevName:[UnitNum:]][DirPathList]Filename

� DevName is the name of a device. If not specified, the first device in the volume
table will be used.
UnitNum is the number of the unit for this device. If not specified, unit 0 will be
used. Note that it is not allowed to specify UnitNum if DevName has not been spec-
ified.

� DirPathList means a complete path to an already existing subdirectory;
FS_FOpen() does not create directories. The path must start and end with a '\'
character. Directory names in the path are separated by '\'. If DirPathList is
not specified, the root directory on the device will be used.

� FileName desired
If FAT is used and long file name support is not enabled, all file names and all
directory names have to follow the standard FAT naming conventions (for exam-
ple 8.3 notation).
EFS supports long file names. The name length of a file or directory is limited to
235 valid characters.

The parameter pMode points to a string. If the string is one of the following, emFile
will open the file in the specified mode:

Parameter Description

pName
Pointer to a string that specifies the name of the file to create or
open.

pMode Mode for opening the file.
Table 4.20: FS_FOpen() parameter list

Permitted values for parameter pMode

r Opens text file for reading.

w
Truncates to zero length or creates text file for
writing.

a
Appends; opens/creates text file for writing at end-
of-file.

rb Opens binary file for reading.

wb
Truncates to zero length or creates binary file for
writing.

ab
Appends; opens/creates binary file for writing at
end-of-file.

r+ Opens text file for update (reading and writing).

w+
Truncates to zero length or creates text file for
update.

a+
Appends; opens/creates text file for update, writ-
ing at end-of-file.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

66 CHAPTER 4 API functions
For more details on the FS_FOpen() function, also refer to the ANSI C documentation
regarding the fopen() function.
Note that emFile does not distinguish between binary and text mode; files are always
accessed in binary mode.

Example

FS_FILE *pFile;

void foo1(void) {
 /* Open file for reading - default driver on default device */
 pFile = FS_FOpen("test.txt", "r");
}

void foo2(void) {
 /* Create new file for writing - default driver on default device */
 pFile = FS_FOpen("test.txt", "w");
}

void foo3(void) {
 /* Open file for reading in folder 'mysub'
 - default driver on default device */
 pFile = FS_FOpen("\\mysub\\test.txt", "r");
}

void foo4(void) {
 /* Open file for reading - RAM device driver on default device */
 pFile = FS_FOpen("ram:test.txt", "r");
}

void foo5(void) {
 /* Open file for reading - RAM device driver on device number 2*/
 pFile = FS_FOpen("ram:1:test.txt", "r");
}

r+b or rb+ Opens binary file for update (reading and writing).

w+b or wb+
Truncates to zero length or creates binary file for
update.

a+b or ab+
Appends; opens/creates binary file for update,
writing at end-of-file.

Permitted values for parameter pMode
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

67
4.4.3 FS_FRead()
Description

Reads data from an open file.

Prototype
U32 FS_FRead (void * pData,
 U32 Size,
 U32 N,
 FS_FILE * pFile);

Return value

Number of elements read.

Additional Information

If there is less data transferred than specified, you should check for possible errors
by calling the FS_FError() function.

Example

char acBuffer[100];

void MainTask(void) {
 FS_FILE* pFile;
 int i;

 pFile = FS_FOpen("test.txt", "r");
 if (pFile != 0) {
 do {
 i = FS_FRead(acBuffer, 1, sizeof(acBuffer) - 1, pFile);
 acBuffer[i] = 0;
 if (i) {
 printf("%s", acBuffer);
 }
 } while (i);
 FS_FClose(pFile);
 }
}

Parameter Description

pData Pointer to a data buffer for storing data transferred from a file.
Size Size of an element to be transferred from a file to a data buffer.
N Number of elements to be transferred from the file.
pFile Pointer to a data structure of type FS_FILE.

Table 4.21: FS_FRead() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

68 CHAPTER 4 API functions
4.4.4 FS_Read()
Description

Reads data from an open file.

Prototype
U32 FS_Read(FS_FILE * pFile,
 void * pData,
 U32 NumBytes);

Return value

Number of bytes read.

Additional Information

If there is less data transferred than specified, you should check for possible errors
by calling the FS_FError() function.

Example

char acBuffer[100];

void MainTask(void) {
 FS_FILE *pFile;

 pFile = FS_FOpen("test.txt", "r");
 if (pFile != 0) {
 do {
 i = FS_Read(pFile, acBuffer, sizeof(acBuffer) - 1);
 acBuffer[i] = 0;
 if (i) {
 printf("%s", acBuffer);
 }
 } while (i);
 FS_FClose(pFile);
 }
}

Parameter Description

pFile Pointer to a data structure of type FS_FILE.
pData Pointer to a data buffer for storing data transferred from a file.
NumBytes Number of bytes to be transferred from the file.

Table 4.22: FS_Read() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

69
4.4.5 FS_FWrite()
Description

Writes data to an open file.

Prototype
U32 FS_FWrite (const void * pData,
 U32 Size,
 U32 N,
 FS_FILE * pFile);

Return value

Number of elements written.

Additional Information

If there is less data transferred than specified, you should check for possible errors
by calling the FS_FError() function.

Example

const char acText[]="hello world\n";

void MainTask(void) {
 FS_FILE *pFile;

 pFile = FS_FOpen("test.txt", "w");
 if (pFile != 0) {
 FS_FWrite(acText, 1, strlen(acText), pFile);
 FS_FClose(pFile);
 }
}

Parameter Description

pData Pointer to data to be written to the file.
Size Size of an element to be transferred from a data buffer to a file.
N Number of elements to be transferred to the file.
pFile Pointer to a data structure of type FS_FILE.

Table 4.23: FS_FWrite() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

70 CHAPTER 4 API functions
4.4.6 FS_Write()
Description

Writes data to an open file.

Prototype
U32 FS_Write (FS_FILE * pFile,
 const void * pData,
 U32 NumBytes);

Return value

Number of bytes written.

Additional Information

If there is less data transferred than specified, you should check for possible errors
by calling the FS_FError() function.

Example

const char acText[]="hello world\n";

void MainTask(void) {
 FS_FILE *pFile;

 pFile = FS_FOpen("test.txt", "w");
 if (pFile != 0) {
 FS_Write(pFile, acText, strlen(acText));
 FS_FClose(pFile);
 }
}

Parameter Description

pFile Pointer to a data structure of type FS_FILE.
pData Pointer to data to be written to the file.
NumBytes Number of bytes that should be written to the file.

Table 4.24: FS_Write() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

71
4.5 File positioning functions

4.5.1 FS_FSeek()
Description

Sets the current position of a file pointer.

Prototype
int FS_FSeek (FS_FILE * pFile,
 I32 Offset,
 int Origin);

Return value

== 0: If the file pointer has been positioned according to the parameters.
== -1: In case of any error.

Additional Information

The FS_FSeek() function moves the file pointer to a new location that is an offset in
bytes from Origin. You can use FS_FSeek() to reposition the pointer anywhere in a
file. The pointer can also be positioned beyond the end of the file.
Valid values for parameter Origin are:

This function is identical to FS_SetFilePos(). Refer to FS_SetFilePos() on page 74
for more information.

Example

const char acText[]="some text will be overwritten\n";

void MainTask(void) {
 FS_FILE *pFile;

 pFile = FS_FOpen("test.txt", "w");
 if (pFile != 0) {
 FS_FWrite(acText, 1, strlen(acText), pFile);
 FS_FSeek(pFile, -4, FS_SEEK_CUR);
 FS_FWrite(acText, 1, strlen(acText), pFile);
 FS_FClose(pFile);
 }
}

Parameter Description

pFile Pointer to a data structure of type FS_FILE.
Offset Offset for setting the file pointer position.
Origin Mode for positioning the file pointer.

Table 4.25: FS_FSeek() parameter list

Permitted values for parameter Origin

FS_SEEK_SET The origin is the beginning of the file.
FS_SEEK_CUR The origin is the current position of the file pointer.
FS_SEEK_END The origin is the current end-of-file position.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

72 CHAPTER 4 API functions
4.5.2 FS_FTell()
Description

Returns the current position of a file pointer.

Prototype
I32 FS_FTell (FS_FILE * pFile);

Return value

>= 0: Current position of the file pointer in the file.
== -1: In case of any error.

Additional Information

In this version of emFile, this function simply returns the file pointer element of the
file's FS_FILE structure. Nevertheless, you should not access the FS_FILE structure
yourself, because that data structure may change in the future.
In conjunction with FS_FSeek(), this function can also be used to examine the file
size. By setting the file pointer to the end of the file using FS_SEEK_END, the length of
the file can now be retrieved by calling FS_FTell().

This function is identical to FS_GetFilePos(). Refer to FS_GetFilePos() on page 73
for more information.

Example

const char acText[]="hello world\n";

void MainTask(void) {
 FS_FILE *pFile;
 I32 Pos;

 pFile = FS_FOpen("test.txt", "w");
 if (pFile != 0) {
 FS_FWrite(acText, 1, strlen(acText), pFile);
 Pos = FS_FTell(pFile);
 FS_FClose(pFile);
 }
}

Parameter Description

pFile Pointer to a data structure of type FS_FILE.
Table 4.26: FS_FTell() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

73
4.5.3 FS_GetFilePos()
Description

Returns the current position of a file pointer.

Prototype
I32 FS_GetFilePos (FS_FILE * pFile);

Return value

>= 0: Current position of the file pointer in the file.
== -1: In case of any error.

Additional Information

In this version of emFile, this function simply returns the file pointer element of the
file's FS_FILE structure. Nevertheless you should not access the FS_FILE structure
yourself, because that data structure may change in the future versions of emFile.
In conjunction with FS_SetFilePos(), FS_GetFilePos() this function can also be
used to examine the file size. By setting the file pointer to the end of the file using
FS_SEEK_END, the length of the file can now be retrieved by calling
FS_GetFilePos().

This function is identical to FS_FTell(). Refer to FS_FTell() on page 72 for more
information.

Example

const char acText[]="hello world\n";

void MainTask(void) {
 FS_FILE *pFile;
 I32 Pos;

 pFile = FS_FOpen("test.txt", "w");
 if (pFile != 0) {
 FS_FWrite(acText, 1, strlen(acText), pFile);
 Pos = FS_GetFilePos(pFile);
 FS_FClose(pFile);
 }
}

Parameter Description

pFile Pointer to a data structure of type FS_FILE.
Table 4.27: FS_GetFilePos() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

74 CHAPTER 4 API functions
4.5.4 FS_SetFilePos()
Description

Sets the current position of a file pointer.

Prototype
int FS_SetFilePos (FS_FILE * pFile,
 I32 DistanceToMove,
 int MoveMethod);

Return value

== 0: If the file pointer has been positioned according to the parameters.
== -1: In case of any error.

Additional Information

The FS_SetFilePos() function moves the file pointer to a new location that is an off-
set in bytes from MoveMethod. You can use FS_SetFilePos() to reposition the
pointer anywhere in a file. The pointer can also be positioned beyond the end of the
file.
Valid values for parameter MoveMethod are:

This function is identical to FS_FSeek(). Refer to FS_FSeek() on page 71 for more
information.

Example

const char acText[]="some text will be overwritten\n";

void MainTask(void) {
 FS_FILE *pFile;

 pFile = FS_FOpen("test.txt", "w");
 if (pFile != 0) {
 FS_FWrite(acText, 1, strlen(acText), pFile);
 FS_FSeek(pFile, -4, FS_SEEK_CUR);
 FS_FWrite(acText, 1, strlen(acText), pFile);
 FS_FClose(pFile);
 }
}

Parameter Description

pFile Pointer to a data structure of type FS_FILE.

DistanceToMove
A 32-bit signed value where a positive value moves the file
pointer forward in the file, and a negative value moves the file
pointer backward.

MoveMethod The starting point for the file pointer move.
Table 4.28: FS_SetFilePos() parameter list

Permitted values for parameter MoveMethod

FS_FILE_BEGIN
The starting point is zero or the beginning of the
file.

FS_FILE_CURRENT
The starting point is the current value of the file
pointer.

FS_FILE_END
The starting point is the current end-of-file posi-
tion.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

75
4.6 Operations on files

4.6.1 FS_CopyFile()
Description

Copies an existing file to a new file.

Prototype
int FS_CopyFile(const char * sSource,
 const char * sDest);

Return value

== 0: If the file has been copied.
== -1: In case of any error.

Additional Information

Valid values for sSource and sDest are the same as for FS_FOpen(). Refer to
FS_FOpen() on page 65 for examples of valid names. The function fails if the destina-
tion file already exists. In this case delete the destination file by calling FS_Remove()
function first.

Note: The function allocates 512 bytes on the stack as data buffer.

Example

void MainTask(void) {
 FS_CopyFile("test.txt", "ram:\\info.txt");
}

Parameter Description

sSource Pointer to a string that specifies the name of an existing file.
sDest Pointer to a string that specifies the name of the new file.

Table 4.29: FS_CopyFile() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

76 CHAPTER 4 API functions
4.6.2 FS_GetFileAttributes()
Description

The FS_GetFileAttributes function retrieves attributes for a specified file or direc-
tory.

Prototype
U8 FS_GetFileAttributes (const char * pName);

Return value

>= 0x00: Attributes of the given file or directory.
== 0xFF: In case of any error.
The attributes can be one or more of the following values:

Additional Information

Valid values for pName are the same as for FS_FOpen(). Refer to FS_FOpen() on
page 65 for examples of valid names.

Example

void MainTask(void) {
 U8 Attributes;
 char ac[100];
 Attributes = FS_GetFileAttributes("test.txt");
 sprintf(ac, "File attribute of test.txt: %d", Attributes);
 FS_X_Log(ac);
}

Parameter Description

pName Pointer to a string that specifies the name of a file or directory.
Table 4.30: FS_GetFileAttributes() parameter list

Attribute Description

FS_ATTR_ARCHIVE
The file or directory is an archive file or directory. Applications
can use this attribute to mark files for backup or removal.

FS_ATTR_DIRECTORY The given pName is a directory.

FS_ATTR_HIDDEN
The file or directory is hidden. It is not included in an ordinary
directory listing.

FS_ATTR_READ_ONLY
The file or directory is read-only. Applications can read the file
but cannot write to it or delete it. In case of a directory, appli-
cations cannot delete it

FS_ATTR_SYSTEM
The file or directory is part of, or is used exclusively by, the
operating system.

Table 4.31: FS_GetFileAttributes() - list of possible attributes
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

77
4.6.3 FS_GetFileTime()
Description

Retrieves a timestamp for a specified file or directory.

Prototype
int FS_GetFileTime (const char * pName,
 U32 * pTimeStamp);

Return value

== 0: The timestamp of the given file was successfully read and stored in pTimeS-
tamp.
== -1: In case of any error.

Additional Information

Values for pName are the same as for FS_FOpen(). Refer to FS_FOpen() on page 65
for examples of valid names.

A timestamp is a packed value with the following format:

To convert a timestamp to a Structure FS_FILETIME on page 114 structure, use the
function FS_GetNumFilesOpen() on page 113.

Example

void MainTask(void) {
 char ac[80];
 U32 TimeStamp;
 FS_FILETIME FileTime;
 FS_GetFileTime ("test.txt", &TimeStamp);
 FS_TimeStampToFileTime(TimeStamp, &FileTime);
 sprintf(ac, "File time of test.txt: %d-.2d-%.2d %.2d:%.2d:%.2d",
 FileTime.Year, FileTime.Month, FileTime.Day,
 FileTime.Hour, FileTime.Minute, FileTime.Second);
 FS_X_Log(ac);
}

Parameter Description

pName Pointer to a string that specifies the name of a file or directory.
pTimeStamp Pointer to a U32 variable that receives the timestamp.

Table 4.32: FS_GetFileTime() parameter list

Bits Description

0-4 Second divided by 2
5-10 Minute (0 - 59)
11-15 Hour (0-23)
16-20 Day of month (1-31)
21-24 Month (January -> 1, February -> 2, etc.)
25-31 Year offset from 1980. Add 1980 to get current year.

Table 4.33: FS_GetFileTime() - timestamp format description
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

78 CHAPTER 4 API functions
4.6.4 FS_GetFileTimeEx()
Description

Retrieves the creation, access or modify timestamp for a specified file or directory.

Prototype
int FS_GetFileTime (const char * pName,
 U32 * pTimeStamp
 int Index);

Return value

== 0: The timestamp of the given file was successfully read and stored in pTimeS-
tamp.
!= 0: In case of any error.

Additional Information

Values for pName are the same as for FS_FOpen(). Refer to FS_FOpen() on page 65
for examples of valid names.

A timestamp is a packed value with the following format:

To convert a timestamp to a Structure FS_FILETIME on page 114 structure, use the
function FS_GetNumFilesOpen() on page 113.

Parameter Description

pName Pointer to a string that specifies the name of a file or directory.
pTimeStamp Pointer to a U32 variable that receives the timestamp.
Index Flag that indicates which timestamp should be returned.

Table 4.34: FS_GetFileTimeEx() parameter list

Permitted values for parameter Index

FS_FILETIME_CREATE
Indicates that the creation timestamp should
be returned.

FS_FILETIME_ACCESS
Indicates that the access timestamp should
be returned.

FS_FILETIME_MODIFY
Indicates that the modify timestamp should
be returned.

Bits Description

0-4 Second divided by 2
5-10 Minute (0 - 59)
11-15 Hour (0-23)
16-20 Day of month (1-31)
21-24 Month (January -> 1, February -> 2, etc.)
25-31 Year offset from 1980. Add 1980 to get current year.

Table 4.35: FS_GetFileTime() - timestamp format description
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

79
4.6.5 FS_Move()
Description

Moves an existing file or a directory, including its children.

Prototype
int FS_Move (const char * sExistingName,
 const char * sNewName);

Return value

== 0: If the file was successfully moved.
== -1: In case of any error.

Additional Information

Valid values for sExistingName and sNewName are the same as for FS_FOpen(). Refer
to FS_FOpen() on page 65 for examples of valid names. The FS_Move() function will
move either a file or a directory (including its children) either in the same directory
or across directories. The file or directory you want to move has to be on the same
volume.

Example

void MainTask(void) {
 FS_Move("subdir1", "subdir2\\subdir3");
}

Parameter Description

sExistingname Pointer to a string that names an existing file or directory.

sNewName
Pointer to a string that specifies the name of the new file or
directory.

Table 4.36: FS_Move() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

80 CHAPTER 4 API functions
4.6.6 FS_Remove()
Description

Removes an existing file.

Prototype
int FS_Remove (const char * pName);

Return value

== 0: If the file was successfully removed.
== -1: In case of any error.

Additional Information

Valid values for pName are the same as for FS_FOpen(). Refer to FS_FOpen() on
page 65 for examples of valid names.

Example

void MainTask(void) {
 FS_Remove("test.txt");
}

Parameter Description

pName Pointer to a string that specifies the file to be deleted.
Table 4.37: FS_Remove() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

81
4.6.7 FS_Rename()
Description

Renames an existing file or a directory.

Prototype
int FS_Rename (const char * sExistingName,
 const char * sNewName);

Return value

== 0: If the file was successfully renamed.
== -1: In case of any error.

Additional Information

Valid values for sExistingName and sNewName are the same as for FS_FOpen(). Refer
to FS_FOpen() on page 65 for examples of valid names. sNewName should only specify
a valid file or directory name.

Example

void MainTask(void) {
 FS_Rename("ram:\\subdir1", "subdir2");
}

Parameter Description

sExistingName Pointer to a string that names an existing file or directory.

sNewName
Pointer to a string that specifies the new name of the file or
directory.

Table 4.38: FS_Rename() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

82 CHAPTER 4 API functions
4.6.8 FS_SetFileAttributes()
Description

Sets attributes for a specified file or directory.

Prototype
int FS_SetFileAttributes (const char * pName,
 U8 Attributes);

Return value

== 0: Attributes have been successfully set.
!= 0: In case of any error.

Additional Information

Valid values for pName are the same as for FS_FOpen(). Refer to FS_FOpen() on
page 65 for examples of valid names.

Example

void MainTask(void) {
 U8 Attributes;
 char ac[100];
 FS_SetFileAttributes("test.txt", FS_ATTR_HIDDEN);
 Attributes = FS_GetFileAttributes("test.txt");
 sprintf(ac, "File attribute of test.txt: %d", Attributes);
 FS_X_Log(ac);
}

Parameter Description

pName Pointer to a string that specifies the name of a file or directory.
Attributes Attributes to be set to the file or directory.

Table 4.39: FS_SetFileAttributes() parameter list

Permitted values for parameter Attributes

FS_ATTR_ARCHIVE
The file or directory is an archive file or direc-
tory. Applications can use this attribute to
mark files for backup or removal.

FS_ATTR_HIDDEN
The file or directory is hidden. It is not
included in an ordinary directory listing.

FS_ATTR_READ_ONLY

The file or directory is read-only. Applications
can read the file but cannot write to it or
delete it. In case of a directory, applications
cannot delete it.

FS_ATTR_SYSTEM
The file or directory is part of, or is used exclu-
sively by, the operating system.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

83
4.6.9 FS_SetFileTime()
Description

The FS_SetFileTime function sets the timestamp for a specified file or directory.

Prototype
int FS_SetFileTime (const char * pName,
 U32 TimeStamp);

Return value

== 0: The timestamp of the given file was successfully set.
!= 0: In case of any error.

Additional Information

Valid values for pName are the same as for FS_FOpen(). Refer to FS_FOpen() on
page 65 for examples of valid names.
On a FAT medium, FS_SetFileTime() sets the creation time of a file or directory.
On a EFS medium, FS_SetFileTime() sets the time stamp of a file or directory.

A timestamp is a packed value with the following format.

To convert a FS_FILETIME structure to a timestamp, use the function
FS_FileTimeToTimeStamp(). For more information about the conversion have a look
at the description of FS_FileTimeToTimeStamp() on page 102.

Example

void MainTask(void) {
 U32 TimeStamp;
 FS_FILETIME FileTime;

 FileTime.Year = 2005;
 FileTime.Month = 03;
 FileTime.Day = 26;
 FileTime.Hour = 10;
 FileTime.Minute = 56;
 FileTime.Second = 14;
 FS_FileTimeToTimeStamp (&FileTime, &TimeStamp);
 FS_SetFileTime("test.txt", TimeStamp);
}

Parameter Description

pName Pointer to a string that specifies the name of a file or directory.
TimeStamp Timestamp to be set to the file or directory.

Table 4.40: FS_SetFileTime() parameter list

Bits Description

0-4 Second divided by 2
5-10 Minute (0 - 59)
11-15 Hour (0-23)
16-20 Day of month (1-31)
21-24 Month (January -> 1, February -> 2, etc.)
25-31 Year offset from 1980. Add 1980 to get current year.

Table 4.41: FS_SetFileTime() - timestamp format description
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

84 CHAPTER 4 API functions
4.6.10 FS_SetFileTimeEx()
Description

Sets the creation, access or modify timestamp for a specified file or directory.

Prototype
int FS_SetFileTimeEx (const char * pName,
 U32 TimeStamp
 int Index);

Return value

== 0: The timestamp of the given file was successfully set.
!= 0: In case of any error.

Additional Information

Values for pName are the same as for FS_FOpen(). Refer to FS_FOpen() on page 65
for examples of valid names.

The EFS file system has only one timestamp hence it makes no difference which
value you use for the Index parameter.

A timestamp is a packed value with the following format:

To convert a timestamp to a FS_FILETIME structure, use the function
FS_GetNumFilesOpen() on page 113. For more information about the FS_FILETIME
structure, refer to Structure FS_FILETIME on page 114.

Parameter Description

pName Pointer to a string that specifies the name of a file or directory.
TimeStamp The value of the timestamp to set.
Index Flag that indicates which timestamp should be set.

Table 4.42: FS_SetFileTimeEx() parameter list

Permitted values for parameter Index

FS_FILETIME_CREATE
Indicates that the creation timestamp should
be set.

FS_FILETIME_ACCESS
Indicates that the access timestamp should
be set.

FS_FILETIME_MODIFY
Indicates that the modify timestamp should
be set.

Bits Description

0-4 Second divided by 2
5-10 Minute (0 - 59)
11-15 Hour (0-23)
16-20 Day of month (1-31)
21-24 Month (January -> 1, February -> 2, etc.)
25-31 Year offset from 1980. Add 1980 to get current year.

Table 4.43: FS_GetFileTime() - timestamp format description
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

85
4.6.11 FS_SetEndOfFile()
Description

Sets the end of file for the specified file.

Prototype
int FS_SetEndOfFile (FS_FILE * pFile);

Return value

== 0: End of File was set.
== -1: Operation failed.

Additional Information

pFile should point to a file that has been opened with write permission. Refer to
FS_FOpen() on page 65. This function can be used to truncate or extend a file. If the
file is extended, the contents of the file between the old EOF position and the new
position are not defined.

Example

void MainTask(void) {
 FS_FILE * pFile;
 pFile = FS_FOpen("test.bin", "r+");
 FS_SetFilePos(pFile, 2000);
 FS_SetEndOfFile(pFile);
 FS_Fclose(pFile);
}

Parameter Description

pFile Pointer to a data structure of type FS_FILE.
Table 4.44: FS_SetEndOfFile() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

86 CHAPTER 4 API functions
4.6.12 FS_Truncate()
Description

Truncates a file opened with FS_FOpen() to the specified size.

Prototype
int FS_Truncate (FS_FILE * pFile,
 U32 NewSize);

Return value

== 0: Truncation was successful.
== -1: Truncation failed.

Additional Information

This function truncates an open file. Be sure that pFile points to a file that has been
opened with write permission. For more information about setting write permission
for pFile have a look at the description of FS_FOpen() on page 65.

Example

void MainTask(void) {
 FS_FILE * pFile;
 U32 FileSize;
 Int Success;
 pFile = FS_FOpen("test.bin", "r+");
 FileSize = FS_GetFileSize(pFile);
 Success = FS_Truncate(pFile, FileSize - 200);
 if (Success == 0) {
 FS_X_Log("Truncation was successful.");
 } else {
 FS_X_Log("Truncation was not successful");
 }
 FS_Fclose(pFile);
}

Parameter Description

pFile Pointer to a data structure of type FS_FILE.
NewSize New size of the file.

Table 4.45: FS_Truncate() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

87
4.6.13 FS_Verify()
Description

Validates a file by comparing its contents with a data buffer.

Prototype
int FS_Verify (FS_FILE * pFile,
 const void * pData,
 U32 NumBytes);

Return value

== 0: If verification was successful.
!= 0: Verification failed.

Additional Information

If the file contains less bytes than to be verified, only the available bytes are verified.

Note: The position of the file pointer has to set to the beginning of the data that
should be verified.

Example

const U8 acVerifyData[4] = { 1, 2, 3, 4 };

void MainTask(void) {
 FS_FILE * pFile;
 I32 n;

 FS_Init();
 //
 // Open file and write data into
 //
 pFile = FS_FOpen("test.txt", "w+");
 FS_Write(pFile, acVerifyData, sizeof(acVerifyData));
 //
 // Determine current position of file pointer.
 //
 n = FS_FTell(pFile);
 //
 // Set file pointer to the start of the data that should be verified.
 //
 FS_FSeek(pFile, 0, FS_SEEK_SET);
 //
 // Verify data.
 //
 if (FS_Verify(pFile, acVerifyData, sizeof(acVerifyData)) == 0) {
 FS_X_Log("Verification was successful");
 } else {
 FS_X_Log("Verification failed");
 }
 //
 // Set file pointer to end of data that was written and verified.
 //
 FS_FSeek(pFile, n, FS_SEEK_SET);
 FS_FClose(pFile);

 while (1);
}

Parameter Description

pFile Pointer to a string that specifies the name of a file or directory.
pData Pointer to a buffer that holds the data to be verified with the file.
NumBytes Number of bytes to be verified.

Table 4.46: FS_Verify() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

88 CHAPTER 4 API functions
4.7 Directory functions

4.7.1 FS_FindClose()
Description

Closes a directory.

Prototype
void FS_FindClose (FS_FIND_DATA * pfd);

Example

typedef struct {
 // Public elements, to be used by application
 U8 Attributes;
 U32 CreationTime;
 U32 LastAccessTime;
 U32 LastWriteTime;
 U32 FileSize;
 char * sFileName;
 // Private elements. Not be used by the application
 int SizeofFileName;
 FS__DIR Dir;
} FS_FIND_DATA;

FindFileSample(void) {
 FS_FIND_DATA fd;
 char acFilename[20];

 if (FS_FindFirstFile(&fd, "\\YourDir\\", acFilename, sizeof(acFilename)) == 0) {
 do {
 printf(acFilename);
 } while (FS_FindNextFile (&fd));
 }
 FS_FindClose(&fd);
}

Parameter Description

pfd Pointer to a FS_FIND_DATA structure.
Table 4.47: FS_FindClose() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

89
4.7.2 FS_FindFirstFile()
Description

Searches files in a specified directory.

Prototype
int FS_FindFirstFile (FS_FIND_DATA * pfd,
 const char * sPath,
 char * sFilename,
 int sizeofFilename);

Return value

== 0: The directory or file found.
!= 0: In case of any error.

Additional Information

A fully qualified directory name looks like:

[DevName:[UnitNum:]][DirPathList]DirectoryName

where:

� DevName is the name of a device, for example �ram� or �mmc�. If not specified, the
first device in the device table will be used.
UnitNum is the number for the unit of the device. If not specified, unit 0 will be
used. Note that it is not allowed to specify UnitNum if DevName has not been spec-
ified.

� DirPathList is a complete path to an existing subdirectory. The path must start
and end with a '\' character. Directory names in the path are separated by '\'. If
DirPathList is not specified, the root directory on the device will be used.

� DirectoryName and all other directory names have to follow the standard FAT
naming conventions (for example 8.3 notation), if support for long file names is
not enabled.

To open the root directory, simply use an empty string for sPath.

Refer to Structure FS_FIND_DATA on page 93 for more information about the struc-
ture pfd points to.

Example

Refer to FS_FindClose() on page 88 for an example.

Parameter Description

pfd Pointer to a FS_FIND_DATA structure.

sPath
Pointer to a string containing the name of a directory which
should be scanned.

sFilename
Pointer to a buffer used to store the name of a file which has
been found.

sizeofFilename
Size of the buffer which contains the name of a file which has
been found.

Table 4.48: FS_FindFirstFile() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

90 CHAPTER 4 API functions
4.7.3 FS_FindNextFile()
Description

Continues a file search from a previous call to the FS_FindFirstFile() function.

Prototype
int FS_FindNextFile (FS_FIND_DATA * pfd);

Return value

== 1: File found in directory.
== 0: In case of any error.

Example

Refer to FS_FindClose() on page 88 for an example.

Parameter Description

pfd Pointer to a FS_FIND_DATA structure.
Table 4.49: FS_FindNextFile() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

91
4.7.4 FS_MkDir()
Description

Creates a new directory.

Prototype
int FS_MkDir (const char * pDirName);

Return value

== 0: The directory was successfully created.
== -1: In case of any error.

Additional Information

Refer to FS_FindFirstFile() on page 89 for examples of valid fully qualified directory
names. Note that FS_MkDir() will not create the whole pDirName, it will only create a
directory in an already existing path.

Example

void FSTask1(void) {
 int Err;
 /* Create mydir in directory test - default driver on default device */
 Err = FS_MkDir("\\test\\mydir");
}

void FSTask2(void) {
 int Err;
 /* Create directory mydir - RAM device driver on default device */
 Err = FS_MkDir("ram:\\mydir");
}

Parameter Description

pDirName Fully qualified directory name.
Table 4.50: FS_MkDir() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

92 CHAPTER 4 API functions
4.7.5 FS_RmDir()
Description

Deletes a directory.

Prototype
int FS_RmDir (const char * pDirname);

Return value

== 0: If the directory has been successfully removed.
== -1: In case of any error.

Additional Information

Refer to FS_FindFirstFile() on page 89 for examples of valid and fully qualified direc-
tory names. FS_RmDir() will only delete a directory if it is empty.

Example

void FSTask1(void) {
 int Err;
 /* Remove mydir in directory test - default driver on default device */
 Err = FS_RmDir("\\test\\mydir");
}

void FSTask2(void) {
 int Err;
 /* Remove directory mydir - RAM device driver on default device */
 Err = FS_RmDir("ram:\\mydir");
}

Parameter Description

pDirname Fully qualified directory name.
Table 4.51: FS_RmDir() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

93
4.7.6 Structure FS_FIND_DATA
Description

The FS_FORMAT_INFO structure represents the information used to access directories
and files.

Prototype
typedef struct {
 // Public elements, to be used by application
 U8 Attributes;
 U32 CreationTime;
 U32 LastAccessTime;
 U32 LastWriteTime;
 U32 FileSize;
 char * sFileName;
 // Private elements. Not be used by the application
 int SizeofFileName;
 FS__DIR Dir;
} FS_FIND_DATA;

Members Description

Attributes Specifies the file attributes of the file found.
CreationTime U32 value containing the time the file was created.
LastAccessTime U32 value containing the time that the file was last accessed.
LastWriteTime U32 value containing the time that the file was last written to.
FileSize U32 value specifies the size of the file.
sFileName String that is the name of the file.

SizeofFileName
Size of the file name. (Private element. Not to be used by
application.)

Dir
Directory administration structure. (Private element. Not to be
used by an application.)

Table 4.52: FS_FIND_DATA - list of structure elements
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

94 CHAPTER 4 API functions
4.8 Formatting a medium
In general, before a medium can be used to read or write to a file, it needs to be for-
matted. Flash cards are usually already preformatted and do not need to be format-
ted. Flashes used as storage devices have normally to be reformatted. These devices
require a low-level format first, then a high-level format. The low-level format is
device-specific, the high-level format depends on the file system only. (FAT-format
typically).
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

95
4.8.1 FS_IsHLFormatted()
Description

Checks if the volume is high-level formatted.

Prototype
int FS_IsHLFormatted (const char * sVolume);

Return value

== 1: Volume is high-level formatted.
== 0: Volume is not high-level formatted.
==-1: Device is not ready or a general error has occurred.

Parameter Description

pVolume Name of the device to check.
Table 4.53: FS_IsHLFormatted() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

96 CHAPTER 4 API functions
4.8.2 FS_IsLLFormatted()
Description

Checks if the volume is low-level formatted.

Prototype
int FS_IsHLFormatted (const char * sVolume);

Return value

== 1: Volume is low-level formatted.
== 0: Volume is not low-level formatted.
== -1: Volume does not require a low-level format or in case of any error.

Additional Information

Low-level format is only required for devices which have their own management
level. These are the drivers for NOR flashes, NAND flashes. MMC, SD and all other
cards do not require a low-level format.

Parameter Description

sVolume Name of the device to check.
Table 4.54: FS_IsLLFormatted() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

97
4.8.3 FS_FormatLLIfRequired()
Description

Checks if the volume is low-level formatted and formats the volume if required.

Prototype
int FS_FormatLLIfRequired (const char * pVolumeName);

Return value

== 0: Ok - low-level format successful.
== 1: Low-level format not required.
== -1: Volume does not require a low-level format or in case of any error.

Additional Information

Low-level format is only required for devices which have their own management
level. These are the drivers for NOR flashes, NAND flashes. MMC, SD and all other
cards do not require a low-level format.

Parameter Description

pVolumeName Name of the device to low-level format.
Table 4.55: FS_FormatLLIfRequired() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

98 CHAPTER 4 API functions
4.8.4 FS_FormatLow()
Description

Low-level formats a device. Required by NAND/NOR flashes prior to format.

Prototype
int FS_FormatLow (const char * pDeviceName);

Return value

== 0: Low-level format successful.
!= 0: In case of any error.

Additional Information

Low-level format is only required for devices which have their own management
level. These are the drivers for NOR flashes, NAND flashes and SMC cards. MMC, SD
and all other cards do not require a low-level format.

Parameter Description

pVolumeName Name of the device to low-level format.
Table 4.56: FS_FormatLow() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

99
4.8.5 FS_Format()
Description

Performs a high-level format of a device. This means putting the management infor-
mation required by the File system on the medium. In case of FAT, this means prima-
rily initialization of FAT and the root directory, as well as the BIOS parameter block.

Prototype
int FS_Format (const char * pDeviceName
 FS_FORMAT_INFO * pFormatInfo);

Return value

== 0: High-level format successful.
!= 0: In case of any error.

Additional Information

There are many different ways to format a medium, even with one file system. If the
second parameter is not specified, reasonable default values are used (auto-format).
However, FS_Format() also allows fine-tuning of the parameters used. For details,
refer to the sample file Format.c, which is shipped with emFile.

For more information about the structure FS_FORMAT_INFO, refer to Structure
FS_FORMAT_INFO on page 100.

Parameter Description

pVolumeName Name of the device to format.
pFormatInfo Optional info for formatting.

Table 4.57: FS_Format() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

100 CHAPTER 4 API functions
4.8.6 Structure FS_FORMAT_INFO
Description

The FS_FORMAT_INFO structure represents the information used to format a volume.

Prototype
typedef struct {
 U16 SectorsPerCluster;
 U16 NumRootDirEntries;
 FS_DEV_INFO * pDevInfo;
} FS_FORMAT_INFO;

Members Description

SectorsPerCluster

A cluster is the minimal unit size a file system can handle.
Sectors are combined together to form a cluster. Value should
be a power of 2, for example 1, 2, 4, 8, 16, 32, 64. Bigger val-
ues lead to a higher read/write performance with big files, low
values (1) make more efficient use of disk space.

NumRootDirEntries

Represents the number of directory entries the root directory
should have. Typically it is only used for FAT12 and FAT16
drives. FAT32 has a dynamically grow table. If this element is
used and not set to an invalid value (!= 0), emFile will use a
default value of 256. If warnings are enabled, a warning mes-
sage is output.

pDevInfo
Pointer to a FS_DEV_INFO structure. Optional IN parameter,
passing information to the function. Typically NULL, unless
some device specifics need to be passed to the function.

Table 4.58: FS_FORMAT_INFO - list of structure elements
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

101
4.8.7 Structure FS_DEV_INFO
Description

The FS_DEV_INFO structure contains the medium information.

Prototype
typedef struct {
 U16 NumHeads;
 U16 SectorsPerTrack;
 U32 NumSectors;
 U16 BytesPerSector;
} FS_DEV_INFO;

Members Description

NumHeads
Number of heads on the drive. This is relevant for mechanical
drives only.

SectorsPerTrack
Number of sectors in each track. This is relevant for mechani-
cal drives only.

NumSectors Total number of sectors on the medium.
BytesPerSector Number of bytes per sector.

Table 4.59: FS_DEV_INFO - list of structure elements
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

102 CHAPTER 4 API functions
4.9 Extended functions

4.9.1 FS_FileTimeToTimeStamp()
Description

Converts a given FS_FILE_TIME structure to a timestamp.

Prototype
void FS_FileTimeToTimeStamp(const FS_FILETIME * pFileTime,
 U32 * pTimeStamp);

Additional Information

Refer to Structure FS_FILETIME on page 114 to get information about the
FS_FILETIME data structure.

Parameter Description

pFileTime
Pointer to a data structure of type FS_FILETIME, that holds the data
to be converted.

pTimeStamp Pointer to a U32 variable to store the timestamp.
Table 4.60: FS_FileTimeToTimeStamp() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

103
4.9.2 FS_GetFileSize()
Description

Gets the current file size of a file.

Prototype
U32 FS_GetFileSize (FS_FILE * pFile);

Return Value

>= 0: File size in bytes (0 - 0xFFFFFFFE).
== 0xFFFFFFFF: In case of any error.

Parameter Description

pFile Pointer to a data structure of type FS_FILE.
Table 4.61: FS_GetFileSize() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

104 CHAPTER 4 API functions
4.9.3 FS_GetNumVolumes()
Description

Retrieves the number of available volumes.

Prototype
int FS_GetNumVolumes (void);

Return Value

The number of available volumes.

Additional Information

This function can be used to get the name of each available volume. Refer to
FS_GetVolumeName() on page 108 for getting more information.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

105
4.9.4 FS_GetVolumeFreeSpace()
Description

Gets amount of free space on a specific volume.

Prototype
U32 FS_GetVolumeFreeSpace (const char * sVolume);

Return Value

> 0: Amount of free space in bytes. Free space larger than 4 GB is reported as
0xFFFFFFFF (the maximum value of a U32).
== 0: If the volume cannot be found.

Additional Information

Note that free space larger than four Gbytes is reported as 0xFFFFFFFF because a U32
cannot represent bigger values. The function FS_GetVolumeInfo() can be used for
larger spaces. If you do not need to know if there is more than 4 GB of free space
available, you can still reliably use FS_GetVolumeFreeSpace().

Valid values for sVolume have the following structure:

[DevName:[UnitNum:]]

where:

� DevName is the name of a device. If not specified, the first device in the volume
table will be used.

� UnitNum is the number of the unit of the device. If not specified, unit 0 will be
used.

Note that to specify UnitNum, also DevName has to be specified.

Parameter Description

sVolume Pointer to a string that specifies the volume name.
Table 4.62: FS_GetVolumeFreeSpace() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

106 CHAPTER 4 API functions
4.9.5 FS_GetVolumeInfo()
Description

Gets volume information, that is the number of clusters (total and free), sectors per
cluster, and bytes per sector. The function collects volume information and stores it
into the given FS_DISK_INFO structure.

Prototype
int FS_GetVolumeInfo (const char * sVolume,
 FS_DISK_INFO * pInfo);

Return Value

== 0: If volume information could be retrieved successfully.
== -1: In case of error, for example if the volume could not be found.

Additional Information

Valid values for sVolume have the following structure:

[DevName:[UnitNum:]]

where:

� DevName is the name of a device. If not specified, the first device in the volume
table will be used.

� UnitNum is the number of the unit of the device. If not specified, unit 0 will be
used.

Note that to specify UnitNum, also DevName has to be specified.

Example

#include "FS.h"
#include <stdio.h>

void MainTask(void) {
 FS_DISK_INFO Info;

 if (FS_GetVolumeInfo("ram:", &Info) == -1) {
 printf("Failed to get volume information.\n");
 } else {
 printf("Number of total clusters = %d\n"
 "Number of free clusters = %d\n"
 "Sectors per cluster = %d\n"
 "Bytes per sector = %d\n",
 Info.NumTotalClusters,
 Info.NumFreeClusters,
 Info.SectorsPerCluster,
 Info.BytesPerSector);
 }
}

Parameter Description

sVolume Volume name as a string.
pInfo Pointer to a FS_DISK_INFO structure.

Table 4.63: FS_GetVolumeInfo() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

107
4.9.6 FS_GetVolumeLabel()
Description

Returns a volume label name if one exists.

Prototype
int FS_GetVolumeLabel (const char * sVolume,
 char * pVolumeLabel
 unsigned VolumeLabelSize);

Return Value

> 0: Number of total bytes available on this volume.
== -1: Failed to get volume information.

Parameter Description

sVolume Volume name as a string.
pVolumeLabel Pointer to a buffer to receive the volume label.
pVolumeLabelSize Size of the buffer which can used to store pVolumeLabel.

Table 4.64: FS_GetVolumeLabel() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

108 CHAPTER 4 API functions
4.9.7 FS_GetVolumeName()
Description

Retrieves the name of the specified volume index.

Prototype
int FS_GetVolumeName (int Index,
 char * pBuffer,
 int BufferSize);

Return Value

If the function succeeds, the return value is the length of the string copied to
pBuffer, excluding the terminating null character, in bytes.
If the pBuffer buffer is too small to contain the volume name, the return value is the
size of the buffer required to hold the volume name plus the terminating null charac-
ter. Therefore, if the return value is greater than BufferSize, make sure to call the
function again with a buffer that is large enough to hold the volume name.

Example

void ShowAvailableVolumes(void) {
 int NumVolumes;
 int i;
 int BufferSize;
 char acVolume[12];

 BufferSize = sizeof(acVolume);
 NumVolumes = FS_GetNumVolumes();
 FS_X_Log("Available volumes:\n");
 for (i = 0; i < NumVolumes; i++) {
 if (FS_GetVolumeName(i, &acVolume[0], BufferSize) < BufferSize) {
 FS_X_Log(acVolume);
 FS_X_Log("\n");
 }
 }
}

Parameter Description

Index Index number of the volume.

pBuffer
Pointer to a buffer that receives the null-terminated string for the
volume name.

BufferSize
Size of the buffer to receive the null terminated string for the vol-
ume name.

Table 4.65: FS_GetVolumeName() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

109
4.9.8 FS_GetVolumeSize()
Description

Gets the total size of a specific volume.

Prototype
U32 FS_GetVolumeSize (const char * sVolume);

Return Value

Volume size in bytes. Volume sizes larger than 4 Gbyte are truncated to 0xFFFFFFFF
(the maximum value of a U32).

Additional Information

Note that volume sizes larger than 4 Gbytes are reported as 0xFFFFFFFF because a
U32 cannot represent bigger values. The function FS_GetVolumeInfo() can be used
for larger media. If you do not need to know if the total space is bigger than 4
Gbytes, you can still reliably use FS_GetVolumeSize().

Valid values for sVolume have the following structure:

[DevName:[UnitNum:]]

where:

� DevName is the name of a device. If not specified, the first device in the volume
table will be used.

� UnitNum is the number of the unit of the device. If not specified, unit 0 will be
used.

Note that to specify UnitNum, also DevName has to be specified.

Parameter Description

sVolume Volume name as a string.
Table 4.66: FS_GetVolumeSize() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

110 CHAPTER 4 API functions
4.9.9 FS_GetVolumeStatus()
Description

Returns the status of a volume.

Prototype
int FS_GetVolumeStatus(const char * sVolume);

Return Value

Parameter Description

sVolume Volume name as a string.
Table 4.67: FS_GetVolumeStatus() parameter list

Return value Description

FS_MEDIA_STATE_UNKNOWN The volume state is unknown.
FS_MEDIA_NOT_PRESENT A volume is not present.
FS_MEDIA_IS_PRESENT A volume is present.

Table 4.68: FS_GetVolumeStatus() - list of return values
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

111
4.9.10 FS_IsVolumeMounted()
Description

Returns if a volume was successfully mounted and has correct file system informa-
tion.

Prototype
int FS_IsVolumeMounted (const char * sVolumeName);

Return Value

== 1: If volume information is mounted.
== 0: In case of error, for example if the volume could not be found, is not detected,
 or has incorrect file system information.

Example

#include "FS.h"
#include <stdio.h>

void MainTask(void) {
 if (FS_IsVolumeMounted("ram:")) {
 printf("Volume is already mounted.\n");
 } else {
 printf("Volume is not mounted.\n");
 }
}

Parameter Description

sVolumeName Volume name as a string.
Table 4.69: FS_IsVolumeMounted() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

112 CHAPTER 4 API functions
4.9.11 FS_TimeStampToFileTime()
Description

Converts a given timestamp to a FS_FILE_TIME structure.

Prototype
void FS_TimeStampToFileTime (U32 TimeStamp,
 FS_FILETIME * pFileTime);

Additional Information

A TimeStamp is a packed value with the following format:

Parameter Description

TimeStamp Timestamp to be converted.

pFileTime
Pointer to a data structure of type FS_FILETIME to store the con-
verted timestamp.

Table 4.70: FS_TimeStampToFileTime() parameter list

Bits Description

0-4 Second divided by 2
5-10 Minute (0 - 59)
11-15 Hour (0 - 23)
16-20 Day of month (1 - 31)
21-24 Month (January -> 1, February -> 2, etc.)
25-31 Year offset from 1980. Add 1980 to get current year.

Table 4.71: FS_TimeStampToFileTime() - timestamp format description
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

113
4.9.12 FS_GetNumFilesOpen()
Description

Returns the number of opened files.

Prototype
int FS_GetNumFilesOpen(void);

Return Value

Number of opened file handles.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

114 CHAPTER 4 API functions
4.9.13 Structure FS_FILETIME
Description

The FS_FILETIME structure represents a timestamp using individual members for the
month, day, year, weekday, hour, minute, and second. This can be useful for getting
or setting a timestamp of a file or directory.

Prototype
typedef struct {
 U16 Year;
 U16 Month;
 U16 Day;
 U16 Hour;
 U16 Minute;
 U16 Second;
} FS_FILETIME;

Members Description

Year Represents the year. The year must be greater than 1980.
Month Represents the month, where January = 1, February = 2, etc.
Day Represents the day of the month (1 - 31).
Hour Represents the hour of the day (0 - 23).
Minute Represents the minute of the hour (0 - 59).
Second Represents the second of the minute (0 - 59).

Table 4.72: FS_FILETIME - list of structure member variables
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

115
4.9.14 FS_SetBusyLEDCallback()
Description

Specifies callback function to control an LED which shows the state of a specific vol-
ume.

Prototype
void FS_SetBusyLEDCallback (const char * sVolumeName,
 FS_BUSY_LED_CALLBACK * pfBusyLEDCallback);

Additional Information

If you intend to show any volume read/write activity, use this function to set the busy
indication for the desired volume.

Type FS_BUSY_LED_CALLBACK is defined as follows:

typedef void (FS_BUSY_LED_CALLBACK)(U8 OnOff);

The parameter OnOff indicates whether the LED should be switched on or off.

Example

#include "FS.h"

void SetBusyLED(U8 OnOff) {
 if (OnOff) {
 HW_SetLED();
 } else {
 HW_ClrLED();
 }
}

void MainTask(void) {
 FS_FILE * pFile;

 FS_Init();
 FS_SetBusyLEDCallback(“ram:”, &SetBusy);
 pFile = FS_FOpen(“ram:\\file.txt“, “w“);
 FS_FClose();
}

Parameter Description

sVolumeName Volume name as a string.
pfBusyLEDCallback Pointer to a busy LED function.

Table 4.73: FS_SetBusyLEDCallback() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

116 CHAPTER 4 API functions
4.9.15 FS_SetVolumeLabel()
Description

Sets a label to a specific volume.

Prototype
int FS_SetVolumeLabel (const char * sVolume,
 char * pVolumeLabel);

Return Value

== 0: On Success.
==-1: In case of any error.

Parameter Description

sVolume Volume name as a string.

pVolumeLabel
Pointer to a buffer with the new volume label.
NULL indicates, that the volume label should be deleted.

Table 4.74: FS_GetVolumeInfo() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

117
4.10 Storage layer functions

4.10.1 FS_STORAGE_GetDeviceInfo()
Description

Returns the device status.

Prototype
int FS_STORAGE_GetDeviceInfo (const char * sVolume,
 FS_DEV_INFO * pDevInfo);

Return Value

==0: Ok
==-1: Device is not ready or a general error has occurred.

Parameter Description

sVolume Name of the device to check.
pDeviceInfo Pointer to a data structure of type FS_DEV_INFO.

Table 4.75: FS_STORAGE_GetDeviceInfo() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

118 CHAPTER 4 API functions
4.10.2 FS_STORAGE_Init()
Description

This function only initializes the driver and OS if necessary.

Prototype
void FS_STORAGE_Init (void);

Return value

The return value is the number of drivers can be used at the same time. These num-
ber of drivers is relevant for the high-level initialization function FS_Init().
FS_Init() uses these information to allocate the sector buffers which are necessary
for a file system operation.

Additional information

FS_STORAGE_Init() initializes the storage layer of a driver. If you use
FS_STORAGE_Init() instead of FS_Init(), only the storage layer functions like
FS_STORAGE_ReadSector() or FS_STORAGE_WriteSector() are available. This means
that the file system can be used as a pure sector read/write software. This can be
useful when using the file system as a USB mass storage client driver.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

119
4.10.3 FS_STORAGE_ReadSector()
Description

Reads a sector from a device.

Prototype
int FS_STORAGE_ReadSector (const char * sVolume,
 const void * pData,
 U32 SectorIndex);

Return value

== 0: On success
!= 0: On error

Parameter Description

sVolume
Volume name. If not specified, the first device in the volume
table will be used.

pData Pointer to a buffer where the read data will be stored.
SectorIndex Index of the sector from which data should be read.

Table 4.76: FS_STORAGE_ReadSector() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

120 CHAPTER 4 API functions
4.10.4 FS_STORAGE_ReadSectors()
Description

Reads multiple sectors from a device.

Prototype
int FS_STORAGE_ReadSectors (const char * sVolume,
 void * pData,
 U32 FirstSector,
 U32 NumSectors);

Return value

== 0: On success
!= 0: On error

Parameter Description

sVolume
Volume name. If not specified, the first device in the volume
table will be used.

pData Pointer to a data buffer where the read data should be stored.
FirstSector First sector to read.
NumSectors Number of sectors which should be read.

Table 4.77: FS_STORAGE_ReadSectors() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

121
4.10.5 FS_STORAGE_Sync()
Description

Writes cached data to the storage medium and sends a command to the driver to
finalize all pending tasks.

Prototype
void FS_STORAGE_Sync (const char * sVolume);

Parameter Description

sVolume
Volume name. If not specified, the first device in the volume table
will be used.

Table 4.78: FS_STORAGE_Sync() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

122 CHAPTER 4 API functions
4.10.6 FS_STORAGE_Unmount()
Description

Unmounts a given volume at the driver layer. The function also sends an unmount
command to the driver, and marks the volume as unmounted and uninitialized.

Prototype
void FS_STORAGE_Unmount (const char * sVolume);

Parameter Description

sVolume
sVolume is the name of a volume. If not specified, the first device in
the volume table will be used.

Table 4.79: FS_STORAGE_Unmount() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

123
4.10.7 FS_STORAGE_WriteSector()
Description

Writes one sector to a device.

Prototype
int FS_STORAGE_WriteSector (const char * sVolume,
 const void * pData,
 U32 SectorIndex);

Return value

== 0: On success
!= 0: On error

Parameter Description

sVolume
Volume name. If not specified, the first device in the volume
table will be used.

pData Pointer to the data which should be written to the device.
SectorIndex Index of the sector to which data should be written.

Table 4.80: FS_STORAGE_WriteSector() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

124 CHAPTER 4 API functions
4.10.8 FS_STORAGE_WriteSectors()
Description

Writes multiple sectors to a device.

Prototype
int FS_STORAGE_WriteSectors (const char * sVolume,
 const void * pData,
 U32 FirstSector,
 U32 NumSectors)

Return value

== 0: On success
!= 0: On error

Parameter Description

sVolume
Volume name. If not specified, the first device in the volume
table will be used.

pData Pointer to the data which should be written to the device.
FirstSector Start sector of the write operation.
NumSectors Number of sectors that should be written.

Table 4.81: FS_STORAGE_WriteSectors() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

125
4.11 FAT related functions

4.11.1 FS_FAT_CheckDisk()
Description

Checks and repairs a FAT volume.

Prototype
int FS_FAT_CheckDisk (const char * sVolumeName,
 void * pBuffer,
 U32 BufferSize,
 int MaxRecursionLevel,
 FS_QUERY_F_TYPE * pfOnError);

Return value

== 0: Ok
== 1: An error has be found and repaired, retry is required.
== 2: User specified an abort of checkdisk operation through callback.

Additional Information

This function can be used to check if there are any errors on a specific volume and if
necessary, repair the found error.

The buffer that pBuffer points to should be at least 4 Kbyte.
The minimum size of the buffer can be calculated as follows:

12 Bytes x (Bytes per sector x 8) / (Fat type),

where FAT type is either 12, 16, or 32.

The type FS_QUERY_F_TYPE is defined as follows:

typedef int (FS_QUERY_F_TYPE)(int ErrCode, ...);

The callback is used to notify the user about the error that occurred and to ask
whether the error should be fixed. To get a detailed information string of the error
that occurred, the parameter ErrCode can be passed to
FS_FAT_CheckDisk_ErrCode2Text().

Parameter Description

sVolumeName Volume name as a string.
pBuffer Pointer to a buffer that will be used by FS_FAT_CheckDisk().
BufferSize Size of the specified buffer.

MaxRecursionLevel
The maximum directory recursion depth FS_FAT_CheckDisk()
should check.

pfOnError Pointer to a callback function for the error handling.
Table 4.82: FS_FAT_CheckDisk() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

126 CHAPTER 4 API functions
Example

#include <stdarg.h>
#include "FS.h"

static U32 _aBuffer[5000];
/***
*
* _OnError
*/
int _OnError(int ErrCode, ...) {
 va_list ParamList;
 const char * sFormat;
 char c;
 char ac[1000];

 sFormat = FS_FAT_CheckDisk_ErrCode2Text(ErrCode);
 if (sFormat) {
 va_start(ParamList, ErrCode);
 vsprintf(ac, sFormat, ParamList);
 printf("%s\n", ac);
 }
 if (ErrCode != FS_ERRCODE_CLUSTER_UNUSED) {
 printf(" Do you want to repair this? (y/n/a) ");
 } else {
 printf(" * Convert lost cluster chain into file (y)\n"
 " * Delete cluster chain (d)\n"
 " * Do not repair (n)\n"
 " * Abort (a) ");
 printf("\n");
 }
 c = getchar();
 printf("\n");
 if ((c == 'y') || (c == 'Y')) {
 return 1;
 } else if ((c == 'a') || (c == 'A')) {
 return 2;
 } else if ((c == 'd') || (c == 'D')) {
 return 3;
 }
 return 0; // Do not fix.
}

/***
*
* MainTask
*/
void MainTask(void) {
 FS_Init();
 while (FS_FAT_CheckDisk("", &_aBuffer[0], sizeof(_aBuffer), 5, _OnError) == 1) {
 }
}

emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

127
4.11.2 FS_FAT_CheckDisk_ErrCode2Text()
Description

Returns an error string to a specific check-disk error code.

Prototype
const char * FS_FAT_CheckDisk_ErrCode2Text (int ErrCode);

Return value

A pointer to a statically allocated string holding the error text.

Additional information

The following error codes are defined as

Typically, this function is used in the callback function for the error handling that is
used by FS_FAT_CheckDisk(). See FS_FAT_CheckDisk() on page 125 for an exam-
ple.

Parameter Description

ErrCode Check-disk error code.
Table 4.83: FS_FAT_CheckDisk_ErrCode2Text() parameter list

Permitted values for the parameter ErrCode

FS_ERRCODE_0FILE
A file of size zero has allocated
cluster(s).

FS_ERRCODE_SHORTEN_CLUSTER
A cluster chain for a specific
file is longer than its file size.

FS_ERRCODE_CROSSLINKED_CLUSTER
A cluster is cross-linked (used
for multiple files / directories)

FS_ERRCODE_FEW_CLUSTER
Too few clusters allocated to
file.

FS_ERRCODE_CLUSTER_UNUSED
A cluster is marked as used,
but not assigned to a file or
directory.

FS_ERRCODE_CLUSTER_NOT_EOC
A cluster is not marked as
end-of-chain.

FS_ERRCODE_INVALID_CLUSTER A cluster is not a valid cluster.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

128 CHAPTER 4 API functions
4.11.3 FS_FAT_GrowRootDir()
Description

Enlarges the default size of the root directory of a FAT32 volume.

Prototype
U32 FS_FAT_GrowRootDir (const char * sVolumeName, U32 NumAddEntries);

Return value

>= 0: Number of entries added.
== 0: Clusters after root directory are not free.
== 0xFFFFFFFF: An error has occurred.

Additional Information

This function has to be called after formatting the volume. If the function is not
called after format or called for a FAT12/16 volume the function will fail. In opposite
to FAT12 and FAT16 which have a fixed root directory size, the root directory of a
FAT32 formatted device can be of variable size. By default, one cluster is reserved for
the root directory entries. Therefore, it can speed up performance to reserve addi-
tional clusters for root directory entries after formatting the medium.

Parameter Description

pVolumeName Name of the device.
NumAddEntries Numbers of directories entries to be added.

Table 4.84: FS_FAT_GrowRootDir() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

129
4.11.4 FS_FormatSD()
Description

Performs a high-level format of a device according to the SD Specification - File sys-
tem specification.

Prototype
int FS_FormatSD (const char * pVolumeName);

Return value

== 0: Format was successful.
!= 0: An error has occurred.

Additional Information

For further information refer to SD Specification - Part 2 - File System Specification
(May 9, 2006, www.sdcard.org).

Parameter Description

pVolumeName Name of the device to format.
Table 4.85: FS_FormatSD() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

130 CHAPTER 4 API functions
4.11.5 FS_FAT_SupportLFN()
Note: The LFN package is required to support long file names.

Description

Adds long file name support to the file system.

Prototype
void FS_SupportLFN(void);

Additional Information

The FAT file system was not designed for long file name (LFN) support, limiting
names to twelve characters (8.3). LFN support may be added to any of the FAT file
systems, but there are legal issues that must be settled with Microsoft before end
applications make use of this feature. Long file names are inherent to this proprietary
file system relieving it of any legal issues.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

131
4.11.6 FS_FAT_DisableLFN()
Description

Disables the support for long file names for the FAT file system.

Prototype
void FS_DisableLFN(void);
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

132 CHAPTER 4 API functions
4.12 EFS related functions

4.12.1 FS_EFS_CheckDisk()
Description

Checks and repairs an EFS volume.

Prototype
int FS_EFS_CheckDisk(const char * sVolumeName,
 void * pBuffer,
 U32 BufferSize,
 int MaxRecursionLevel,
 FS_QUERY_F_TYPE * pfOnError);

Return value

== 0: Ok
== 1: An error has be found and repaired, retry is required.
== 2: User specified an abort of checkdisk operation through callback.

Additional Information

This function can be used to check if there are any errors on a specific volume and if
necessary, repair the found error.

The buffer that pBuffer points to should be at least 4 Kbyte. The minimum size of
the buffer can be calculated as follows:

12 Bytes x (Bytes per sector x 8) / 32

The type FS_QUERY_F_TYPE is defined as follows:

typedef int (FS_QUERY_F_TYPE)(int ErrCode, ...);

The callback is used to notify the user about the error that occurred and to ask
whether the error should be fixed. To get a detailed information string of the error
that occurred, the parameter ErrCode can be passed to
FS_EFS_CheckDisk_ErrCode2Text().

Parameter Description

sVolumeName
IN: Volume name as a string.
OUT: ---

pBuffer
IN: ---
OUT: Buffer that will be used by the function during the check-
ing.

BufferSize Size of the specified buffer.

MaxRecursionLevel
The maximum directory recursion depth the function should
check.

pfOnError Callback function for the error handling.
Table 4.86: FS_EFS_CheckDisk() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

133
Example

#include <stdarg.h>
#include "FS.h"

static U32 _aBuffer[5000];
/***
*
* _OnError
*/
int _OnError(int ErrCode, ...) {
 va_list ParamList;
 const char * sFormat;
 char c;
 char ac[1000];

 sFormat = FS_EFS_CheckDisk_ErrCode2Text(ErrCode);
 if (sFormat) {
 va_start(ParamList, ErrCode);
 vsprintf(ac, sFormat, ParamList);
 printf("%s\n", ac);
 }
 if (ErrCode != FS_ERRCODE_CLUSTER_UNUSED) {
 printf(" Do you want to repair this? (y/n/a) ");
 } else {
 printf(" * Convert lost cluster chain into file (y)\n"
 " * Delete cluster chain (d)\n"
 " * Do not repair (n)\n"
 " * Abort (a) ");
 printf("\n");
 }
 c = getchar();
 printf("\n");
 if ((c == 'y') || (c == 'Y')) {
 return 1;
 } else if ((c == 'a') || (c == 'A')) {
 return 2;
 } else if ((c == 'd') || (c == 'D')) {
 return 3;
 }
 return 0; // Do not fix.
}

/***
*
* MainTask
*/
void MainTask(void) {
 FS_Init();
 while (FS_EFS_CheckDisk("", &_aBuffer[0], sizeof(_aBuffer), 5, _OnError) == 1) {
 }
}

emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

134 CHAPTER 4 API functions
4.12.2 FS_EFS_CheckDisk_ErrCode2Text()
Description

Returns an error string to a specific check-disk error code.

Prototype
const char * FS_EFS_CheckDisk_ErrCode2Text(int ErrCode);

Return value

A pointer to a statically allocated string holding the error text.

Additional information

The following error codes are defined as:

Typically, this function is used in the callback function for the error handling that is
used by FS_EFS_CheckDisk(). See FS_EFS_CheckDisk() on page 132 for an exam-
ple.

Parameter Description

ErrCode Check-disk error code.
Table 4.87: FS_EFS_CheckDisk_ErrCode2Text() parameter list

Permitted values for the parameter ErrCode

FS_ERRCODE_0FILE
A file of size zero has allocated
cluster(s).

FS_ERRCODE_SHORTEN_CLUSTER
A cluster chain for a specific
file is longer than its file size.

FS_ERRCODE_CROSSLINKED_CLUSTER
A cluster is cross-linked (used
for multiple files / directories)

FS_ERRCODE_FEW_CLUSTER
Too few clusters allocated to
file.

FS_ERRCODE_CLUSTER_UNUSED
A cluster is marked as used,
but not assigned to a file or
directory.

FS_ERRCODE_CLUSTER_NOT_EOC
A cluster is not marked as
end-of-chain.

FS_ERRCODE_INVALID_CLUSTER A cluster is not a valid cluster.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

135
4.13 Error handling functions

4.13.1 FS_ClearErr()
Description

Clears the error status of a file.

Prototype
void FS_ClearErr(FS_FILE * pFile);

Additional Information

This routine should be called after you have detected an error so that you can check
for success of the next file operations.

Example

void MainTask(void) {
 FS_FILE *pFile;
 int Err;

 pFile = FS_FOpen("test.txt", "r");
 if (pFile != 0) {
 Err = FS_FError(pFile);
 if (Err != FS_ERR_OK) {
 FS_ClearErr(pFile);
 }
 FS_FClose(pFile);
 }
}

Parameter Description

pFile Pointer to a data structure of type FS_FILE.
Table 4.88: FS_ClearErr() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

136 CHAPTER 4 API functions
4.13.2 FS_FEof()
Description

Tests for end-of-file on a given file pointer.

Prototype
int FS_FEof (FS_FILE * pFile);

Return value

== 0: If the end of file has not been reached.
== 1: If the end of file has been reached.

Additional Information

The FS_FEof function determines whether the end of a given file pointer has been
reached. When end of file is reached, read operations return an end-of-file indicator
until the file pointer is closed or until FS_FSeek, or FS_ClearErr is called against it.

Example

int ReadFile(FS_File * pFile, char * pBuffer, int NumBytes) {
 FS_FILE * pFile;
 char acBuffer[100];
 char acLog[100];
 int Count;
 int Total;
 I16 Error;

 Total = 0;
 pFile = FS_FOpen("default.txt", "r");
 if (pFile == NULL) {
 FS_X_ErrorOut("Could not open file.");’
 }
 /* Cycle until end of file reached: */
 while (!FS_FEof(pFile)) {
 Count = FS_Read(pFile, &acBuffer[0], sizeof(acBuffer));
 Error = FS_FError(pFile);
 if (Error) {
 sprintf(acLog, "Could not read from file:\nReason = %s",
 FS_ErrorNo2Text(Error));
 FS_X_ErrorOut(acLog);
 break;
 }
 /* Total up actual bytes read */
 Total += Count;
 }
 sprintf(acLog, "Number of read bytes = %d\n", Total);
 FS_X_Log(acLog);
 FS_FClose(pFile);
}

Parameter Description

pFile Pointer to a data structure of type FS_FILE.
Table 4.89: FS_FEof() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

137
4.13.3 FS_FError()
Description

Returns the current error status of a file.

Prototype
I16 FS_FError (FS_FILE * pFile);

Return value

FS_ERR_OK if no errors.
A value not equal to FS_ERR_OK if a file operation caused an error.

Additional Information

The return value is not FS_ERR_OK only when a file operation caused an error and the
error was not cleared by calling FS_ClearErr() or any other operation that clears the
previous error status.
The following error codes are available:

Example

void MainTask(void) {
 FS_FILE *pFile;

 pFile = FS_FOpen("test.txt", "r");
 if (pFile != 0) {
 I16 Err;
 Err = FS_FError(pFile);
 FS_FClose(pFile);
 }
}

Parameter Description

pFile Pointer to a data structure of type FS_FILE.
Table 4.90: FS_FError() parameter list

Code Description

FS_ERR_OK No error.
FS_ERR_EOF End-of-file has been reached.

FS_ERR_DISKFULL
Unable to write data because there is no more space on the
media.

FS_ERR_INVALIDPAR
An emFile function has been called with an illegal parame-
ter.

FS_ERR_WRITEONLY
A read operation has been made on a file open for writing
only.

FS_ERR_READONLY
A write operation has been made on a file open for reading
only.

FS_ERR_READERROR An error occurred during a read operation.
FS_ERR_WRITEERROR An error occurred during a write operation.
FS_ERR_DISKCHANGED Media has been changed, although the file was still open.
FS_ERR_CLOSE An error occurred during the close operation.

Table 4.91: FS_FError() - list of error code values
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

138 CHAPTER 4 API functions
4.13.4 FS_ErrorNo2Text()
Description

Retrieves text for a given error code.

Prototype
const char * FS_ErrorNo2Text (int ErrCode);

Return value

Returns the string according to the ErrCode.

Example

void MainTask(void) {
 FS_FILE *pFile;

 pFile = FS_FOpen("test.txt", "r");
 if (pFile != 0) {
 int Err;
 Err = FS_FError(pFile);
 FS_X_Log("Open file error: ");
 FS_X_Log(FS_ErrorNo2Text(Err));
 FS_FClose(pFile);
 }
}

Parameter Description

ErrCode The returned error code.
Table 4.92: FS_ErrorNo2Text() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

139
4.14 Obsolete functions
This section contains reference information for obsolete functions.

4.14.1 FS_CloseDir()
Description

Closes a directory referred to by the parameter pDir.

Prototype
int FS_CloseDir (FS_DIR * pDir);

Return Value

== 0: If the directory was successfully closed.
== -1: In case of any error.

Example

void MainTask(void) {
 FS_DIR *pDir;
 FS_DIRENT *pDirEnt;

 pDir = FS_OpenDir(""); /* Open the root directory of default device */
 if (pDir) {
 do {
 char acDirName[20];
 pDirEnt = FS_ReadDir(pDir);
 FS_DirEnt2Name(pDirEnt, acDirName); /* Get name of the current DirEntry */
 if ((void*)pDirEnt == NULL) {
 break; /* No more files or directories */
 }
 sprintf(_acBuffer," %s\n", acName);
 FS_X_Log(_acBuffer);
 } while (1);
 FS_CloseDir(pDir);
 } else {
 FS_X_ErrorOut("Unable to open directory\n");
}

Parameter Description

pDir Pointer to a data structure of type FS_DIR.
Table 4.93: FS_CloseDir() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

140 CHAPTER 4 API functions
4.14.2 FS_DirEnt2Attr()
Description

Retrieves the attributes of the directory entry referred to by pDirEnt.

Prototype
void FS_DirEnt2Attr (FS_DIRENT * pDirEnt,
 U8 * pAttr);

Additional Information

These attributes are available:

pDirEnt should point to a valid FS_DIRENT structure. FS_DirEnt2Attr() checks if
the pointer is valid. To get a valid pointer, FS_ReadDir() should be called before
using FS_DirEnt2Attr(). Refer to FS_ReadDir() on page 148 for more information.

Example

void MainTask(void) {
 FS_DIR *pDir;
 FS_DIRENT *pDirEnt;
 char acBuffer[200];
 pDir = FS_OpenDir(""); /* Open root directory of default device */
 if (pDir) {
 do {
 char acName[20];
 U8 Attr;
 pDirEnt = FS_ReadDir(pDir);
 FS_DirEnt2Name(pDirEnt, acName);
 FS_DirEnt2Attr(pDirEnt, &Attr);
 if ((void*)pDirEnt == NULL) {
 break; /* No more files */
 }
 sprintf(_acBuffer," %s %s Attributes: %s%s%s%s\n", acName,
 (Attr & FS_ATTR_DIRECTORY) ? "(Dir)" : " ",
 (Attr & FS_ATTR_ARCHIVE) ? "A" : "-",
 (Attr & FS_ATTR_READ_ONLY) ? "R" : "-",
 (Attr & FS_ATTR_HIDDEN) ? "H" : "-",
 (Attr & FS_ATTR_SYSTEM) ? "S" : "-");
 FS_X_Log(acBuffer);
 } while (1);
 FS_CloseDir(pDir);
 } else {
 FS_X_ErrorOut("Unable to open directory\n");
 }
}

Parameter Description

pDirEnt Pointer to a directory entry, read by FS_ReadDir().
pAttr Pointer to U8 variable in which the attributes should be stored.

Table 4.94: FS_DirEnt2Attr() parameter list

Parameter Description

FS_ATTR_DIRECTORY pDirEnt is a directory.
FS_ATTR_ARCHIVE pDirEnt has the ARCHIVE attribute set.
FS_ATTR_READ_ONLY pDirEnt has the READ ONLY attribute set.
FS_ATTR_HIDDEN pDirEnt has the HIDDEN attribute set.
SYSTEM pDirEnt has the SYSTEM attribute set.

Table 4.95: FS_DirEnt2Attr() - list of possible attributes
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

141
4.14.3 FS_DirEnt2Name()
Description

Retrieves the name of the directory entry referred to by pDirEnt.

Prototype
void FS_DirEnt2Name (FS_DIRENT * pDirEnt,
 char * pBuffer);

Additional Information

If pDirEnt and pBuffer are valid, the name of the directory is copied to the buffer
that pBuffer points to. Otherwise pBuffer is NULL.
pDirEnt should point to a valid FS_DIRENT structure. FS_DirEnt2Name() checks if
the pointers are valid. To get a valid pointer, FS_ReadDir() should be called before
using FS_DirEnt2Name(), otherwise pBuffer is NULL. Refer to FS_ReadDir() on
page 148 for more information.

Example

void MainTask(void) {
 char acDirName[20];
 FS_DIR *pDir ;
 FS_DIRENT *pDirEnt ;

 pDir = FS_OpenDir(""); /* Open root directory of default device */
 pDirEnt = FS_ReadDir(pDir); /* Read the first directory entry */
 FS_DirEnt2Name(pDirEnt, acDirName);
 FS_X_Log(acDirName);
}

Parameter Description

pDirEnt Pointer to a directory entry, read by FS_ReadDir().
pBuffer Pointer to the buffer that will receive the text.

Table 4.96: FS_DirEnt2Name() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

142 CHAPTER 4 API functions
4.14.4 FS_DirEnt2Size()
Description

Returns the size in bytes of the directory entry referred to pDirEnt.

Prototype
U32 FS_DirEnt2Size (FS_DIRENT * pDirEnt);

Return value

File size in bytes.
0 in case of any error.

Additional Information

If pDirEnt is valid, the size of the directory entry will be returned. Otherwise the
return value is 0.
pDirEnt should point to a valid FS_DIRENT structure. FS_DirEnt2Name() checks if
the pointers are valid. To get a valid pointer, FS_ReadDir() should be called before
using FS_DirEnt2Size(). Refer to FS_ReadDir() on page 148 for more information.

Example

void MainTask(void) {
 U32 FileSize;
 FS_DIR *pDir ;
 FS_DIRENT *pDirEnt ;

 pDir = FS_OpenDir(""); /* Open root directory of default device */
 pDirEnt = FS_ReadDir(pDir); /* Read the first directory entry */
 FileSize = FS_DirEnt2Size(pDirEnt);
 if (FileSize) {
 char ac[50] ;
 sprintf(ac, "File size = %lu\n", FileSize);
 FS_X_Log(ac) ;
}

Parameter Description

pDirEnt Pointer to a directory entry, read by FS_ReadDir().
Table 4.97: FS_DirEnt2Size() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

143
4.14.5 FS_DirEnt2Time()
Description

Returns the timestamp of the directory entry referred to by pDirEnt.

Prototype
U32 FS_DirEnt2Size (FS_DIRENT * pDirEnt);

Return value

The timestamp of the current directory entry.

Additional Information

If pDirEnt is valid, the timestamp of the directory entry will be returned. Otherwise,
the return value is 0.
pDirEnt should point to a valid FS_DIRENT structure. FS_DirEnt2Name() checks if
the pointer is valid. To get a valid pointer, FS_ReadDir() should be called before
using FS_DirEnt2Size(). Refer to FS_ReadDir() on page 148 for more information.
A timestamp is a packed value with the following format.

To convert a timestamp to a FS_FILETIME structure, use the function
FS_TimeStampToFileTime().

Example

void MainTask(void) {
 U32 TimeStamp;
 FS_DIR * pDir ;
 FS_DIRENT * pDirEnt ;
 char acLog[100] ;
 char acFileName[40];
 FS_FILETIME FileTime;

 pDir = FS_OpenDir(""); /* Open root directory of default device */
 pDirEnt = FS_ReadDir(pDir); /* Read the first directory entry */
 FS_DirEnt2Name(pDirEnt, &acFileName[0]);
 TimeStamp = FS_DirEnt2Time(pDirEnt);
 FS_TimeStampToFileTime(TimeStamp, &FileTime);
 sprintf(ac, "File time of %s: %d-.2d-%.2d %.2d:%.2d:%.2d",
 acFileName,
 FileTime.Year, FileTime.Month, FileTime.Day,
 FileTime.Hour, FileTime.Minute, FileTime.Second);
 FS_X_Log(ac);
}

Parameter Description

pDirEnt Pointer to a directory entry, read by FS_ReadDir().
Table 4.98: FS_DirEnt2Time() parameter list

Bits Description

0-4 Second divided by 2
5-10 Minute (0 - 59)
11-15 Hour (0-23)
16-20 Day of month (1-31)
21-24 Month (January -> 1, February -> 2, etc.)
25-31 Year offset from 1980. Add 1980 to get current year.

Table 4.99: FS_DirEnt2Time() - timestamp format description
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

144 CHAPTER 4 API functions
4.14.6 FS_GetDeviceInfo()
Description

Returns the device status.

Prototype
int FS_GetDeviceInfo(const char * sVolume,
 FS_DEV_INFO * pDevInfo);

Additional information

This function is obsolete. Use instead FS_STORAGE_GetDeviceInfo() on page 117.

Return Value

==0: Ok
==-1: Device is not ready or a general error has occurred.

Parameter Description

sVolume Name of the device to check.
pDeviceInfo Pointer to a data structure of type FS_DEV_INFO.

Table 4.100: FS_GetDeviceInfo() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

145
4.14.7 FS_GetNumFiles()
Description

Returns the number of files in a directory opened by FS_OpenDir().

Prototype
U32 FS_GetNumFiles (FS_DIR * pDir);

Return value

Number of files in a directory.
0xFFFFFFFF as return value indicates an error.

Additional Information

If pDir is valid, the number of files in the directory will be returned. To get a valid
pointer, FS_OpenDir() should be called before using FS_GetNumFiles(). Refer to
FS_OpenDir() on page 147 for more information.

Example

void NumFilesInDirectory(void) {
 U32 NumFilesInDir;
 FS_DIR *pDir ;

 pDir = FS_OpenDir(""); /* Open root directory of default device */
 NumFilesInDir = FS_GetNumFiles(pDir);
 if (NumFilesInDir) {
 char ac[50] ;
 sprintf(ac, "NumFilesInDir = %lu\n", NumFilesInDir);
 FS_X_Log(ac) ;
 }
}

Parameter Description

pDir Pointer to a FS_FILE data structure.
Table 4.101: FS_GetNumFiles() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

146 CHAPTER 4 API functions
4.14.8 FS_InitStorage()
Description

This function only initializes the driver and OS if necessary.

Prototype
void FS_InitStorage (void);

Return value

The return value indicates the caller how many drivers can be used at the same time.
The function will accordingly allocate the sector buffers that are necessary for a file
system operation.

Additional information

If FS_InitStorage() is used to initialize a driver only the hardware layer functions
FS_ReadSector(), FS_WriteSector(), and FS_GetDeviceInfo() are available.

This function is obsolete. Use instead FS_STORAGE_Init() on page 118.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

147
4.14.9 FS_OpenDir()
Description

Opens an existing directory for reading.

Prototype
FS_DIR *FS_OpenDir (const char * pDirname);

Return value

Returns the address of an FS_DIR data structure if the directory was opened.
In case of any error the return value is 0.

Additional Information

A fully qualified directory name looks like:

[DevName:[UnitNum:]][DirPathList]DirectoryName

where:

� DevName is the name of a device, for example �ram� or �mmc�. If not specified, the
first device in the device table will be used.
UnitNum is the number for the unit of the device. If not specified, unit 0 will be
used. Note that it is not allowed to specify UnitNum if DevName has not been spec-
ified.

� DirPathList is a complete path to an existing subdirectory. The path must start
and end with a '\' character. Directory names in the path are separated by '\'. If
DirPathList is not specified, the root directory on the device will be used.

� DirectoryName and all other directory names have to follow the standard FAT
naming conventions (for example 8.3 notation), if support for long file names is
not enabled.

To open the root directory, simply use an empty string for pDirName.

Example

FS_DIR *pDir;

void FSTask1(void) {
 /* Open directory test - default driver on default device */
 pDir = FS_OpenDir("test");
}

void FSTask2(void) {
 /* Open root directory - RAM device driver on default device */
 pDir = FS_OpenDir("ram:");
}

Parameter Description

pDirName Fully qualified directory name.
Table 4.102: FS_OpenDir() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

148 CHAPTER 4 API functions
4.14.10 FS_ReadDir()
Description

Reads next directory entry in directory specified by pDir.

Prototype
FS_DIRENT *FS_ReadDir (FS_DIR * pDir);

Return value

Returns a pointer to a directory entry.
If there are no more entries in the directory or in case of any error, 0 is returned.

Example

Refer to FS_CloseDir() on page 139.

Parameter Description

pDir Pointer to an opened directory.
Table 4.103: FS_ReadDir() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

149
4.14.11 FS_ReadSector()
Description

Reads a sector from a device.

Prototype
int FS_ReadSector(const char *sVolume, const void *pData, U32 SectorIndex);

Return value

== 0: On success
!= 0: On error

Additional information

This function is obsolete. Use instead FS_STORAGE_ReadSector() on page 119.

Parameter Description

sVolume Volume name.
pData Pointer to a data buffer where the read data should be stored.
SectorIndex Index of the sector from which data should be read.

Table 4.104: FS_ReadSector() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

150 CHAPTER 4 API functions
4.14.11.1FS_RewindDir()
Description

Sets the current pointer for reading a directory entry to the first entry in the direc-
tory.

Prototype
void FS_RewindDir (FS_DIR * pDir);

Example

void MainTask(void) {
 FS_DIR *pDir;
 FS_DIRENT *pDirEnt;
 char acDirName[20];

 pDir = FS_OpenDir(""); /* Open the root directory of default device */
 if (pDir) {
 do {
 char acDirName[20];
 pDirEnt = FS_ReadDir(pDir);
 FS_DirEnt2Name(pDirEnt, acDirName); /* Get name of the current DirEntry */
 if ((void*)pDirEnt == NULL) {
 break; /* No more files or directories */
 }
 sprintf(_acBuffer," %s\n", acName);
 FS_X_Log(_acBuffer);
 } while (1);
 /* rewind to 1st entry */
 FS_RewindDir(dirp);
 /* display directory again */
 do {
 pDirEnt = FS_ReadDir(pDir);
 FS_DirEnt2Name(pDirEnt, acDirName); /* Get name of the current DirEntry */
 if ((void*)pDirEnt == NULL) {
 break; /* No more files or directories */
 }
 sprintf(_acBuffer," %s\n", acName);
 FS_X_Log(_acBuffer);
 } while (1);
 FS_CloseDir(pDir);
 }
 else {
 FS_X_ErrorOut("Unable to open directory\n");
 }
}

Parameter Description

pDir Pointer to directory structure.
Table 4.105: FS_RewindDir() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

151
4.14.12 FS_UnmountLL()
Description

Unmounts a given volume at driver layer. Sends an unmount command to the driver,
marks the volume as unmounted and uninitialized.

Prototype
void FS_Unmount (const char * sVolume);

Additional information

This function is obsolete. Use instead FS_STORAGE_Init() on page 118.

Parameter Description

sVolume
sVolume is the name of a volume. If not specified, the first device in
the volume table will be used.

Table 4.106: FS_UnmountLL() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

152 CHAPTER 4 API functions
4.14.13 FS_WriteSector()
Description

Writes a sector to a device.

Prototype
int FS_WriteSector(const char *sVolume, const void *pData, U32 SectorIndex);

Return value

== 0: On success
!= 0: On error

Additional information

This function is obsolete. Use instead FS_STORAGE_Init() on page 104.

Parameter Description

sVolume Volume name.
pData Pointer to the data which should be written to the device.
SectorIndex Index of the sector to which data should be written.

Table 4.107: FS_WriteSector() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

153
Chapter 5

Optimizing performance - Cach-
ing and buffering
This chapter gives an introduction into emFile�s cache handling. Furthermore, it con-
tains the function description and an example.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

154 CHAPTER 5 Optimizing performance - Caching and buffering
5.1 Introduction
A cache is a storage area where frequently used data can be stored for fast access.
In many cases, this can enhance the average execution time. In applications which
do not use a cache data will always be refetched from the storage medium even if it
has been used before. A cache stores accessed and processed data. If the data
should be processed again, it will be copied out of the cache instead of refetching it
from the storage medium. This reduces the average access time, because the
refetching of the data will be left out.

General procedure when using a cache

...
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

155
5.2 Types of caches
In this version, four different cache modules are included:

1. FS_CHACHE_ALL
2. FS_CACHE_MAN
3. FS_CACHE_RW
4. FS_CACHE_RW_QUOTA

Cache module Description

FS_CACHE_ALL
This module is a pure read cache. All sectors that are read
from a volume are cached. This module does not need to be
configured.

FS_CACHE_MAN
This module is also a pure read cache. In contrast to the
FS_CACHE_ALL, this module does only cache the management
sector of a file system (for example, the FAT sectors).

FS_CACHE_RW
FS_CACHE_RW is a configurable cache module. This module can
be either used as read, write or as read/write cache. Addition-
ally, the sectors that should be cached are also configurable.

FS_CACHE_RW_QUOTA
FS_CACHE_RW_QUOTA is a configurable cache module. This mod-
ule can be either used as read, write or as read/write cache.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

156 CHAPTER 5 Optimizing performance - Caching and buffering
5.3 Cache API functions
The following functions are required to enable, configure and control the emFile
cache modules:

Function Description

FS_AssignCache() Adds a cache to a specific device.

FS_CACHE_Clean()
Cleans the caches and writes dirty sectors
to the volume.

FS_CACHE_SetMode() Sets the mode for the cache.

FS_CACHE_SetQuota()
Sets the quotas for the different sector
types in the FS_Cache_RW_Quota cache
module.

Table 5.1: emFile cache function
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

157
5.3.1 FS_AssignCache()
Description

Adds a cache to a specific device.

Prototype
I32 FS_AssignCache (const char * pDevName,
 void * pCacheData,
 U32 NumBytes
 FS_INIT_CACHE * pfInit);

Return value

> 0: Buffer is used as cache for the specified device.
== 0: Buffer cannot be used as cache for this device.

Additional Information

To disable the cache for a specific device, call FS_AssignCache() with NumBytes ==
0. In this case the return value will be 0.
There are four different available cache modules that can be assigned to a specific
device. These modules are the following:

Parameter Description

pDevName
pDevName is the name of a device. If not specified, the first device
in the volume table will be used.

pCacheData Pointer to a buffer that should be used as cache.
NumBytes Size of the specified buffer.

pfInit

Pointer to the initialization function of the desired cache module.
The following values can be used:
FS_CACHE_ALL
FS_CACHE_MAN
FS_CACHE_RW
FS_CACHE_RW_QUOTA

Table 5.2: FS_AssignCache() parameter list

Cache module Description

FS_CACHE_ALL

This module is a pure read cache. All sectors
that are read from a volume are cached. This
module does not need to be configured.
Caching is enabled right after calling
FS_AssignCache().

FS_CACHE_MAN

This module is also a pure read cache. In con-
trast to the FS_CACHE_ALL, this module does
only cache the management sector of a file
system (for example FAT sectors). Caching is
enabled right after calling FS_AssignCache().

FS_CACHE_RW

FS_CACHE_RW is a configurable cache module.
This module can be either used as read, write
or as read/write cache. Additionally, the sec-
tors that should be cached are also config-
urable. Refer to FS_CACHE_SetMode() to
configure the FS_CACHE_RW module.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

158 CHAPTER 5 Optimizing performance - Caching and buffering
Example

#include "FS.h"

static char _acCache[100*1024]; /* Use a 100 Kbyte cache */

void Function(void) {
 /* Assign a cache to the first available device */
 FS_AssignCache("", _acCache, sizeof(_acCache), FS_CACHE_ALL);
 /* Do some work*/
 DoWork();
 /* Disable the read cache */
 FS_AssignCache("", NULL, 0);
}

FS_CACHE_RW_QUOTA

FS_CACHE_RW_QUOTA is a configurable cache
module. This module can be either used as
read, write or as read/write cache. To config-
ure the cache module properly,
FS_CACHE_SetMode() and FS_CACHE_SetQuota
need to be called. Otherwise the functionality
inside the cache is disabled.

Cache module Description
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

159
5.3.2 FS_CACHE_Clean()
Description

Cleans a cache if sectors that are marked as dirty need to be written to the device.

Prototype
void FS_CACHE_Clean (const char * pDevName);

Additional Information

Because only write or read/write caches need to be cleaned, this function should be
called for volumes where the FS_CACHE_RW module is assigned. The other cache mod-
ules ignore the cache clean operation.
Cleaning of the cache is also performed when the volume is unmounted through
FS_Unmount() or disabling or reassigning the cache through FS_AssignCache().

Example

#include "FS.h"

static char _acCache[100*1024]; /* Use a 100 Kbyte Cache */

void Function(void) {
 /* Assign a cache to the first available device */
 FS_AssignCache("", _acCache, sizeof(_acCache), FS_CACHE_ALL);
 /* Set the FS_CACHE_RW module to cache all sectors
 * Sectors are cached for read and write. Write back operation to volume
 * are delayed.
 */
 FS_CACHE_SetMode("", FS_SECTOR_TYPE_MASK_ALL, FS_CACHE_MODE_FULL);
 /* Do some work*/
 DoWork();
 FS_CACHE_Clean("");
 DoOtherWork();
 /* Disable cache */
 FS_AssignCache("", NULL, 0);
}

Parameter Description

pDevName
pDevName is the name of a device. If not specified, the first device in
the volume table will be used.

Table 5.3: FS_CACHE_Clean() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

160 CHAPTER 5 Optimizing performance - Caching and buffering
5.3.3 FS_CACHE_SetMode()
Description

Sets the mode for the cache.

Prototype
int FS_CACHE_SetMode (const char * pDevName,
 int TypeMask,
 int ModeMask);

Return value

== 0: Setting the mode of the cache module was successful.
== -1: Setting the mode of the cache module was not successful.

Additional Information

This function is only usable with the FS_CACHE_RW and FS_CACHE_RW_QUOTA module,
after the FS_CACHE_RW cache has been assigned to a volume. The cache module
needs to be configured with this function. Otherwise, neither read nor write opera-
tions are cached.

Parameter Description

pDevName
pDevName is the name of a device. If not specified, the first device in
the volume table will be used.

TypeMask
Specifies the sector types that should be cached. This parameter
can be an OR-combination of the following sector type mask.

ModeMask
Specifies the cache mode that should be used. Use one of the fol-
lowing parameters as cache mode mask.

Table 5.4: FS_CACHE_SetMode() parameter list

Permitted values for parameter TypeMask (OR-combinable)

FS_SECTOR_TYPE_MASK_DATA Caches all data sectors.
FS_SECTOR_TYPE_MASK_DIR Caches all directory sectors.
FS_SECTOR_TYPE_MASK_MAN Caches all management sectors.

FS_SECTOR_TYPE_MASK_ALL

Caches all sectors by an OR-combina-
tion of:
FS_SECTOR_TYPE_MASK_DATA
FS_SECTOR_TYPE_MASK_DIR
FS_SECTOR_TYPE_MASK_MAN

Permitted values for parameter ModeMask (OR-combinable)

FS_CACHE_MODE_R
Sectors of types defined in TypeMask
are copied to cache when read from
volume.

FS_CACHE_MODE_WT
Sectors of types defined in TypeMask
are copied to cache and also written to
the volume. (write through cache)

FS_CACHE_MODE_WB
Sector types defined in TypeMask are
lazily written back to the device.
(write back cache)
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

161
5.3.4 FS_CACHE_SetQuota()
Description

Sets the quotas for the different sector types in the CacheRW_Quota cache module.

Prototype
int FS_CACHE_SetMode (const char * pDevName,
 int TypeMask,
 U32 NumSectors);

Return value

== -1: Setting the quota of the cache module was not successful.
== 0: Setting the quota of the cache module was successful.

Additional Information

This function is currently only usable with the FS_CACHE_RW_QUOTA module. After the
FS_CACHE_RW_QUOTA cache has been assigned to a volume and the cache mode has
been set, the quotas for the different sector types need to be configured with this
function. Otherwise neither read nor write operations are cached.

Example

#include "FS.h"

static char _acCache[100*1024]; /* Use a 100 Kbyte cache */

void Function(void) {
 /* Assign a cache to the first available device */
 FS_AssignCache("", _acCache, sizeof(_acCache), FS_CACHE_RW_QUOTA);
 /* Set the FS_CACHE_RW module to cache all sectors
 * Sectors are cached for read and write. Write back operation to volume
 * are delayed.
 */
 FS_CACHE_SetMode("", FS_SECTOR_TYPE_MASK_ALL, FS_CACHE_MODE_FULL);
 /* Set the quotas for directory and data sector types
 * in the CACHE_RW_QUOTA module to 10 sectors each
 */
 FS_CACHE_SetQuota("", FS_SECTOR_TYPE_MASK_DATA | FS_SECTOR_TYPE_MASK_DIR, 10);
 /* Do some work*/
 DoWork();
 FS_CACHE_Clean("");
 DoOtherWork();
 /* Disable cache */
 FS_AssignCache("", NULL, 0);
}

Parameter Description

pDevName
pDevName is the name of a device. If not specified, the first device in
the volume table will be used.

TypeMask
Specifies the sector types that should be cached. This parameter
can be an OR-combination of the following sector type mask.

NumSectors
Specifies the number of sectors each sector type that is defined by
TypeMask should reserve.

Table 5.5: FS_CACHE_SetQuota() parameter list

Permitted values for parameter TypeMask (OR-combinable)

FS_SECTOR_TYPE_MASK_DATA Caches all data sectors.
FS_SECTOR_TYPE_MASK_DIR Caches all directory sectors.
FS_SECTOR_TYPE_MASK_MAN Caches all management sectors.

FS_SECTOR_TYPE_MASK_ALL

All sectors are cached.
This is an OR-combination of
FS_SECTOR_TYPE_MASK_DATA
FS_SECTOR_TYPE_MASK_DIR
FS_SECTOR_TYPE_MASK_MAN
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

162 CHAPTER 5 Optimizing performance - Caching and buffering
5.4 Example applications
This example applications can be used to check the gain of performance with enabled
cache. The following example applications are available:

The listed performance values depend on the compiler options, the compiler version,
the used CPU, the storage medium and the defined cache size. The performance val-
ues presented in the tables below have been measured on a system as follows:

5.4.1 Example application: FS_50Files.c
Note: The example application FS_50Files.c uses the time measurement function
OS_GetTime() of embOS, Segger�s Real Time Operating System. For more informa-
tion about embOS, refer to www.segger.com.

The application step by step:
1. Initialize the file system.
2. Perform ma high-level format if required.
3. Create 50 files without a cache.
4. Write the time which was required for creation in the terminal I/O window.
5. Enable a read and write cache.
6. Create 50 files with the enabled read and write cache.
7. Write the time which was required for creation in the terminal I/O window.
8. Flush the cache.
9. Write the time which was required for flushing in the terminal I/O window.
10. Disable the cache.
11. Create again 50 files without a cache.
12. Write the time which was required for creation in the terminal I/O window.

Terminal output:

Cache disabled
Creation of 50 files took: 685 ms
Cache enabled
Creation of 50 files took: 43 ms
Cache flush took: 17 ms
Cache disabled
Creation of 50 files took: 687 ms

Function Description

FS_50Files.c
Table 5.6: emFile cache example applications

Detail Description

CPU ATMEL AT91SAM7S256
Tool chain IAR Embedded Workbench for ARM V4.41A
Model ARM7, Thumb instructions, no interwork
Compiler options Highest speed optimization
Storage medium SD card

Table 5.7: ARM7 sample configuration
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

163
5.4.1.1 Source code listing: FS_50Files.c

#include <stdio.h>
#include <string.h>
#include "FS.h"
#include "RTOS.h"

/***
*
* Defines configurable
*
**
*/
#define NUM_FILES 50

/***
*
* Static data
*
**
*/
static U32 _aCache[0x400];
static char _aacFileName[NUM_FILES][13];

/***
*
* Static code
*
**
*/
/***
*
* _CreateFiles
*/
static void _CreateFiles(void) {
 int i;
 U32 Time;
 FS_FILE * pFile[NUM_FILES];

 Time = OS_GetTime();
 for (i = 0; i < NUM_FILES; i++) {
 pFile[i] = FS_FOpen(&_aacFileName[i][0], "w");
 }
 Time = OS_GetTime() - Time;
 printf("Creation of %d files took: %d ms\n", NUM_FILES, Time);
 for (i = 0; i < NUM_FILES; i++) {
 FS_FClose(pFile[i]);
 }
}

/***
*
* Public code
*
**
*/

/***
*
* MainTask
*/
void MainTask(void);
void MainTask(void) {
 const char * sVolName = "";
 int i;
 U32 Time;

 //
 // Initialize file system
 //
 FS_Init();
 //
 // Check if low-level format is required
 //
 FS_FormatLLIfRequired("");
 //
 // Check if volume needs to be high level formatted.
 //
 if (FS_IsHLFormatted("") == 0) {
 printf("High level formatting\n");
 FS_Format("", NULL);
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

164 CHAPTER 5 Optimizing performance - Caching and buffering
 }
 //
 // Prepare strings in advance
 //
 for (i = 0; i < NUM_FILES; i++) {
 sprintf(&_aacFileName[i][0], "file%.2d.txt", i);
 }
 //
 // Create and measure the time used to create the files.
 //
 printf("Cache disabled\n");
 _CreateFiles();
 //
 // Create and measure the time used to create the files.
 // R/W CACHE enabled.
 //
 FS_AssignCache(sVolName, _aCache, sizeof(_aCache), FS_CACHE_RW);
 FS_CACHE_SetMode(sVolName, FS_SECTOR_TYPE_MASK_ALL, FS_CACHE_MODE_WB);
 printf("Cache enabled\n");
 _CreateFiles();
 Time = OS_GetTime();
 FS_CACHE_Clean(sVolName);
 Time = OS_GetTime() - Time;
 printf("Cache flush took: %d ms", Time);
 //
 // Create and measure the time used to create the files.
 // R/W CACHE disabled.
 //
 printf("Cache disabled\n");
 FS_AssignCache(sVolName, NULL, 0, NULL);
 _CreateFiles();

 while(1);
}

emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

165
Chapter 6

Device drivers
emFile has been designed to cooperate with any kind of hardware. To use specific
hardware with emFile, a so-called device driver for that hardware is required. The
device driver consists of basic I/O functions for accessing the hardware and a global
table that holds pointers to these functions.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

166 CHAPTER 6 Device drivers
6.1 General information

6.1.1 Default device driver names
By default the following identifiers are used for each driver.

To add a driver to emFile, FS_AddDevice() should be called with the proper identifier
to mount the device driver to emFile before accessing the device or its units. Refer to
FS_AddDevice() on page 51 for detailed information.

6.1.2 Unit number
Most driver functions as well as most of the underlying hardware functions receive
the unit number as the first parameter. The unit number allows differentiation
between the different instances of the same device types. If there are for example 2
NAND flashes which operate as 2 different devices, the first one is identified as Unit
= 0, the second one as Unit = 1. If there is just a single instance (as in most sys-
tems), the unit parameter can be ignored by the underlying hardware functions.

Driver (Device) Identifier Name

Harddisk/CompactFlash FS_IDE_Driver “ide:“

MMC/SD SPI mode FS_MMC_SPI_Driver “mmc:“

MMC/SD Card mode FS_MMC_CardMode_Driver “mmc:“

MMC/SD Card mode for ATMEL
devices. FS_MMC_CM_Driver4Atmel “mmc:“

NAND flash and ATMEL's
DataFlash FS_NAND_Driver “nand:“

NOR flash FS_NOR_Driver “nor:“

RAM disk FS_RAMDISK_Driver “ram:“

WINDrive FS_WINDRIVE_Driver “win:“
Table 6.1: List of default device driver labels
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

167
6.1.3 Hardware layer
Some drivers, such as the MMC/SD drivers or the NAND driver, require a hardware
layer. The implementation of this hardware layer is user responsibility. The hardware
layer can be implemented in different ways:

� polled mode
� interrupt driven

6.1.3.1 Polled mode
TBD

Example
/*--
File : HWLayer_PolledDriven.c
Purpose : Sample hardware layer to demonstrate the fundamentels
 of an interrupt driven hardware layer
---------------------------END-OF-HEADER------------------------------
*/
#include "FS.h"
#include "FS_OS.h"

/***
*
* FS_HW_Write
*
* Function description
* FS hardware layer function. Writes a specified number of bytes via SPI
*/
void FS_HW_Write(U8 Unit, const U8 * pData, int NumBytes) {
 //
 // Start transmission using DMA
 //
// TBD by implementer

 //
 // Make sure transmission is completed (in case interrupt came to early)
 //
 while (_IsCompleted()); // TBD by implementer
}

/*************************** End of file ****************************/

6.1.3.2 Interrupt driven hardware layer
TBD

Example
/*--
File : HWLayer_InterruptDriven.c
Purpose : Sample hardware layer to demonstrate the fundamentels
 of an interrupt driven hardware layer
---------------------------END-OF-HEADER------------------------------
*/
#include "FS.h"
#include "FS_OS.h"

/**
*
* _IrqHandler
*/
static void _IrqHandler(void) {
 //
 // Disable further interrupts
 //
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

168 CHAPTER 6 Device drivers
// TBD by implementer

 //
 // Signal (wake) the task waiting
 //
 FS_OS_SIGNAL();
}

/***
*
* FS_HW_Write
*
* Function description
* FS hardware layer function. Writes a specified number of bytes via SPI
*/
void FS_HW_Write(U8 Unit, const U8 * pData, int NumBytes) {
 //
 // Start transmission using DMA
 //
// TBD by implementer

 //
 // For larger blocks of data, enable "transmission complete" interrupt
 // and suspend task to save CPU time (if an OS is present)
 //
 if (NumBytes >= 512) {
 // Enable interrupt: TBD by implementer
 FS_OS_WAIT(1000); // Suspend task with timeout
 }
 //
 // Make sure transmission is completed (in case interrupt came to early)
 //
 while (_IsCompleted()); // TBD by implementer
}

/*************************** End of file ****************************/
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

169
6.2 RAM disk driver
emFile comes with a simple RAM disk driver that makes it possible to use a portion of
your system RAM as drive for data storage. This can be very helpful to examine your
system performance and may also be used as a in-system test procedure.

6.2.1 Supported hardware
The RAM driver can be used with every target with enough RAM. The size of the disk
is defined as the number of sectors reserved for the drive.

6.2.2 Theory of operation
A RAM disk is a portion of memory that you allocate to use as a partition. The RAM
disk driver takes some of your memory and pretends that it is a hard drive that you
can format, mount, save files to, etc.

Remember that every bit of RAM is important for the well being of your system and
the bigger your RAM disk is, the less memory there is available for your system.

6.2.3 Fail-safe operation
When power is lost, the data of the RAM drive is typically lost as well except for sys-
tems with Battery backup for the RAM used as storage device.

For this reason, fail-safety is relevant only for systems which provide such battery
backup.

Unexpected Reset

In case of an unexpected reset the data will be preserved. However, if the Power fail-
ure / unexpected Reset interrupts a write operation, the data of the sector may con-
tain partially invalid data.

Power failure

Power failure causes an unexpected reset and has the same effects.

6.2.4 Wear leveling
The RAM disk driver does not require wear leveling.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

170 CHAPTER 6 Device drivers
6.2.5 Configuring the driver

6.2.5.1 Adding the driver to emFile
To add the driver, use FS_AddDevice() with the driver label FS_RAMDISK_Driver.
This function has to be called from within FS_X_AddDevices(). Refer to
FS_X_AddDevices() on page 320 for more information. Refer to FS_X_AddDevices()
on page 320 for more information.

Example

FS_AddDevice(&FS_RAMDISK_Driver);

6.2.5.2 FS_RAMDISK_Configure()
Description

Configures a single RAM disk instance. This function has to be called from within
FS_X_AddDevices() after adding an instance of the RAMDisk driver. Refer to
FS_X_AddDevices() on page 320 for more information.

Prototype
void FS_RAMDISK_Configure(U8 Unit,
 void * pData,
 U16 BytesPerSector,
 U32 NumSectors);

Additional information

The size of the disk is defined as the number of sectors reserved for the drive. Each
sector consists of 512 bytes. The minimum value for NumSectors is 7. BytesPerSec-
tor defines the size of each sector on the RAM disk. A FAT file system needs a mini-
mum sector size of 512 bytes.

Parameter Description

Unit Unit number (0�N).
pData Pointer to a data buffer.
BytesPerSector Number of bytes per sector.
NumSectors Number of sectors.

Table 6.2: FS_RAMDISK_Configure() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

171
Example

/***
*
* FS_X_AddDevices
*
* Function description
* This function is called by the FS during FS_Init().
* It is supposed to add all devices, using primarily FS_AddDevice().
*
* Note
* (1) Other API functions
* Other API functions may NOT be called, since this function is called
* during initialisation. The devices are not yet ready at this point.
*/
void FS_X_AddDevices(void) {
 void * pRamDisk = NULL;

 FS_AssignMemory(&_aMemBlock[0], sizeof(_aMemBlock));
 //
 // Allocate memory for the RAM disk
 //
 pRamDisk = FS_Alloc(RAMDISK_NUM_SECTORS * RAMDISK_BYTES_PER_SECTOR);
 //
 // Add driver
 //
 FS_AddDevice(&FS_RAMDISK_Driver);
 //
 // Configure driver
 //
 FS_RAMDISK_Configure(0, pRamDisk, RAMDISK_BYTES_PER_SECTOR, RAMDISK_NUM_SECTORS);
}

emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

172 CHAPTER 6 Device drivers
6.2.6 Hardware functions
The RAM disk driver does not need any hardware function.

6.2.7 Addition information

6.2.7.1 Formatting
A RAM disk is unformatted after each startup. Exceptions from this rule are RAM
disks, which are memory backed up with a battery.

You have to format every unformatted RAM disk with the FS_Format() function,
before you can store data on it. If you use only one RAM disk in your application
FS_FORMAT() can be called with an empty string as device name. For example,
FS_Format("", NULL);

If you use more then one RAM disk, you have to specify the device name. For exam-
ple, FS_FORMAT("ram:0:", NULL); for the first device and FS_FORMAT("ram:1:",
NULL); for the second. Refer to FS_Format() on page 99 for more detailed informa-
tion about the high-level format function of emFile.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

173
6.3 NAND flash driver
emFile supports the use of NAND flashes. An optional driver for NAND flashes is
available. The NAND driver requires very little RAM, it can work with sector sizes of
512 bytes or 2 Kbytes (small sectors even on large page NAND flashes) and is
extremely efficient. The driver is designed to support one or multiple SLC (Single
Level Cell) NAND flashes. The NAND flash driver can also be used to access ATMEL's
DataFlash chips. To use it in your system, you will have to provide basic I/O functions
for accessing your flash device.

This section first describes which devices are supported and describes all hardware
access functions required by the NAND flash driver.

NAND flash organization

A NAND flash is a serial-type memory device which utilizes the I/O pins for both
address and data input/output as well as for command inputs. The erase and pro-
gram operations are automatically executed. To store data on the NAND flash device,
it has to be low-level formatted.

NAND flashes consist of a number of blocks. Every block contains a number of sec-
tors, typically 64. The sectors can be written to individually, one at a time. When
writing to a sector, bits can only be written from 1 to 0. Only whole blocks (all sectors
in the block) can be erased. Erasing means bringing all memory bits in all sectors of
the block to logical 1.

Small NAND flashes (up to 256 Mbytes) have a page size of 528 bytes, 512 for data
+ 16 spare bytes for storing relevant information (ECC, etc.) to the page. Large
NAND devices (256 Mbytes or more) have a page size of 2112 bytes, 2048 bytes for
data + 64 bytes for storing relevant information to the page.

For example, a typical NAND flash with a size of 256 Mbytes has 2048 blocks of 64
pages of 2112 bytes (2048 bytes for data + 64 bytes).

P0 P1 P63P62

P0 P1 P63P62

...

...

Block 0

Block n

Data Area

Spare Area

NAND flash organization

...
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

174 CHAPTER 6 Device drivers
6.3.1 Supported hardware

6.3.1.1 Tested and compatible NAND flashes
In general, the driver supports almost all Single-Level Cell NAND flashes (SLC). This
includes NAND flashes with page sizes of 512+16 and 2048+64 bytes.

The table below shows the NAND flashes that have been tested or are compatible
with a tested device:

Manufacturer Device Page size [Bytes] Size [Bits]

Hynix

HY27xS08281A 512+16 16Mx8
HY27xS08561M 512+16 32Mx8
HY27xS08121M 512+16 64Mx8
HY27xA081G1M 512+16 128Mx8

Samsung

K9F6408Q0xx
K9F6408U0xx

512+16
512+16

8Mx8
8Mx8

K9F2808Q0xx
K9F2808U0xx

512+16
512+16

16Mx8
16Mx8

K9F5608Q0xx
K9F5608D0xx
K9F5608U0xx

512+16
512+16
512+16

32Mx8
32Mx8
32Mx8

K9F1208Q0xx
K9F1208D0xx
K9F1208U0xx
K9F1208R0xx

512+16
512+16
512+16
512+16

64Mx8
64Mx8
64Mx8
64Mx8

K9K1G08R0B
K9K1G08B0B
K9K1G08U0B
K9K1G08U0M
K9T1GJ8U0M

512+16
512+16
512+16
512+16
512+16

128Mx8
128Mx8
128Mx8
128Mx8
128Mx8

ST-Microelectronics

NAND128R3A
NAND128W3A

512+16
512+16

16Mx8
16Mx8

NAND256R3A
NAND256W3A

512+16
512+16

32Mx8
32Mx8

NAND512R3A
NAND512W3A

512+16
512+16

64Mx8
64Mx8

NAND01GR3A
NAND01GW3A

512+16
512+16

128Mx8
128Mx8

Toshiba

TC5816BFT 512+16 2Mx8
TC58V32AFT 512+16 4Mx8
TC58V64BFTx 512+16 8Mx8
TC58256AFT
TC582562AXB

512+16
512+16

32Mx8
32Mx8

TC58512FTx 512+16 64Mx8
TH58100FT 512+16 256Mx8

Hynix

HY27UF082G2M 2048+64 256Mx8
HY27UF084G2M 2048+64 512Mx8
HY27UG084G2M 2048+64 512Mx8
HY27UG084GDM 2048+64 512Mx8

Table 6.3: List of supported NAND flashes
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

175
Support for devices not in this list

Most other NAND flash devices are compatible with one of the supported devices.
Thus, the driver can be used with these devices or may only need a little modifica-
tion, which can be easily done. Get in touch with us, if you have questions about sup-
port for devices not in this list.

6.3.1.2 Tested and compatible DataFlash chips

The NAND flash driver fully supports the ATMEL DataFlash®/DataFlash Cards series
up to 128 MBit. Currently the following devices are supported:

Note: DataFlash chips with a page size that is power of 2 are not supported by
this driver.

Micron

MT29F2G08A
MT29F2G08B
MT29F4G08A
MT29F4G08B
MT29F2G16A

2048+64
2048+64
2048+64
2048+64
2048+64

256Mx8
256Mx8
512Mx8
512Mx8
128Mx16

Samsung

K9F1G08x0A
K9F2G08U0M
K9K2G08R0A
K9K2G08U0M
K9F4G08U0M
K9F8G08U0M

2048+64
2048+64
2048+64
2048+64
2048+64
2048+64

256Mx8
256Mx8
256Mx8
256Mx8
512Mx8
1024Mx8

ST-Microelectronics

NAND01GR3B
NAND01GW3B
NAND02GR3B
NAND02GW3B
NAND04GW3

2048+64
2048+64
2048+64
2048+64
2048+64

128Mx8
128Mx8
256Mx8
256Mx8
512Mx8

Manufacturer Device

ATMEL

AT45DB011B
AT45DB021B
AT45DB041B
AT45DB081B
AT45DB161B
AT45DB321C
AT45BR3214B
AT45DCB002
AT45DCB002
AT45DB642D
AT45DB1282

Table 6.4: List of supported serial flash devices

Manufacturer Device Page size [Bytes] Size [Bits]

Table 6.3: List of supported NAND flashes
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

176 CHAPTER 6 Device drivers
6.3.1.3 Pin description - NAND flashes

6.3.1.4 Pin description - DataFlashes
DataFlash chips are commonly used when low pin count and easy data transfer are
required. DataFlash devices use the following pins:

Pin Driver (Device)

CE
CHIP ENABLE
The CE input enables the device. Signal is active low. If the signal is
inactive, device is in standby mode.

WE
WRITE ENABLE
The WE input controls writes to the I/O port. Commands, address and
data are latched on the rising edge of the WE pulse.

RE
READ ENABLE
The RE input is the serial data-out control. When active (low) the
device outputs data.

CLE

COMMAND LATCH ENABLE
The CLE input controls the activating path for commands sent to the
command register. When active high, commands are latched into the
command register through the I/O ports on the rising edge of the WE
signal.

ALE

ADDRESS LATCH ENABLE
The ALE input controls the activating path for address to the internal
address registers. Addresses are latched on the rising edge of WE with
ALE high.

WP
WRITE PROTECT
Typically connected to VCC (recommended), but may also be connected
to port pin.

R/B

READY/BUSY OUTPUT
The R/B output indicates the status of the device operation. When low,
it indicates that a program, erase or read operation is in process. It
returns to high state when the operation is completed. It is an open
drain output. Should be connected to a port pin with pull-up. If avail-
able a port pin which can trigger an interrupt should be used.

I/O0- I/O7

DATA INPUTS/OUTPUTS
The I/O pins are used to input command, address and data, and to out-
put data during read operations.

I/O8- I/O15
DATA INPUTS/OUTPUTS
I/O8-I/O15 16-bit flashes only.

Table 6.5: NAND flash pin description

Pin Meaning

CS
ChipSelect
This pin selects the DataFlash device. The device is
selected, when CS pin is driven low.

Table 6.6: DataFlash chip pin function description
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

177
Additionally the following requirements need to be fulfilled by your host system:

� Data transfer width is 8 bit.
� Chip Select (CS) sets the card active at low-level and inactive at high level.
� Clock signal must be generated by the target system. The serial flash chips are

always in slave mode.
� Bit order requires most significant bit (MSB) to be sent out first.

To setup all these requirements, the NAND flash driver will call the function
FS_DF_HW_X_Init(), therefore the function FS_DF_HW_X_Init() can be used to ini-
tialize the SPI bus. Refer to FS_DF_HW_X_Init() on page 211 for further details.

SCLK

Serial Clock
The SCLK pin is an input-only pin and is used to con-
trol the flow of data to and from the DataFlash. Data is
always clocked into the device on the rising edge of
SCLK and clocked out of the device on the falling edge
of SCLK.

SI

Serial Data In
The SI pin is an input-only pin and is used to transfer
data into the device. The SI pin is used for all data
input including opcodes and address sequences.

SO
Serial Data Out
This SO pin is an output pin and is used to transfer
data serially out of the device.

Pin Meaning

Table 6.6: DataFlash chip pin function description
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

178 CHAPTER 6 Device drivers
6.3.1.5 Sample block schematics

6.3.2 Theory of operation
NAND flash devices are divided into physical blocks and physical pages. One physical
block is the smallest erasable unit; one physical page is the smallest writable unit.
Small block NAND flashes contain multiple pages. One block contain typically 16 / 32
/ 64 pages per block. Every page has a size of 528 bytes (512 data bytes + 16 spare
bytes). Large block NAND Flash devices contain blocks made up of 64 pages, each
page containing 2112 bytes (2048 data bytes + 64 spare bytes).

The driver uses the spare bytes for the following purposes:

1. To check if the data status byte and block status are valid.
If they are valid the driver uses this sector. When the driver detects a bad sector, the
whole block is marked as invalid and its content is copied to a non-defective block.

2. To store/read an ECC (Error Correction Code) for data reliability.
When reading a sector, the driver also reads the ECC stored in the spare area of
the sector, calculates the ECC based on the read data and compares the ECCs. If
the ECCs are not identical, the driver tries to recover the data, based on the read
ECC.

NAND
Flash 1

(optional)

WP

NAND
Flash 0

R/B
WE
RE
CLE
ALE
CE0
CE1

R/B
WE
RE
CLE
ALE
CE1

WP

CPU

NAND
Flash n

(optional)

WP
R/B
WE
RE
CLE
ALE
CEn

I / O

CEn

...
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

179
When writing to a page the ECC is calculated based on the data the driver has to
write to the page. The calculated ECC is then stored in the spare area.

6.3.2.1 Error correction code (ECC)
The emFile NAND driver is highly speed optimized and offers a better error detection
and correction than a standard memory controller ECC. The ECC is capable of single
bit error correction and 2-bit random detection. When a block for which the ECC is
computed has 2 or more bit errors, the data cannot be corrected.

Standard memory controllers compute an ECC for the complete blocksize (512 / 2048
bytes). The emFile NAND driver computes the ECC for data chunks of 256 bytes (e.g.
a page with 2048 bytes is divided into 8 parts of 256 bytes), so the probability to
detect and also correct data errors is much higher. This enhancement is realized with
a very good performance. The ECC computation of the emFile NAND driver is highly
optimized, so that a performance of 18 Mbytes/second can be achieved with an ARM7
based MCU running at 48 MHz.

We suggest the use of the emFile NAND driver without the usage of a memory con-
troller, because the performance of the driver is very high and the error correction is
much better if it is controlled from driver side.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

180 CHAPTER 6 Device drivers
6.3.2.2 Software structure
The NAND Flash driver is split up into different layers, which are shown in the illus-
tration below.

It is possible to use the NAND driver with custom hardware. If port pins or a simple
memory controller are used for accessing the flash memory, only the hardware layer
needs to be ported, normally no changes to the physical layer are required. If the
NAND driver should be used with a special memory controller (for example special
FPGA implementations), the physical layer needs to be adapted. In this case, the
hardware layer is not required, because the memory controller manages the hard-
ware access.

6.3.3 Fail-safe operation
The emFile NAND driver is fail-safe. That means that the driver makes only atomic
actions and takes the responsibility that the data managed by the file system is
always valid. In case of a power loss or a power reset during a write operation, it is
always assured that only valid data is stored in the flash. If the power loss interrupts
the write operation, the old data will be kept and the block not corrupted.

In case of a power loss the fail-safe operation is only guaranteed if the NAND flash is
able to fully complete the last command it received from the CPU. The oscilloscope
capture below shows that the power down sequence meets the requirements needed
for a fail-safe operation of a NAND flash.

� VCC is the main power supply voltage.
� RESET is a signal driven high by a program running on the CPU. This signal goes

low when the CPU stops running indicating the point in time when the last com-
mand could have been sent to NAND flash.

� VCCmin is the minimum supply voltage required for the NAND flash to properly
operate.

� Tmax is the time it takes for the longest NAND flash operation to complete.

As it can be seen in the picture the supply voltage stays above VCCmin long enough
to allow for any NAND flash command to finish.

NAND driver

Logical Layer

NAND driver

Physical Layer

User provided

Hardware Layer

NAND driver

Logical Layer

User provided

Physical Layer

Port pin
(any hardware, simple

memory controller)

Memory controller
(e.g. special FPGA
implementations)
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

181
6.3.4 Wear leveling
Wear leveling is supported by the driver. Wear leveling makes sure that the number
of erase cycles remains approximately equal for each sector. Maximum erase count
difference is set to 5. This value specifies a maximum difference of erase counts for
different physical sectors before the wear leveling uses the sector with the lowest
erase count.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

182 CHAPTER 6 Device drivers
6.3.5 Configuring the driver

6.3.5.1 Adding the driver to emFile
To add the driver, use FS_AddDevice() with the driver label FS_NAND_Driver. This
function has to be called from within FS_X_AddDevices(). Refer to
FS_X_AddDevices() on page 320 for more information.

Example
void FS_X_AddDevices(void) {
 FS_AssignMemory(&_aMemBlock[0], sizeof(_aMemBlock));
 FS_AddDevice(&FS_NAND_Driver);
 FS_NAND_SetPhyType(0, &FS_NAND_PHY_x8); // Set the physical
 // interface of the NAND flash
 FS_NAND_SetBlockRange(0, 2, 128); // Skip 2 blocks (256 Kbytes in case of 2K
 // device)
 // Size is 128 blocks
 // For 2k devices, this means
 // 2 Kbytes * 64 * 128 = 16 Mbytes
}

6.3.5.2 Driver specific configuration functions

FS_NAND_SetPhyType()

Description

Sets the physical type of the device. NAND flash is organized in pages of either 512
or 2048 bytes and has an 8-bit or 16-bit interface. The driver needs to know the cor-
rect combination of page and interface width.

Prototype
void FS_NAND_SetPhyType(U8 Unit, const FS_NAND_PHY_TYPE * pPhyType);

Function Description

FS_NAND_SetPhyType() Sets the physical type of the device.

FS_NAND_SetBlockRange()
Set a limit on which blocks of the NAND
flash can be controlled by the driver.

Table 6.7: NAND driver specific configuration functions

Parameter Meaning

Unit Unit number (0�N).
pPhyType Pointer to physical type.

Table 6.8: FS_NAND_SetPhyType() parameter list

Permitted values for parameter pPhyType

FS_NAND_PHY_512x8
Supports the following NAND devices:
- 512 bytes per page and 8-bit width

FS_NAND_PHY_2048x8
Supports the following NAND devices:
- 2048 bytes per page and 8-bit width

FS_NAND_PHY_2048x16
Supports the following NAND devices:
- 2048 bytes per page and 16-bit width

FS_NAND_PHY_4096x8
Supports this NAND devices:
- 4096 bytes per page and 8-bit width
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

183
Additional information

This function needs to be called for every NAND device added.

Example

Refer to Adding the driver to emFile on page 182 for an example.

FS_NAND_SetBlockRange()

Description

Sets a limit for which blocks of the NAND flash can be controlled by the driver.

Prototype
void FS_NAND_SetBlockRange(U8 Unit, U16 FirstBlock, U16 MaxNumBlocks);

Additional information
This function is optional. By default, the driver controls all blocks of the NAND flash,
making the entire NAND flash available. If a part of the NAND flash should be used
for another purpose (for example to store the application program used by a boot-
loader) and therefore is not controlled by the driver, this function can be used. Limit-
ing the number of blocks used by the driver also reduces the amount of memory used
by the driver.

Example

Refer to Adding the driver to emFile on page 182 for an example.

FS_NAND_PHY_x

Supports the following NAND devices:
- 512 bytes per page and 8-bit width
- 2048 bytes per page and 8-bit width
- 2048 bytes per page and 16-bit width

FS_NAND_PHY_x8
Supports the following NAND devices:
- 512 bytes per page and 8-bit width
- 2048 bytes per page and 8-bit width

FS_NAND_PHY_DataFlash

Supports ATMEL DataFlashes. The physi-
cal layer driver accesses these chips
using the SPI mode. To use the driver
with ATMEL DataFlash chips in your sys-
tem, you will have to provide basic I/O
functions which are divergent to the
hardware functions of the other physical
layers. Refer to Hardware layer on
page 194 for detailed information.

Parameter Meaning

Unit Unit number (0�N).

FirstBlock
Zero-based index of the first block to use.
Specifies the number of blocks at the beginning of the device to
skip. 0 means that no blocks are skipped.

MaxNumBlocks
Maximum number of blocks to use.
0 means use all blocks after FirstBlock.

Table 6.9: FS_NAND_SetBlockRange() parameter list

Permitted values for parameter pPhyType
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

184 CHAPTER 6 Device drivers
6.3.6 Physical layer
There is normally no need to change the physical layer of the NAND driver, only the
hardware layer has to be adapted.

In some special cases, when the low-level hardware routines provided by the driver
are not compatible with the target hardware (e.g. special FPGA implementations of a
memory controller), the physical layer has to be adapted.

6.3.6.1 Available physical layers
The following physical layers are available. Refer to Configuring the driver on
page 182 for detailed information about how to add the required physical layer to
your application.

Available physical layers

FS_NAND_PHY_512x8
Supports the following NAND devices:
- 512 bytes per page and 8-bit width

FS_NAND_PHY_2048x8
Supports the following NAND devices:
- 2048 bytes per page and 8-bit width

FS_NAND_PHY_2048x16
Supports the following NAND devices:
- 2048 bytes per page and 16-bit width

FS_NAND_PHY_4096x8
Supports the following NAND devices:
- 4096 bytes per page and 8-bit width

Table 6.10: Available physical layer

NAND driver

Logical Layer

NAND driver

Physical Layer

User provided

Hardware Layer

NAND driver

Logical Layer

User provided

Physical Layer

Port pin
(any hardware, simple

memory controller)

Memory controller
(e.g. special FPGA
implementations)
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

185
6.3.6.2 Physical layer functions
If there is a reason to change the physical layer anyhow, the functions which have to
be changed are organized in a function table. The function table is implemented in a
structure of type FS_NAND_PHY_TYPE.

typedef struct FS_NAND_PHY_TYPE {
 int (*pfEraseBlock) (U8 Unit,
 U32 Block);
 int (*pfInitGetDeviceInfo) (U8 Unit,
 FS_NAND_DEVICE_INFO * pDevInfo);
 int (*pfIsWP) (U8 Unit);
 int (*pfRead) (U8 Unit,
 U32 PageNo,
 void * pData,
 unsigned Off,
 unsigned NumBytes);
 int (*pfReadEx) (U8 Unit,
 U32 PageNo,
 void * pData,
 unsigned Off,
 unsigned NumBytes,
 void * pSpare,
 unsigned OffSpare,
 unsigned NumBytesSpare);
 int (*pfWrite) (U8 Unit,
 U32 PageNo,
 const void * pData,
 unsigned Off,
 unsigned NumBytes);
 int (*pfWriteEx) (U8 Unit,
 U32 PageNo,
 const void * pData,
 unsigned Off,
 unsigned NumBytes,
 const void * pSpare,
 unsigned OffSpare,
 unsigned NumBytesSpare);
} FS_NAND_PHY_TYPE;

FS_NAND_PHY_x

Supports the following NAND devices:
- 512 bytes per page and 8-bit width
- 2048 bytes per page and 8-bit width
- 2048 bytes per page and 16-bit width
- 4096 bytes per page and 8-bit width

FS_NAND_PHY_x8

Supports the following NAND devices:
- 512 bytes per page and 8-bit width
- 2048 bytes per page and 8-bit width
- 4096 bytes per page and 8-bit width

FS_NAND_PHY_DataFlash

Supports ATMEL DataFlashes. The physical layer driver
accesses these chips using the SPI mode. To use the
driver with ATMEL DataFlash chips in your system, you
will have to provide basic I/O functions which are diver-
gent to the hardware functions of the other physical lay-
ers. Refer to Hardware layer on page 194 for detailed
information.

Available physical layers

Table 6.10: Available physical layer
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

186 CHAPTER 6 Device drivers
If the physical layer should be modified, the following members of the structure
FS_NAND_PHY_TYPE have to be adapted:

Routine Explanation

*pfEraseBlock Erases a chosen block of the device.

*pfInitGetDevInfo()
Initializes the devices and retrieves the
device information.

*pfIsWP Checks if the device is write protected.
*pfRead Reads data from the device.

*pfReadEx
Reads data from the device and the spare
area.

*pfWrite Writes data to the device.

*pfWriteEx
Writes data to the device and the spare
area.

Table 6.11: NAND device driver physical layer functions
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

187
6.3.6.2.1 (*pfEraseBlock)()

Description

Erases one block of the device. A block is the smallest erasable unit.

Prototype
int (*pfEraseBlock) (U8 Unit, U32 PageIndex);

Return value

== 0: On success, block erased.
==-1: In case of an error.

Parameter Meaning

Unit Unit number (0�N).

PageIndex

Zero-based index of the first page in the block to be erased.
If the device has 64 pages per block, then the following values are
permitted:
PageIndex == 0 -> block 0,
PageIndex == 64 -> block 1,
PageIndex == 128 -> block 2,
etc.

Table 6.12: (*pfEraseBlock)() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

188 CHAPTER 6 Device drivers
6.3.6.2.2 (*pfInitGetDeviceInfo)()

Description

Initializes hardware layer, resets NAND flash and tries to identify the NAND flash. If
the NAND flash can be handled, FS_NAND_DEVICE_INFO is filled.

Prototype
int (*pfInitGetDeviceInfo) (U8 Unit,
 FS_NAND_DEVICE_INFO * pDevInfo) {

Return value

== 0: On success.
== 1: In case of an error.

Parameter Meaning

Unit Unit number (0�N).
pDevInfo Pointer to a structure of type FS_NAND_DEVICE_INFO.

Table 6.13: (*pfInitGetDeviceInfo)() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

189
6.3.6.2.3 (*pfIsWP)()

Description

Checks if the device is write protected. This is done by reading bit 7 of the status
register. Typical reason for write protection is that either the supply voltage is too low
or the /WP-pin is active (low).

Prototype
int (*pfIsWP)(U8 Unit);

Return value

== 0: Device is not write protected.
== 1: Device is write protected.

Parameter Meaning

Unit Unit number (0�N).
Table 6.14: (*pfIsWP)() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

190 CHAPTER 6 Device drivers
6.3.6.2.4 (*pfRead)()

Description

This function can be used to read from the data or spare area of the device. The
spare area is assumed to be located right after the main area.

Prototype
int (*pfRead) (U8 Unit,
 U32 PageIndex,
 void * pData,
 unsigned Off,
 unsigned NumBytes);

Return value

== 0: Data successfully transferred.
!= 0: An error has occurred.

Additional information

If the parameter Off is smaller than the page size, the data area is accessed. An off-
set greater than the page size indicates that the spare area should be accessed.

Parameter Meaning

Unit Unit number (0...N).

PageIndex
Zero-based index of page to be read. Needs to be smaller than page
size.

pData Pointer to a buffer for read data.
Off Byte offset within the page.
NumBytes Number of bytes to read

Table 6.15: (*pfRead)() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

191
6.3.6.2.5 (*pfReadEx)()

Description

Reads from both the data and the spare area of a page.

Prototype
int (*pfReadEx) (U8 Unit,
 U32 PageIndex,
 void * pData,
 unsigned Off,
 unsigned NumBytes,
 void * pSpare,
 unsigned OffSpare,
 unsigned NumBytesSpare);

Return value

== 0: Data successfully transferred.
!= 0: An error has occurred.

Parameter Meaning

Unit Unit number (0...N).
PageIndex Number of page that should be read.
pData Pointer to a buffer for read data.

Off
Byte offset within the page, which needs to be smaller than the
page size.

NumBytes Number of bytes to read.
pSpare Pointer to a buffer for spare data.

OffSpare

Offset from the start of the spare area to the point where spare
data should be read. First byte of the spare area has the same off-
set as the page size.
Example:
Page size: 512
OffSpare == 512 -> First byte of spare area
OffSpare == 513 -> Second byte of spare area
Page size: 2048
OffSpare == 2048 -> First byte of spare area
OffSpare == 2049 -> Second byte of spare area

NumBytesSpare Number of spare bytes to read.
Table 6.16: (*pfReadEx)() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

192 CHAPTER 6 Device drivers
6.3.6.2.6 (*pfWrite)()

Description

Writes data into a complete or a part of a page. This code is identical for main mem-
ory and spare area; the spare area is located right after the main area.

Prototype
int (*pfWrite) (U8 Unit,
 U32 PageIndex,
 const void * pData,
 unsigned Off,
 unsigned NumBytes);

Return value
== 0: Data successfully transferred.
!= 0: An error has occurred.

Parameter Meaning

Unit Unit number (0...N).
PageIndex Zero-based index of page to be written.
pData Pointer to a buffer of data which should be written.

Off
Byte offset within the page, which needs to be smaller than the
page size.

NumBytes Number of bytes which should be written.
Table 6.17: (*pfWrite)() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

193
6.3.6.2.7 (*pfWrite Ex)()

Description

Writes data to 2 parts of a page. Typically used to write both the data and spare area
of a page in one step.

Prototype
int (*pfWriteEx) (U8 Unit,
 U32 PageIndex,
 const void * pData,
 unsigned Off,
 unsigned NumBytes,
 const void * pSpare,
 unsigned OffSpare,
 unsigned NumBytesSpare);

Return value

== 0: Data successfully transferred.
!= 0: An error has occurred.

Parameter Meaning

Unit Unit number (0...N).
PageIndex Number of page that should be written.
pData Pointer to a buffer of data which should be written.

Off
Byte offset within the page, which needs to be smaller than the
page size.

NumBytes Number of bytes to write.
pSpare Pointer to a buffer data which should be written to the spare area.

OffSpare

Offset from the start of the spare area to the point where spare
data should be written. First byte of the spare area has the same
offset as the page size.
Example:
Page size: 512
OffSpare == 512 -> First byte of spare area
OffSpare == 513 -> Second byte of spare area
Page size: 2048
OffSpare == 2048 -> First byte of spare area
OffSpare == 2049 -> Second byte of spare area

NumBytesSpare Number of spare bytes to write.
Table 6.18: (*pfWriteEx)() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

194 CHAPTER 6 Device drivers
6.3.7 Hardware layer

6.3.7.1 Hardware functions - NAND flash

Routine Explanation

FS_NAND_HW_X_SetAddrMode() CLE low and ALE high for the specified device.
FS_NAND_HW_X_SetCmdMode() CLE high and ALE low for the specified device.
FS_NAND_HW_X_SetDataMode() CLE low and ALE low for the specified device.
FS_NAND_HW_X_DisableCE() Disables CE.
FS_NAND_HW_X_EnableCE() Enables CE.
FS_NAND_HW_X_WaitWhileBusy() Waits while the device is busy.

FS_NAND_HW_X_Read_x8()
For 8-bit NAND flashes:
Reads data from the NAND flash device.

FS_NAND_HW_X_Read_x16()
For 16-bit NAND flashes:
Reads data from the NAND flash device.

FS_NAND_HW_X_Write_x8()
For 8-bit NAND flashes:
Writing data to the NAND flash, using the I/O 0-7
lines of the NAND flash device.

FS_NAND_HW_X_Write_16()
For 16-bit NAND flashes:
Writing data to the NAND flash, using the I/O 0-
15 lines of the NAND flash device.

FS_NAND_HW_X_Delayus() Delays for a specified period of time.

FS_NAND_HW_X_Init_x8()
For 8-bit NAND flashes:
Initializes the NAND flash device.

FS_NAND_HW_X_Init_x16()
For 16-bit NAND flashes:
Initializes the NAND flash device.

Table 6.19: NAND device driver hardware layer functions
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

195
6.3.7.1.1 FS_NAND_HW_X_SetAddrMode()

Description

Sets CLE low and ALE high for the specified device.

Prototype
void FS_NAND_HW_X_SetAddrMode (U8 Unit);

Additional Information

This function is called to start the address data transfer.

Example

void FS_NAND_HW_X_SetAddrMode(U8 Unit) {
 FS_USE_PARA(Unit);
 /* CLE low, ALE high */
 NAND_CLR_CLE();
 NAND_SET_ALE();}
}

Parameter Meaning

Unit Unit number (0�N).
Table 6.20: FS_NAND_HW_X_SetAddrMode() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

196 CHAPTER 6 Device drivers
6.3.7.1.2 FS_NAND_HW_X_SetCmdMode()

Description

Sets CLE high and ALE low for the specified device.

Prototype
void FS_NAND_HW_X_SetCmdMode (U8 Unit);

Additional Information

This function is called to start the command transfer.

Example

void FS_NAND_HW_X_SetCmdMode(U8 Unit) {
 FS_USE_PARA(Unit);
 /* CLE high, ALE low */
 NAND_SET_CLE();
 NAND_CLR_ALE();
}

Parameter Meaning

Unit Unit number (0�N).
Table 6.21: FS_NAND_HW_X_SetCmdMode() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

197
6.3.7.1.3 FS_NAND_HW_X_SetDataMode()

Description

Sets CLE low and ALE low for the specified device.

Prototype
void FS_NAND_HW_X_SetDataMode (U8 Unit);

Additional Information

This function is called to the start data transfer.

Example

void FS_NAND_HW_X_SetData(U8 Unit) {
 FS_USE_PARA(Unit);
 /* CLE low, ALE low */
 NAND_CLR_CLE();
 NAND_CLR_ALE();
}

Parameter Meaning

Unit Unit number (0�N).
Table 6.22: FS_NAND_HW_X_SetDataMode() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

198 CHAPTER 6 Device drivers
6.3.7.1.4 FS_NAND_HW_X_DisableCE()

Description

Disables NAND CE.

Prototype
void FS_NAND_HW_X_DisableCE (U8 Unit);

Parameter Description

Unit Unit number (0�N).
Table 6.23: FS_NAND_HW_X_DisableCE() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

199
6.3.7.1.5 FS_NAND_HW_X_EnableCE()

Description

Enables NAND CE.

Prototype
void FS_NAND_HW_X_EnableCE (U8 Unit);

Example

/***
*
* FS_NAND_HW_X_EnableCE
*/
void FS_NAND_HW_X_EnableCE(U8 Unit) {
 PIOB_CODR = (1 << 18); // Enable NAND CE
}

Parameter Meaning

Unit Unit number (0�N).
Table 6.24: FS_NAND_HW_X_EnableCE() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

200 CHAPTER 6 Device drivers
6.3.7.1.6 FS_NAND_HW_X_WaitWhileBusy()

Description

Checks whether the device is busy.

Prototype
int FS_NAND_HW_X_WaitWhileBusy (U8 Unit,
 unsigned us);

Return value

0 if the device is not busy.
Any other value means that an operation is pending.

Additional Information

If your hardware allows you to monitor the nR/B line, you can use the status of that
line and return when the device is not busy. Otherwise, the function should return 1.
In this case, the physical layer will perform a software-status-check of the device or
wait for the time required by the current operation.

Example

int FS_NAND_HW_X_WaitWhileBusy(U8 Unit, unsinged us) {
 int IsReady;
 do {
 IsReady = NAND_GET_RDY() ? 0 : 1;
 } while(IsReady == 0);
 return IsReady;
}

Parameter Meaning

Unit Unit number (0�N).
us Time in µs to wait.

Table 6.25: FS_NAND_HW_X_WaitWhileBusy() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

201
6.3.7.1.7 FS_NAND_HW_X_Read_x8()

Description

Reads data from an 8-bit NAND flash device, using the I/O 0-7 lines.

Prototype
void FS_NAND_HW_X_Read_x8 (U8 Unit,
 U8 * pBuffer,
 unsigned NumBytes);

Additional Information

When reading from the device, usually you will not have to take care of handling the
RE line because that is done automatically by the hardware.
If you do have to control the RE line, make sure that timing is according to your
NAND flash device specification.

Example

void FS_NAND_HW_X_Read_x8(U8 Unit, U8 * pBuffer, unsigned NumBytes) {
 SET_DATA2INPUT();
 do {
 NAND_CLR_RE(); /* RE is active low */
 NAND_GET_DATA(*pBuffer);
 pBuffer++;
 NAND_SET_RE(); /* disable RE */
 } while (--NumBytes);
}

Parameter Meaning

Unit Unit number (0�N).
pBuffer Pointer to a buffer to store the read data.
NumBytes Number of bytes that should be stored into the buffer.

Table 6.26: FS_NAND_HW_X_Read_x8() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

202 CHAPTER 6 Device drivers
6.3.7.1.8 FS_NAND_HW_X_Read_x16()

Description

Reads data from a 16-bit NAND flash device, using the I/O 0-15 lines.

Prototype
void FS_NAND_HW_X_Read_x16 (U8 Unit,
 U8 * pBuffer,
 unsigned NumBytes);

Additional Information

When reading from the device, usually you will not have to take care of handling the
RE line because that is done automatically by the hardware.
If you do have to control the RE line, make sure that timing is according to your
NAND flash device specification.

Parameter Meaning

Unit Unit number (0�N).
pBuffer Pointer to a buffer to store the read data.
NumBytes Number of bytes that should be stored into the buffer.

Table 6.27: FS_NAND_HW_X_Read_x16() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

203
6.3.7.1.9 FS_NAND_HW_X_Write_x8()

Description

Writes data to an 8-bit NAND flash, using the I/O 0-7 lines of the NAND flash device.

Prototype
void FS_NAND_HW_X_Write_x8 (U8 Unit,
 const U8 * pBuffer,
 unsigned NumBytes);;

Additional Information

When writing data to the device, usually you will not have to take care of handling
the WE line because that is done automatically by the hardware.
If you do have to control the WE line, make sure that timing is according to your
NAND flash device specifications.

Example

void FS_NAND_HW_X_Write_x8(U8 Unit, U8 * pBuffer, unsigned NumBytes) {
 SET_DATA2OUTPUT();
 do {
 NAND_CLR_WE(); /* WE is active low */
 NAND_SET_DATA(*pBuffer);
 pBuffer++;
 NAND_SET_WE(); /* disable WE */
 } while (--NumBytes);
 }

Parameter Meaning

Unit Unit number (0�N).
pBuffer Pointer to a buffer of data which should be written.
NumBytes Number of bytes that should be transferred to the NAND flash.

Table 6.28: FS_NAND_HW_X_Write_x8() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

204 CHAPTER 6 Device drivers
6.3.7.1.10 FS_NAND_HW_X_Write_x16()

Description

Writing data to a 16-bit NAND flash, using the I/O 0-15 lines of the NAND flash
device.

Prototype
void FS_NAND_HW_X_Write_x16 (U8 Unit,
 const U8 * pBuffer,
 unsigned NumBytes);;

Additional Information

When writing data to the device, usually you will not have to take care of handling
the WE line because that is done automatically by the hardware.
If you do have to control the WE line, make sure that timing is according to your
NAND flash device specifications.

Parameter Meaning

Unit Unit number (0�N).
pBuffer Pointer to a buffer of data which should be written.
NumBytes Number of bytes that should be transferred to the NAND flash.

Table 6.29: FS_NAND_HW_X_Write_x16() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

205
6.3.7.1.11 FS_NAND_HW_X_Delayus()

Description

Delays for a specified period of time.

Prototype
void FS_NAND_HW_X_Delayus (unsigned us);

Additional Information

The dwell time is specified in µs. It is the user's responsibility to make sure that this
function will at least wait the time specified by us.
The driver uses this function in situations where a minimum delay time is required by
the specification of the NAND flash.
It is called only if the busy pin of the NAND flash cannot be read
(FS_NAND_HAS_BUSY_PIN == 0)

Example C

void FS_NAND_HW_X_Delayus(unsigned us) {
 volatile int i;
 i = 5 * us; // Factor depends on CPU speed
 while (i--);
}

Example ARM assembly

FS_NAND_HW_X_Delayus:
 mov R1, #10 ; Factor depends on CPU speed
 mul R0, R0, R1
 Loop:
 subs R0, R0, #1
 bne Loop
 BX LR ;; return

Parameter Meaning

us Time to dwell in µs.
Table 6.30: FS_NAND_HW_X_Delayus() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

206 CHAPTER 6 Device drivers
6.3.7.1.12 FS_NAND_HW_X_Init_x8()

Description

Initializes a NAND flash device with an 8-bit interface.

Prototype
void FS_NAND_HW_X_Init_x8 (U8 Unit);

Additional Information

This function is called before any access to the NAND flash device is made. Use this
function to initialize the hardware.

Example

int FS_NAND_HW_X_Init_x8(U8 Unit) {
 FS_USE_PARA(Unit);
 _Timer2Config();
 _NANDFlashInit();
}

Parameter Meaning

Unit Unit number (0�N).
Table 6.31: FS_NAND_HW_X_Init_x8() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

207
6.3.7.1.13 FS_NAND_HW_X_Init_x16()

Description

Initializes a NAND flash device with a 16-bit interface.

Prototype
void FS_NAND_HW_X_Init_x16 (U8 Unit);

Additional Information

This function is called before any access to the NAND flash device is made. Use this
function to initialize the hardware.

Parameter Meaning

Unit Unit number (0�N).
Table 6.32: FS_NAND_HW_X_Init_x16() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

208 CHAPTER 6 Device drivers
6.3.7.2 Hardware functions - ATMEL DataFlash

Routine Explanation

Control line functions

FS_DF_HW_X_EnableCS()
Activates chip select signal (CS) of the
DataFlash chip.

FS_DF_HW_X_DisableCS()
Deactivates chip select signal (CS) of the
DataFlash chip.

FS_DF_HW_X_Init() Initializes the SPI hardware.
Data transfer functions

FS_DF_HW_X_Read()
Receives a number of bytes from the
DataFlash.

FS_DF_HW_X_Write()
Sends a number of bytes to the
DataFlash.

Table 6.33: DataFlash device driver hardware functions
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

209
6.3.7.2.1 FS_DF_HW_X_EnableCS()

Description

Activates chip select signal (CS) of the specified DataFlash.

Prototype
void FS_DF_HW_X_EnableCS (U8 Unit);

Additional Information

The CS signal is used to address a specific DataFlash chip connected to the SPI.
Enabling is equal to setting the CS line to low.

Example

void FS_DF_HW_X_EnableCS(U8 Unit) {
 SPI_CLR_CS();
}

Parameter Meaning

Unit Unit number (0�N).
Table 6.34: FS_DF_HW_X_EnableCS() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

210 CHAPTER 6 Device drivers
6.3.7.2.2 FS_DF_HW_X_DisableCS()

Description

Deactivates chip select signal (CS) of the specified DataFlash.

Prototype
void FS_DF_HW_X_DisableCS (U8 Unit);

Additional Information

The CS signal is used to address a specific DataFlash connected to the SPI. Disabling
is equal to setting the CS line to high.

Example

void FS_DF_HW_X_DisableCS(U8 Unit) {
 SPI_SET_CS();
}

Parameter Meaning

Unit Unit number (0�N).
Table 6.35: FS_DF_HW_X_DisableCS() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

211
6.3.7.2.3 FS_DF_HW_X_Init()

Description

Initializes the SPI hardware.

Prototype
int FS_DF_HW_X_Init (U8 Unit);

Return value

== 0 Initialization was successful.
== 1 Initialization failed.

Additional Information

The FS_DF_HW_X_Init() can be used to initialize the SPI hardware. As described in
the previous section. The SPI should be initialized as follows:

� 8-bit data length
� MSB should be sent out first
� CS signal should be initially high
� The set clock frequency should not exceed the max clock frequency that are

specified by the Serial Flash devices (Usually: 20MHz).

Example

void FS_DF_HW_X_Init(U8 Unit) {
 SPI_SETUP_PINS();
}

Parameter Meaning

Unit Unit number (0�N).
Table 6.36: FS_DF_HW_X_Init() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

212 CHAPTER 6 Device drivers
6.3.7.2.4 FS_DF_HW_X_Read()

Description

Receives a number of bytes from the DataFlash.

Prototype
void FS_DF_HW_X_Read (U8 Unit,
 U8 * pData,
 int NumBytes);

Example

void FS_DF_HW_X_Read (U8 Unit, U8 * pData, int NumBytes) {
 do {
 c = 0;
 bpos = 8; /* get 8 bits */
 do {
 SPI_CLR_CLK();
 c <<= 1;
 if (SPI_DATAIN()) {
 c |= 1;
 }
 SPI_SET_CLK();
 } while (--bpos);
 *pData++ = c;
 } while (--NumBytes);
}

Parameter Meaning

Unit Unit number (0�N).
pData Pointer to a buffer for data to be receive.
NumBytes Number of bytes to receive.

Table 6.37: FS_DF_HW_X_Read() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

213
6.3.7.2.5 FS_DF_HW_X_Write()

Description

Sends a number of bytes from memory buffer to the dedicated DataFlash.

Prototype
void FS_DF_HW_X_Write (U8 Unit,
 const U8 * pData,
 int NumBytes);

Example
void FS_DF_HW_X_Write(U8 Unit, const U8 * pData, int NumBytes) {
 int i;
 U8 mask;
 U8 data;
 for (i = 0; i < NumBytes; i++) {
 data = pData[i];
 mask = 0x80;
 while (mask) {
 if (data & mask) {
 SPI_SET_DATAOUT();
 } else {
 SPI_CLR_DATAOUT();
 }
 SPI_CLR_CLK();
 SPI_DELAY();
 SPI_SET_CLK();
 SPI_DELAY();
 mask >>= 1;
 }
 }
 SPI_SET_DATAOUT(); /* default state of data line is high */
}

Parameter Meaning

Unit Unit number (0�N).
pData Pointer to a buffer for data to be receive.
NumBytes Number of bytes to be written.

Table 6.38: FS_DF_HW_X_Write() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

214 CHAPTER 6 Device drivers
6.3.8 Additional Information
Low-level format

Before using the NAND flash as a storage device, a low-level format has to be per-
formed. Refer to FS_FormatLow() on page 98 and FS_FormatLLIfRequired() on
page 97 for detailed information about low-level format.

6.3.9 Resource usage

6.3.9.1 ROM usage
The ROM usage depends on the compiler options, the compiler version and the used
CPU. The memory requirements of the NAND driver presented in the tables below
have been measured on a system as follows: ARM7, IAR Embedded workbench
V4.41A, Thumb mode, Size optimization.

In addition, one of the following physical layers is required:

6.3.9.2 Static RAM usage
Static RAM usage is the amount of RAM required by the driver for variables inside of
the driver. The number of bytes can be seen in a compiler list file

Static RAM usage of the NAND driver: 32 bytes

6.3.9.3 Runtime RAM usage
Runtime RAM usage is the amount of RAM allocated by the driver at runtime. The
amount required depends on the runtime configuration and the connected device.

The approximately RAM usage for the NAND driver can be calculated as follows:

Every NAND device requires:
160 + 2 * NumberOfUsedBlocks + 4 * SectorsPerBlock + 1.04 * MaxSectorSize

Example: 2 GBit NAND flash with 2K pages, 2048 blocks used, 512-byte sectors

One block consists of 64 pages, each page holds 4 sectors of 512 bytes.

SectorsPerBlock = 256
NumberOfUsedBlocks = 2048
MaxSectorSize = 512

RAM usage = (160 + 2 * 2048 + 4 * 256 + 1.04 * 512) bytes
RAM usage = 5813 bytes

Module
ROM

[Kbytes]

emFile NAND driver 4.5

Physical layer Description
ROM

[Kbytes]

FS_NAND_PHY_512x8
Physical layer for small NAND devices with an
8-bit interface. 1.1

FS_NAND_PHY_2048x8
Physical layer for large NAND devices with an
8-bit interface. 1.0

FS_NAND_PHY_2048x16
Physical layer for large NAND devices with an
16-bit interface. 1.0

FS_NAND_PHY_x8
Physical layer for large and small NAND
devices with an 8-bit interface. 2.3

FS_NAND_PHY_x
Physical layer for large and small NAND
devices with an 8-bit or 16-bit interface. 3.3
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

215
Example: 2 GBit NAND flash with 2K pages, 2048 blocks used, 2048-byte sec-
tors

One block consists of 64 pages, each page holds 1 sector of 2048 bytes.

SectorsPerBlock = 64
NumberOfUsedBlocks = 2048
MaxSectorSize = 2048

RAM usage = (160 + 2 * 2048 + 4 * 64 + 1.04 * 2048) bytes
RAM usage = 6642bytes

Example: 512 MBit NAND flash with 512 pages, 4096 blocks used, 512-byte sec-
tors

One block consists of 64 pages, each page holds 1 sector of 512 bytes.

SectorsPerBlock = 32
NumberOfUsedBlocks = 8192
MaxSectorSize = 512

RAM usage = (160 + 2 * 4096 + 4 * 32 + 1.04 * 512) bytes
RAM usage = 9013 bytes

6.3.10 FAQs
Q: Are Multi-Level Cell NAND flashes (MLCs) supported?
A: No, the driver does not support MLCs.

Q: Are NAND flashes with 4-Kbytes pages supported?
A: Not yet, but this will be added. You should get in touch with us to find out what the

current status is.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

216 CHAPTER 6 Device drivers
6.4 MultiMedia and SD card driver
emFile supports MultiMedia, SecureDigital (SD) and SecureDigital
High Capacity (SDHC) cards. Two optional generic drivers for Multi-
Media, SecureDigital (SD), SecureDigital High Capacity (SDHC),
Mini SecureDigital and Micro SecureDigital cards are available.

MultiMedia & SecureDigital (SD) cards can be accessed though two
different modes:

� SPI mode
� MMC/SD card mode

Drivers are available for both modes.
To use one of these drivers, you need to configure the selected MultiMedia & SD card
driver and provide basic I/O functions for accessing your card reader hardware.

This section describes how to enable one of these drivers and all hardware access
functions required by emFile's for either the MultiMedia, SD and SDHC card in SPI
mode or MultiMedia & SD card mode driver.

6.4.1 Supported hardware
MultiMedia Cards (MMC), SecureDigital Cards (SD card), and
SecureDigital High Capacity (SDHC) Cards are mechanically small,
removable mass storage devices.

The main design goal of these devices are to provide a very low
cost mass storage product, implemented as a card with a simple
controlling unit, and a compact, easy-to-implement interface.
These requirements lead to a reduction of the functionality of each
card to an absolute minimum. In order to have a flexible design,
MMC, SD and SDHC cards are designed to be used in different I/O
modes:

� MMC/SD card mode
� SPI mode
� Emulated SPI mode, using port pins.

The difference between MMC and SD cards are that SD cards can
operate with a higher clock frequency. The clock range can be
between 0 - 25MHz, whereas MMCs can only operate up to 20MHz.
Additionally the initialization of these cards differs. They need to be
initialized differently, but after initialization they behave the same
way.

MMC and SD cards also differ in the count of pins. SD cards have
more pins than MMCs. Which pins are used depends on which mode
is configured. Additionally SD cards have a write protect switch,
which can be used to lock the data on the card.

In MMC/SD card mode

MultiMedia Cards use a seven pin interface in MultiMedia card mode
(Command, Clock, Data and 3x Power lines). In contrast to the MultiMedia cards SD
cards use a 9 pin interface (Command, Clock, 1 or 4 Data and 3 Power lines).

In SPI mode

Both card systems use the same pin interface. (ChipSelect (CS), DataIn, DataOut,
Clock and 3 power lines).
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

217
6.4.1.1 Pin description for MMC/SD card in Card mode

Pin
No.

Name Type Description

1
CD/
DAT[3]

Input/Out-
put
using push
pull drivers

Card Detect / Data line [Bit 3]
After power up this line is input with 50-kOhm pull-up
resistor. This can be used for card detection; relevant
only for SD cards. The pull-up resistor is disabled after
the initialization procedure for using this line as DAT3,
Data line[Bit 3], for data transfer.

2 CMD Push Pull

Command/Response
CMD is a bidirectional command channel used for card
initialization and data transfer commands. The CMD
signal has two operation modes: open-drain for initial-
ization mode and push-pull for fast command transfer.
Commands are sent from the MultiMediaCard bus mas-
ter (card host controller) to the card and responses
are sent from the cards to the host.

3 VSS
Power sup-
ply Supply voltage ground.

4 VDD
Power sup-
ply Supply voltage.

5 CLK Input

Clock signal
With each cycle of this signal an one bit transfer on the
command and data lines is done. The frequency may
vary between zero and the maximum clock frequency.

6 VSS2
Power sup-
ply Supply voltage ground.

7 DAT0

Input/Out-
put
using push
pull drivers

Data line [Bit 0]
DAT is a bidirectional data channel. The DAT signal
operates in push-pull mode. Only one card or the host
is driving this signal at a time.
Relevant only for SD cards: For data transfers, this
line is the Data line [Bit 0].

8 DAT1

Input/Out-
put
using push
pull drivers

Data line [Bit 1]
On MMC card this line does not exist.
Relevant only for SD cards: For data transfer, this line
is the Data line [Bit 1]. Connect an external pull-up
resistor to this data line even if only DAT0 is to be
used. Otherwise, non-expected high current consump-
tion may occur due to the floating inputs of DAT1.

9 DAT2

Input/Out-
put
using push
pull drivers

Data line [Bit 2]
On MMC card this line does not exist.
Relevant only for SD cards: For data transfer, this line
is the Data line [Bit 2]. Connect an external pull-up
resistor to this data line even if only DAT0 is to be
used. Otherwise, non-expected high current consump-
tion may occur due to the floating inputs of DAT2.

Table 6.39: MMC/SD card pin description
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

218 CHAPTER 6 Device drivers
6.4.1.2 Pin description for MMC/SD card in SPI mode

Additional Information
� The data transfer width is 8 bits.
� Data should be output on the falling edge and must remain valid until the next

period. Rising edge means data is sampled (i.e. read).
� The bit order requires most significant bit (MSB) to be sent out first.
� Data polarity is normal, which means a logical �1� is represented with a high

level on the data line and a logical �0� is represented with low-level.
� MultiMedia & SD cards support different voltage ranges. Initial voltage should be

3.3V.

Power control should be considered when creating designs using the MultiMediaCard
and/or SD Card. The ability to have software power control of the cards makes the
design more flexible and robust. The host will be able to turn power to the card on or
off independent of whether the card is inserted or removed. This can improve card
initialization when there is a contact bounce during card insertion. The host waits a
specified time after the card is inserted before powering up the card and starting the
initialization process. Also, if the card goes into an unknown state, the host can cycle
the power and start the initialization process again. When card access is unneces-
sary, allowing the host to power-down the bus can reduce the overall power con-
sumption.

Pin
No.

Name Type Description

1 CS Input
Chip Select
It sets the card active at low-level and inactive at high
level.

2 MOSI Input Master Out Slave In
Transmits data to the card.

3 VSS
Supply
ground

Power supply ground
Supply voltage ground.

4 VDD
Supply volt-
age Supply voltage.

5 SCLK Input
Clock signal
It must be generated by the target system. The card is
always in slave mode.

6 VSS2
Supply
ground Supply voltage ground.

7 MISO Output Master In Slave Out
Line to transfer data to the host.

8 Reserved Not used

The reserved pin is a floating input. Therefore, connect
an external pull-up resistor to it. Otherwise, non-
expected high current consumption may occur due to
the floating input.

9 Reserved Not used

The reserved pin is a floating input. Therefore, connect
an external pull-up resistor to it. Otherwise, non-
expected high current consumption may occur due to
the floating input.

Table 6.40: MMC/SD card (SPI mode) pin description
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

219
Sample schematic for MMC/SD card in Card mode

Sample schematic for MMC/SD card in SPI mode

6.4.2 Theory of operation
The Serial Peripheral Interface (SPI) bus is a very loose de facto standard for control-
ling almost any digital electronics that accepts a clocked serial stream of bits. SPI
operates in full duplex (sending and receiving at the same time).

6.4.3 Fail-safe operation
Unexpected Reset

The data will be preserved.

Host

7

6
5
4
3
2
1

9

8

CMD

CLK

CD/DAT3

DAT0
DAT1

DAT2

RDAT1 RDAT0 RCMD RCD/DAT3 RDAT2

Host

7

6
5
4
3
2
1

9

8

MOSI

SCLK

CS

MISO

RMISO RMOSI RCS
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

220 CHAPTER 6 Device drivers
Power failure

Power failure can be critical: If the card does not have sufficient time to complete a
write operation, data may be lost. Countermeasures: make sure the power supply for
the card drops slowly.

6.4.4 Wear leveling
MMC/SD cards are controlled by an internal controller, this controller also handles
wear leveling. Therefore, the driver does not need to handle wear-leveling.

6.4.5 Configuration

6.4.5.1 Adding the driver to emFile
To add the driver use FS_AddDevice() with either the driver label
FS_MMC_SPI_Driver or FS_MMC_CardMode_Driver. This function has to be called from
within FS_X_AddDevices(). Refer to FS_X_AddDevices() on page 320 for more infor-
mation.

Example

SPI mode: FS_AddDevice(&FS_MMC_SPI_Driver);

Card mode: FS_AddDevice(&FS_MMC_CardMode_Driver);

6.4.5.2 Enable 4-bit mode (card mode only)
To enable the 4-bit mode of the card mode driver, call FS_MMC_CM_Allow4bitMode().
Refer to FS_MMC_CM_Allow4bitMode() on page 257 for detailed information.

6.4.5.3 Cyclic redundancy check (CRC)
The cyclic redundancy check (CRC) is a method to produce a checksum. The check-
sum is a small, fixed number of bits against a block of data. The checksum is used to
detect errors after transmission or storage. A CRC is computed and appended before
transmission or storage, and verified afterwards by the recipient to confirm that no
changes occurred on transit. CRC is a good solution for error detection, but reduces
the transmission speed, because a CRC checksum has to be computed for every data
block which will be transmitted.

The following functions can be used for controlling CRC calculation in emFile.

Function Description

CRC configuration

FS_MMC_ActivateCRC()
Activates the CRC functionality in SPI
mode.

FS_MMC_DeactivateCRC()
Deactivates the CRC functionality in SPI
mode. By default, CRC is deactivated.

Table 6.41: SPI mode configuration functions
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

221
6.4.5.4 FS_MMC_ActivateCRC()
Description

Activates the cyclic redundancy check.

Prototype
void FS_MMC_ActivateCRC (void);

Additional information

By default, the cyclic redundancy check is deactivated for speed reasons. The driver
supports cyclic redundancy check both for all transmissions and just for critical trans-
missions. You can activate and deactivate the cyclic redundancy check as it fits to the
requirements of your application.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

222 CHAPTER 6 Device drivers
6.4.5.5 FS_MMC_DeactivateCRC()
Description

Deactivates the cyclic redundancy check.

Prototype
void FS_MMC_DeactivateCRC (void);

Additional information

By default, the cyclic redundancy check is deactivated for speed reasons. The driver
supports cyclic redundancy check both for all transmissions and just for critical trans-
missions. You can activate and deactivate the cyclic redundancy check as it fits to the
requirements of your application.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

223
6.4.6 Hardware functions - SPI mode

Routine Explanation

Control line functions

FS_MMC_HW_X_EnableCS()
Activates chip select signal (CS) of the
specified card slot.

FS_MMC_HW_X_DisableCS()
Deactivates chip select signal (CS) of the
specified card slot.

Operation condition detection and adjusting

FS_MMC_HW_X_SetMaxSpeed()
Sets the SPI clock speed. The value is
represented in thousand cycles per sec-
ond (kHz).

FS_MMC_HW_X_SetVoltage()
Sets the operating voltage range for the
MultiMedia & SD card slot.

Medium status functions

FS_MMC_HW_X_IsWriteProtected()
Checks the status of the mechanical write
protection of a SD card.

FS_MMC_HW_X_IsPresent() Checks whether a card is present or not.
Data transfer functions

FS_MMC_HW_X_Read()
Receives a number of bytes from the
card.

FS_MMC_HW_X_Write() Sends a number of bytes to the card.
Table 6.42: SPI mode hardware functions
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

224 CHAPTER 6 Device drivers
6.4.6.1 FS_MMC_HW_X_EnableCS()
Description

Activates chip select signal (CS) of the specified card slot.

Prototype
void FS_MMC_HW_X_EnableCS (U8 Unit);

Additional Information

The CS signal is used to address a specific card slot connected to the SPI. Enabling is
equal to setting the CS line onto low-level.

Example

void FS_MMC_HW_X_EnableCS(U8 Unit) {
 SPI_CLR_CS();
}

Parameter Meaning

Unit Unit number (0�N).
Table 6.43: FS_MMC_HW_X_EnableCS() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

225
6.4.6.2 FS_MMC_HW_X_DisableCS()
Description

Deactivates chip select signal (CS) of the specified card slot.

Prototype
void FS_MMC_HW_X_DisableCS (U8 Unit);

Additional Information

The CS signal is used to address a specific card slot connected to the SPI. Disabling is
equal to setting the CS line to high.

Example

void FS_MMC_HW_X_DisableCS(U8 Unit) {
 SPI_SET_CS();
}

Parameter Meaning

Unit Unit number (0�N).
Table 6.44: FS_MMC_HW_X_DisableCS() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

226 CHAPTER 6 Device drivers
6.4.6.3 FS_MMC_HW_X_SetMaxSpeed()
Description

Sets the maximum SPI speed. If the hardware is unable to use this speed, a lower
frequency can always be selected. The value is given in kHz.

Prototype
U16 FS_MMC_HW_X_SetMaxSpeed (U8 Unit,
 U16 MaxFreq);

Return value

Actual frequency in thousand cycles per second (kHz)
0 if the frequency could not be set.

Additional Information

Make sure your SPI interface never generates a higher clock than MaxFreq specifies.
You can always run MultiMedia & SD cards at lower or equal, but never on higher fre-
quencies. The initial frequency must be 400kHz or less. If the precise frequency is
unknown (typical for implementation using port-pins �bit-banging�), the return value
should be less than the maximum frequency, leading to longer timeout values, which
is in general unproblematic. You have to return the actual clock speed of your SPI
interface, because emFile needs the actual frequency to calculate timeout values.

Example using port pins

#define MMC_MAXFREQUENCY 400

U16 FS_MMC_HW_X_SetMaxSpeed(U8 Unit, U16 MaxFreq) {
 _Init();
 return MMC_MAXFREQUENCY; /* We are not faster than this */
}

Example using SPI mode

U16 FS_MMC_HW_X_SetMaxSpeed(U8 Unit, U16 MaxFreq) {
 U32 InFreq;
 U32 SPIFreq;

 if (MaxFreq < 400) {
 MaxFreq = 400;
 }
 SPIFreq = 1000 * MaxFreq;
 if (SPIFreq >= 200000) {
 InFreq = 48000000;
 }
 _sbcr = (InFreq + SPIFreq - 1) / SPIFreq;
 _InitSPI();
 return MaxFreq; /* We are not faster than this */
}

Parameter Meaning

Unit Unit number (0�N).
MaxFreq Clock speed (kHz) between host and card.

Table 6.45: FS_MMC_HW_X_SetMaxSpeed() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

227
6.4.6.4 FS_MMC_HW_X_SetVoltage()
Description

Sets the operating voltage range for the MultiMedia & SD card slot.

Prototype
char FS_MMC_HW_X_SetVoltage (U8 Unit,
 U16 Vmin,
 U16 Vmax);

Return value

== 1: Card slot works within the given range.
== 0: Card slot cannot provide a voltage within given range.

Additional Information

The values are in mill volts (mV). 1mV is 0.001V. All cards work with the initial volt-
age of 3.3V. If you want to save power you can adjust the card slot supply voltage
within the given range of Vmin and Vmax.

Example

#define FS__MMC_DEFAULTSUPPLYVOLTAGE 3300 /* example means 3.3V */

char FS_MMC_HW_X_SetVoltage(U8 Unit, U16 Vmin, U16 Vmax) {
 /* voltage range check */
 char r;
 if((Vmin <= MMC_DEFAULTSUPPLYVOLTAGE) && (Vmax >= MMC_DEFAULTSUPPLYVOLTAGE)) {
 r = 1;
 } else {
 r = 0;
 }
 return r;
}

Parameter Meaning

Unit Unit number (0�N).
Vmin Minimum supply voltage in mV.
Vmax Maximum supply voltage in mV.

Table 6.46: FS_MMC_HW_X_SetVoltage() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

228 CHAPTER 6 Device drivers
6.4.6.5 FS_MMC_HW_X_IsWriteProtected()
Description

Checks the status of the mechanical write protection of a SD card.

Prototype
char FS_MMC_HW_X_IsWriteProtected (U8 Unit);

Return value

== 0: If the card is not write protected.
== 1: Means that the card is write protected.

Additional Information

MultiMedia cards do not have mechanical write protection switches and should always
return 0. If you are using SD cards, be aware that the mechanical switch does not
really protect the card physically from being overwritten; it is the responsibility of
the host to respect the status of that switch.

Example

char FS_MMC_HW_X_IsWriteProtected(U8 Unit) {
 return 0; /* If the card slot has no write switch detector, return 0 */
}

Parameter Meaning

Unit Unit number (0�N).
Table 6.47: FS_MMC_HW_X_IsWriteProtected() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

229
6.4.6.6 FS_MMC_HW_X_IsPresent()
Description

Checks whether a card is present or not.

Prototype
char FS_MMC_HW_X_IsPresent (U8 Unit);

Return value

Additional Information

Usually, a card slot provides a hardware signal that can be used for card presence
determination. The sample code below is for a specific hardware that does not have
such a signal. Therefore, the presence of a card is unknown and you have to return
FS_MEDIA_STATE_UNKNOWN. Then emFile tries reading the card to figure out if a valid
card is inserted into the slot.

Example

char FS_MMC_HW_X_IsPresent(U8 Unit) {
 return FS_MEDIA_STATE_UNKNOWN;
}

Parameter Meaning

Unit Unit number (0�N).
Table 6.48: FS_MMC_HW_X_IsPresent() parameter list

Return value Description

FS_MEDIA_STATE_UNKNOWN The card state is unknown.
FS_MEDIA_NOT_PRESENT A card is not present.
FS_MEDIA_IS_PRESENT A card is present.

Table 6.49: FS_MMC_HW_X_IsPresent() - list of return values
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

230 CHAPTER 6 Device drivers
6.4.6.7 FS_MMC_HW_X_Read()
Description

Receives a number of bytes from the card.

Prototype
void FS_MMC_HW_X_Read (U8 Unit,
 U8 * pData,
 int NumBytes);

Additional Information

This function is used to read a number of bytes from the card to buffer memory.

Example

void FS_MMC_HW_X_Read (U8 Unit, U8 * pData, int NumBytes) {
 do {
 c = 0;
 bpos = 8; /* get 8 bits */
 do {
 SPI_CLR_CLK();
 c <<= 1;
 if (SPI_DATAIN()) {
 c |= 1;
 }
 SPI_SET_CLK();
 } while (--bpos);
 *pData++ = c;
 } while (--NumBytes);
}

Timing diagram for read access

Parameter Meaning

Unit Unit number (0�N).
pData Pointer to a buffer for data to receive.
NumBytes Number of bytes to receive.

Table 6.50: FS_MMC_HW_X_Read() parameter list

SPI_DIN

Data is changed by the CPU on the falling edge of SPI_CLK

Data is read by the CPU on the rising edge of SPI_CLK

D7

(From SD/MMC Data Output)

D6 D5 D4 D3 D2 D1 D0

SPI_CLK

SPI_CS
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

231
6.4.6.8 FS_MMC_HW_X_Write()
Description

Sends a number of bytes to the card.

Prototype
void FS_MMC_HW_X_Write (U8 Unit,
 const U8 * pData,
 int NumBytes);

Additional Information

This function is used to send a number of bytes from a memory buffer to the card.

Example

void FS_MMC_HW_X_Write(U8 Unit, const U8 * pData, int NumBytes) {
 int i;
 U8 mask;
 U8 data;
 for (i = 0; i < NumBytes; i++) {
 data = pData[i];
 mask = 0x80;
 while (mask) {
 if (data & mask) {
 SPI_SET_DATAOUT();
 } else {
 SPI_CLR_DATAOUT();
 }
 SPI_CLR_CLK();
 SPI_DELAY();
 SPI_SET_CLK();
 SPI_DELAY();
 mask >>= 1;
 }
 }
 SPI_SET_DATAOUT(); /* default state of data line is high */
}

Timing diagram for write access

Parameter Meaning

Unit Unit number (0�N).
pData Pointer to a buffer that contains the data to be written to the card.
NumBytes Number of bytes to write.

Table 6.51: FS_MMC_HW_X_Write() parameter list

SPI_DIN

Data is changed by the CPU on the falling edge of SPI_CLK

Data is read by the CPU on the rising edge of SPI_CLK

D7

(To Data Input of SD/MMC)

D6 D5 D4 D3 D2 D1 D0

SPI_CLK

SPI_CS
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

232 CHAPTER 6 Device drivers
6.4.7 Hardware functions - Card mode

Routine Explanation

Operation condition detection and adjusting

FS_MMC_HW_X_SetMaxSpeed()
Sets the output clock speed. The value is
represented in thousand cycles per sec-
ond (kHz).

FS_MMC_HW_X_SetResponseTimeOut()
Sets the card host controller timeout
value for receiving response from card.

FS_MMC_HW_X_SetReadDataTimeOut()
Sets the card host controller timeout
value for receiving data from card.

FS_MMC_HW_X_SetHWBlockLen()
Sets the card host controller block size
value for a block.

FS_MMC_HW_X_SetHWNumBlocks()
Tells the card host controller how many
block will be transferred to or received
from card.

Medium status functions

FS_MMC_HW_X_IsWriteProtected()
Checks the status of the mechanical write
protection of a card.

FS_MMC_HW_X_IsPresent() Checks whether a card is present or not.
Data transfer functions

FS_MMC_HW_X_GetResponse()
Retrieves the response after sending a
command to the card.

FS_MMC_HW_X_ReadData()
Receives a number of bytes from the
card.

FS_MMC_HW_X_SendCmd()
Sends and setups the controller to send a
specific command to card.

FS_MMC_HW_X_WriteData() Writes a number of block to the card.
Time functions

FS_MMC_HW_X_Delay() Waits for a specific time in ms.
Table 6.52: Card mode hardware functions
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

233
6.4.7.1 FS_MMC_HW_X_SetMaxSpeed()
Description

Sets the maximum output clock speed. If the hardware is unable to use this speed, a
lower frequency can always be selected. The value is given in kHz.

Prototype
U16 FS_MMC_HW_X_SetMaxSpeed(U8 Unit,
 U16 MaxFreq);

Return value

Actual frequency in thousand cycles per second (kHz)
0 if the frequency could not be set.

Additional Information

Make sure your card host controller never generates a higher clock than MaxFreq
specifies. You can always run the cards at lower or equal, but never on higher fre-
quencies. The initial frequency must be 400kHz or less. You have to return the actual
clock speed of your hardware interface, because emFile needs the actual frequency
to calculate timeout values.

Example

U16 FS_MMC_HW_X_SetMaxSpeed(U8 Unit, U16 MaxFreq) {
 U32 Prediv;
 U32 Rate;

 if (Freq <= 400) {
 Prediv = 8; // HCLK / 8, where HCLK is 100MHz. -> SDClock = 12.5 MHz
 Rate = 5; // Card clock frequency = SDClock / (1 << Rate) = 390kHz.
 } else {
 Prediv = 5; // HCLK / 5, where HCLK is 100MHz, SDClock = 20 MHz
 Rate = 0; // Card clock frequency = SDClock / (1 << Rate) = 20 MHz.
 }
 __SDMMC_PREDIV = (1 << 5) // Use Poll mode instead of DMA
 | (1 << 4) // Enable the Controller
 | (Prediv & 0x0f); // Set the predivisor value
 __SDMMC_RATE = Rate; // Set rate value
 return Freq;
}

Parameter Meaning

Unit Unit number.
MaxFreq Clock speed (kHz) between host and card.

Table 6.53: FS_MMC_HW_X_SetMaxSpeed() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

234 CHAPTER 6 Device drivers
6.4.7.2 FS_MMC_HW_X_SetResponseTimeOut()
Description

Sets the timeout of card host controller for receiving response from card.

Prototype
void FS_MMC_HW_X_SetResponseTimeOut(U8 Unit,
 int Value);

Example

void FS_MMC_HW_X_SetResponseTimeOut(U8 Unit, int Value) {
 __SDMMC_RES_TO = Value; // Set the timeout for Card Response
}

Parameter Meaning

Unit Unit number.

Value
Number of output clock cycles to wait before a response timeout
occurs.

Table 6.54: FS_MMC_HW_X_SetResponseTimeOut() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

235
6.4.7.3 FS_MMC_HW_X_SetReadDataTimeOut()
Description

Sets the timeout of card host controller for receiving data from card.

Prototype
void FS_MMC_HW_X_SetReadDataTimeOut(U8 Unit,
 int Value);

Example

void FS_MMC_HW_X_SetReadDataTimeOut(U8 Unit, int Value) {
 __SDMMC_READ_TO = Value; // Set the read timeout
}

Parameter Meaning

Unit Unit number.

Value
Number of card clock cycles to wait before a read data timeout
occurs.

Table 6.55: FS_MMC_HW_X_SetReadDataTimeOut() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

236 CHAPTER 6 Device drivers
6.4.7.4 FS_MMC_HW_X_SetHWBlockLen()
Description

Sets the card host controller block size value for a block.

Prototype
void FS_MMC_HW_X_SetHWBlockLen(U8 Unit,
 U16 BlockSize);

Additional Information

Card host controller sends data to or receives data from the card in block chunks.
This function typically sets the card host controller's block length register.

Example

void FS_MMC_HW_X_SetHWBlockLen(U8 Unit, U16 BlockSize) {
 __SDMMC_BLK_LEN = BlockSize;
}

Parameter Meaning

Unit Unit number.
BlockSize Block size given in number of bytes.

Table 6.56: FS_MMC_HW_X_SetHWBlockLen() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

237
6.4.7.5 FS_MMC_HW_X_SetHWNumBlocks()
Description

Tells the card host controller how many block will be transferred to or received from
card.

Prototype
void FS_MMC_HW_X_SetHWNumBlocks (U8 Unit,
 U16 NumBlocks);

Additional Information

Before sending the command to read or write data from or to the card. This functions
tells the card host controller, how many blocks need to be transferred/received.

Example

void FS_MMC_HW_X_SetHWNumBlocks(U8 Unit, U16 NumBlocks) {
 __SDMMC_NUM_BLK = NumBlocks;
}

Parameter Meaning

Unit Unit number.
NumBlocks Number of blocks to be transferred.

Table 6.57: FS_MMC_HW_X_SetHWNumBlocks() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

238 CHAPTER 6 Device drivers
6.4.7.6 FS_MMC_HW_X_IsWriteProtected()
Description

Checks the status of the mechanical write protection of a card.

Prototype
int FS_MMC_HW_X_IsWriteProtected(U8 Unit);

Return value

== 0: If the card is not write protected.
== 1: Means that the card is write protected.

Additional Information

MultiMedia cards do not have mechanical write protection switches and should always
return 0. If you are using SD cards, be aware that the mechanical switch does not
really protect the card physically from being overwritten; it is the responsibility of
the host to respect the status of that switch.

Example

int FS_MMC_HW_X_IsWriteProtected(U8 Unit) {
 return 0; /* Card slot has no write switch detector, return 0 */
}

Parameter Meaning

Unit Unit number.
Table 6.58: FS_MMC_HW_X_IsWriteProtected() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

239
6.4.7.7 FS_MMC_HW_X_IsPresent()
Description

Checks whether a card is present or not.

Prototype
int FS_MMC_HW_X_IsPresent(U8 Unit);

Return value

Additional Information

Usually, a card slot provides a hardware signal that can be used for card presence
determination. The sample code below is for a specific hardware that does not have
such a signal. Therefore, the presence of a card is unknown and you have to return
FS_MEDIA_STATE_UNKNOWN. Then emFile tries reading the card to figure out if a valid
card is inserted into the slot.

Example

int FS_MMC_HW_X_IsPresent(U8 Unit) {
 __GPIO_PFDD &= ~(1 << 5); // Set PE.5 as input for card detect signal
 return ((__GPIO_PFD >> 5) & 1) ? FS_MEDIA_NOT_PRESENT : FS_MEDIA_IS_PRESENT;
}

Parameter Meaning

Unit Unit number.
Table 6.59: FS_MMC_HW_X_IsPresent() parameter list

Return value Meaning

FS_MEDIA_STATE_UNKNOWN State of the media is unknown.
FS_MEDIA_NOT_PRESENT No card is present.
FS_MEDIA_IS_PRESENT Card is present.

Table 6.60: FS_MMC_HW_X_IsPresent() - list of return values
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

240 CHAPTER 6 Device drivers
6.4.7.8 FS_MMC_HW_X_GetResponse()
Description

Retrieves the card response to a sent command.

Prototype
int FS_MMC_HW_X_GetResponse(U8 Unit,
 void * pBuffer,
 U32 Size);

Return value

Additional information

The following table shows you at which byte offsets in pBuffer you should store the
bits of a card response:

Note that the first and the last byte you store in pBuffer are ignored by emFile. This
is important to know in case your card controller hardware delivers you only the pay-
load of a response, i.e. the bits 39-8 for a 48-bit response or the bits 127-8 for a
136-bit response. When so, you should store the response bits in pBuffer starting
from byte offset 1.

Parameter Meaning

Unit Unit number.

pBuffer
IN: ---
OUT: response bytes.

NumBytes Response size in bytes.
Table 6.61: FS_MMC_HW_X_GetResponse() parameter list

Return value Meaning

FS_MMC_CARD_NO_ERROR All data have been read successfully.

FS_MMC_CARD_RESPONSE_TIMEOUT
Card did not send the response in appropriate
time.

FS_MMC_CARD_RESPONSE_CRC_ERROR
The received response failed the CRC check of
card host controller.

Table 6.62: FS_MMC_HW_X_GetResponse() - list of return values

Byte offset Bit range (48-bit) Bit range (136-bit)

0 47-40 135-128
1 39-32 127-120
2 31-24 119-112
3 23-16 111-104
4 15-8 103-96
5 7-0 95-88
6 87-80
7 79-72
8 71-64
9 63-56
10 55-48
11 47-40
12 39-32
13 31-24
14 23-16
15 15-8
16 7-0
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

241
Example

int FS_MMC_HW_X_GetResponse(U8 Unit, void * pBuffer, U32 Size) {
 U16 * pResponse;
 U32 Index;
 U32 Status;

 pResponse = (U16 *) pBuffer;
 // Wait for response
 while (1) {
 Status = __SDMMC_STATUS;
 if (Status & MMC_STATUS_CLOCK_DISABLED) {
 _StartMMCClock(Unit);
 }
 if (Status & MMC_STATUS_END_COMMAND_RESPONSE) {
 break;
 }
 if (Status & MMC_STATUS_RESPONSE_TIMEOUT) {
 return FS_MMC_CARD_RESPONSE_TIMEOUT;
 }
 if (Status & MMC_STATUS_RESPONSE_CRC_ERROR) {
 return FS_MMC_CARD_RESPONSE_CRC_ERROR;
 }
 }
 // Read the necessary number of response words from the response FIFO
 for (Index = 0; Index < (Size/ 2); Index++) {
 pResponse[Index] = __SDMMC_RES_FIFO;
 }
 return FS_MMC_CARD_NO_ERROR;
}

emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

242 CHAPTER 6 Device drivers
6.4.7.9 FS_MMC_HW_X_ReadData()
Description

Receives a number of bytes from the card.

Prototype
int FS_MMC_HW_X_ReadData(U8 Unit,
 void * pBuffer,
 unsigned NumBytes,
 unsigned NumBlocks);

Return value

Additional Information

This function is used to read the data is coming from MMC/SD card to the host con-
troller through the DAT0 line or DAT[0:3] lines.

Example

int FS_MMC_HW_X_ReadData(U8 Unit, void * pBuffer, unsigned NumBytes,
 unsigned NumBlocks) {
 U16 * pBuf = (U16 *)pBuffer;
 int i;
 do {
 i = 0;
 // Wait until transfer is complete
 while ((__SDMMC_STATUS & MMC_STATUS_FIFO_FULL) == 0);
 if (__SDMMC_STATUS & MMC_STATUS_READ_CRC_ERROR) {
 return FS_MMC_CARD_READ_CRC_ERROR;
 }
 if (__SDMMC_STATUS & MMC_STATUS_READDATA_TIMEOUT) {
 return FS_MMC_CARD_READ_TIMEOUT;
 }
 // Continue reading data until FIFO is empty
 while(((__SDMMC_STATUS & MMC_STATUS_FIFO_EMPTY) == 0) && (i < (NumBytes >> 1))) {
 // Any data in the FIFO
 if ((__SDMMC_STATUS & MMC_STATUS_FIFO_EMPTY) == 0) {
 *pBuf = __SDMMC_DATA_FIFO;
 pBuf++;
 i++;
 }
 }
 } while (--NumBlocks);
 return 0;
}

Parameter Meaning

Unit Unit number.

pBuffer
IN: ---
OUT: received data.

NumBytes Number of bytes to receive.
NumBlocks Number of blocks to receive.

Table 6.63: FS_MMC_HW_X_ReadData() parameter list

Return value Meaning

FS_MMC_CARD_NO_ERROR All data have been read successfully.
FS_MMC_CARD_READ_TIMEOUT Card did not send the data in appropriate time.

FS_MMC_CARD_READ_CRC_ERROR
The received response failed the CRC check of
card host controller.

Table 6.64: FS_MMC_HW_X_ReadData() - list of return values
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

243
6.4.7.10 FS_MMC_HW_X_SendCmd()
Description

Sends a command to card.

Prototype
void FS_MMC_HW_X_SendCmd (U8 Unit,
 unsigned Cmd,
 unsigned CmdFlags,
 unsigned ResponseType,
 U32 Arg);

Additional Information

This function should send the command specified by Cmd. Each command may have
additional command flags. One or a combination of these is possible:

Most of the commands require a response from the card. The type of the expected
response can be one of the following:

Parameter Meaning

Unit Unit number.

Cmd
Command to be sent to the card. This is the command number from
the SD card specification.

CmdFlags Additional command flags, that are necessary for this command.

ResponseType
Specifies the response format that is expected after sending this
command.

Arg Argument sent with command.
Table 6.65: FS_MMC_HW_X_SendCmd() parameter list

Command Flag Meaning

FS_MMC_CMD_FLAG_DATATRANSFER
This flags tells the card controller, that the sent
command initiate a data transfer.

FS_MMC_CMD_FLAG_WRITETRANSFER
This flags tells the card controller, that the sent
command initiate a data transfer and will write to
the card.

FS_MMC_CMD_FLAG_SETBUSY
The card may be in busy state after sending this
command. The card host controller may wait
after the card ready for next command.

FS_MMC_CMD_FLAG_INITIALIZE
The card host controller should send the initial-
ization sequence to the card.

FS_MMC_CMD_FLAG_USE_SD4MODE

This tells the card host controller to use all four
data lines DAT[0:3] rather than only DAT0 line.
Note, that this command flag is only set when
FS_MMC_SUPPORT_4BIT_MODE is set.

FS_MMC_CMD_FLAG_STOP_TRANS
The card host controller shall stop transferring
data to the card.

Table 6.66: FS_MMC_HW_X_SendCmd() - list of possible command flags

Response Type Meaning

FS_MMC_RESPONSE_FORMAT_NONE No response is expected from card.
Table 6.67: FS_MMC_HW_X_SendCmd() - list of possible responses
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

244 CHAPTER 6 Device drivers
If the specified command expects a response, FS_MMC_HW_X_GetResponse() will be
called after FS_MMC_HW_X_SendCmd().

Example

void FS_MMC_HW_X_SendCmd(U8 Unit, unsigned Cmd, unsigned CmdFlags,
 unsigned ResponseType, U32 Arg) {
 U32 CmdCon;
 _StopMMCClock(Unit);
 CmdCon = ResponseType;
 if (CmdFlags & FS_MMC_CMD_FLAG_DATATRANSFER) { /* If data transfer */
 CmdCon |= (1 << 8) /* Set big endian flag for data transfers
 since this is how the data is in the 16-bit fifo */
 | (1 << 2); // Set DATA_EN
 }
 if (CmdFlags & FS_MMC_CMD_FLAG_WRITETRANSFER) { /* Abort transfer ? */
 CmdCon |= (1 << 3); // Set WRITE bit
 }
 if (CmdFlags & FS_MMC_CMD_FLAG_SETBUSY) { /* Set busy ? */
 CmdCon |= (1 << 5); // Set ABORT bit
 }
 if (CmdFlags & FS_MMC_CMD_FLAG_INITIALIZE) { /* Init ? */
 CmdCon |= (1 << 6); // Set ABORT bit
 }
 if (CmdFlags & FS_MMC_CMD_FLAG_USE_SD4MODE) { /* 4 bit mode ? */
 CmdCon |= (1 << 7); // Set WIDE bit
 }
 if (CmdFlags & FS_MMC_CMD_FLAG_STOP_TRANS) { /* Abort transfer ? */
 CmdCon |= (1 << 13); // Set ABORT bit
 }
 __SDMMC_CMD = Cmd;
 __SDMMC_CMDCON = CmdCon;
 __SDMMC_ARGUMENT = Arg;
 _StartMMCClock(Unit);
}

FS_MMC_RESPONSE_FORMAT_R1
Response type 1 is expected from card. (48 Bit
data stream is sent by card through the CMD
line.)

FS_MMC_RESPONSE_FORMAT_R2
Response type 2 is expected from card. (136 Bit
data stream is sent by card through the CMD
line.)

FS_MMC_RESPONSE_FORMAT_R3
Response type 3 is expected from card. (48 Bit
data stream is sent by card through the CMD
line.)

Response Type Meaning

Table 6.67: FS_MMC_HW_X_SendCmd() - list of possible responses
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

245
6.4.7.11 FS_MMC_HW_X_WriteData()
Description

Writes a number of blocks to the card.

Prototype
int FS_MMC_HW_X_WriteData(U8 Unit,
 const void * pBuffer,
 unsigned NumBytes,
 unsigned NumBlocks);

Return value

Additional Information

This function is used to write a specified number of blocks to the card. Each block is
NumBytes long.

Example

int FS_MMC_HW_X_WriteData(U8 Unit, const void * pBuffer,
 unsigned NumBytes, unsigned NumBlocks) {
 int i;
 const U16 * pBuf;
 pBuf = (const U16 *)pBuffer;
 do {
 while((__SDMMC_STATUS & MMC_STATUS_FIFO_EMPTY) == 0);
 for (i = 0; i < (NumBytes >> 1); i++) {
 __SDMMC_DATA_FIFO = *pBuf++;
 }
 _StartMMCClock(Unit);
 if (__SDMMC_STATUS & MMC_STATUS_WRITE_CRC_ERROR) {
 return FS_MMC_CARD_WRITE_CRC_ERROR;
 }
 } while (--NumBlocks);
 // Wait until transfer operation has ended
 while ((__SDMMC_STATUS & MMC_STATUS_DATA_TRANFER_DONE) == 0);
 // Wait until write operation has ended
 while ((__SDMMC_STATUS & MMC_STATUS_DATA_PROGRAM_DONE) == 0);
 return 0;
}

Parameter Meaning

Unit Unit number.

pBuffer
IN: Data to send.
OUT: ---

NumBytes Number of bytes for each block to send.
NumBlocks Number of blocks to send.

Table 6.68: FS_MMC_HW_X_WriteData() parameter list

Return Flag Meaning

FS_MMC_CARD_NO_ERROR
All data have been sent successfully and card has
programmed the data.

FS_MMC_CARD_WRITE_CRC_ERROR
During the data transfer to the card a CRC error
occurred.

Table 6.69: FS_MMC_HW_X_WriteData() - list of return values
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

246 CHAPTER 6 Device drivers
6.4.7.12 FS_MMC_HW_X_Delay()
Description

Waits for a specific time in ms.

Prototype
void FS_MMC_HW_X_Delay(int ms);

Additional Information

The delay specified is a minimum delay. The actual delay is permitted to be longer.
This can be helpful when using an RTOS. Every RTOS has a delay API function, but
the accuracy is typically 1 tick, which is 1 ms in most cases. Therefore, a delay of 1
tick is typically between 0 and 1 ms. To compensate for this, the equivalent of 1 tick
(typically 1) should be added to the delay parameter before passing it to an RTOS
delay function.

Example

void FS_MMC_HW_X_Delay(int ms) {
 OS_Delay(ms + 1); // Make sure we delay at least <ms> milliseconds
}

Parameter Meaning

ms Milliseconds to wait.
Table 6.70: FS_MMC_HW_X_Delay() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

247
6.4.8 Hardware functions - Card mode for ATMEL devices

Routine Description

Operation condition detection and adjusting

FS_MCI_HW_EnableClock()
Enable/disable the master clock of the
MCI module.

FS_MCI_HW_EnableISR()
Install the ISR handler of the MCI mod-
ule.

FS_MCI_HW_GetMCIInfo()
Used to get the base address of the MCI
module and which MCI slot.

FS_MCI_HW_GetMClk() Returns the MCLK of an AT91SAM9x.

FS_MCI_HW_Init()
This function shall initialize all necessary
hardware modules that depend on the
MCI.

Medium status functions
FS_MCI_HW_IsCardPresent() Checks whether a card is present or not.

FS_MCI_HW_IsCardWriteProtected()
Checks the status of the mechanical write
protection of a SD card.

Cache handling functions
FS_MCI_HW_CleanDCacheRange() Clean data cache range.
FS_MCI_HW_InvalidateDCache() Invalidate data cache.

Table 6.71: Card mode for ATMEL hardware functions
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

248 CHAPTER 6 Device drivers
6.4.8.1 FS_MCI_HW_EnableClock()
Description

Enables or disables the master clock of the MCI module. This is done by setting the
appropriate bit in the PMC_PCER/PMC_PCDR register.

Prototype
void FS_MCI_HW_EnableClock (U8 Unit,
 Unsigned OnOff);

Example

/***
*
* FS_MCI_HW_EnableClock
*
* Function description:
* This function shall enable or disable the master clock of the
* MCI module. This is done by setting the appropiate bit in the
* PMC_PCER/PMC_PCDR register.
*
* Parameters:
* Unit - MCI Card unit that shall be used
* OnOff - 1 - Enable the clock
* 0 - Disable the clock
*
*/
void FS_MCI_HW_EnableClock(U8 Unit, unsigned OnOff) {
 if (OnOff) {
 WRITE_SFR_REG(PMC_BASE, PMC_PCER, (1 << MCI_ID)); // Enable the MCI
 // peripheral clock.
 } else {
 WRITE_SFR_REG(PMC_BASE, PMC_PCDR, (1 << MCI_ID)); // Disable the MCI
 // peripheral clock.
 }
}

Parameter Description

Unit Unit number (0�N).

OnOff
1: Enable the clock
0: Disable the clock

Table 6.72: FS_MCI_HW_EnableClock() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

249
6.4.8.2 FS_MCI_HW_EnableISR()
Description

Installs the ISR handler of the MCI module.

Prototype
void FS_MCI_HW_EnableISR (U8 Unit,
 ISR_FUNC * pISRHandler);

Additional Information

The ISR handler is defined in the header file MMC_MCI_HW.h:

typedef void(ISR_FUNC)(void);

Example

/***
*
* FS_MCI_HW_EnableISR
*
* Function description:
* The function is called during initialization to install the
* ISR handler of the MCI module.
*
* Parameters:
* Unit - MCI Card unit that shall be used
* pISRHandler - Pointer to the ISR handler that shall be installed.
*
*/
void FS_MCI_HW_EnableISR(U8 Unit, ISR_FUNC * pISRHandler) {
 //
 // Install interrupt service routine
 //
 OS_ARM_InstallISRHandler(MCI_ID, pISRHandler);
 OS_ARM_EnableISR(MCI_ID);
}

Parameter Description

Unit Unit number (0�N).
pISRHandler Pointer to the ISR handler that shall be installed.

Table 6.73: FS_MCI_HW_EnableISR() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

250 CHAPTER 6 Device drivers
6.4.8.3 FS_MCI_HW_GetMCIInfo()
Description

Gets the base address of the MCI module and the information which slot is used.

Prototype
void FS_MCI_HW_GetMCIInfo (U8 Unit,
 ISR_FUNC * pISRHandler);

Additional Information

The MCI_INFO structure is defined in the header file MMC_MCI_HW.h. It has the follow-
ing elements:

typedef struct {
 U32 BaseAddr;
 U32 Mode;
} MCI_INFO;

Example

/***
*
* FS_MCI_HW_GetMCIInfo
*
* Function description:
* This function is used to get the base address of the MCI module
* and which MCI slot shall be used.
*
* Parameters:
* Unit - MCI Card unit that shall be used
* pInfo - Pointer a MCI_INFO structure that shall be filled
* by this function.
*
*/
void FS_MCI_HW_GetMCIInfo(U8 Unit, MCI_INFO * pInfo) {
 if (pInfo) {
 pInfo->BaseAddr = (U32)MCI_BASE_ADDR;
 pInfo->Mode = MCI_SD_SLOTB;
 }
}

Parameter Description

Unit Unit number (0�N).
pISRHandler Pointer a MCI_INFO structure.

Table 6.74: FS_MCI_HW_GetMCIInfo() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

251
6.4.8.4 FS_MCI_HW_GetMClk()
Description

Returns the master clock in Hz.

Prototype
void FS_MCI_HW_GetMClk (U8 Unit);

Example

/***
*
* FS_MCI_HW_GetMClk
*
* Function description:
* The internal MCLK of an AT91SAM9x that was configured shall be returned.
*
* Parameters:
* Unit - MCI Card unit that shall be used
*
* Return value:
* The AT91 master clock (MCLK) given in Hz.
*
*/
U32 FS_MCI_HW_GetMClk(U8 Unit) {
 return MCLK;
}

Parameter Description

Unit Unit number (0�N).
Table 6.75: FS_MCI_HW_GetMClk() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

252 CHAPTER 6 Device drivers
6.4.8.5 FS_MCI_HW_Init()
Description

Initializes all necessary hardware modules.

Prototype
void FS_MCI_HW_Init(U8 Unit);

Example

/***
*
* FS_MCI_HW_Init
*
* Function description:
* This function shall initialize all necessary hardware modules
* that depend on the MCI.
* In normal cases PIO configuration needs to be done.
*
* Parameters:
* Unit - MCI Card unit that shall be used
*
*/
void FS_MCI_HW_Init(U8 Unit) {
 // Configure SDcard pins
 _ConfigurePIO(_SDPins, COUNTOF(_SDPins));
}

Parameter Description

Unit Unit number (0�N).
Table 6.76: FS_MCI_HW_Init() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

253
6.4.8.6 FS_MCI_HW_IsCardPresent()
Description

Checks whether a card is present or not.

Prototype
char FS_MMC_HW_X_IsPresent (U8 Unit);

Return value

Additional Information

Usually, a card slot provides a hardware signal that can be used for card presence
determination. The example code below is for a specific hardware that does not have
such a signal. Therefore, the presence of a card is unknown and you have to return
FS_MEDIA_STATE_UNKNOWN. Then emFile tries reading the card to figure out if a valid
card is inserted into the slot.

Example

/***
*
* FS_MCI_HW_IsCardPresent
*
* Function description:
* Returns whether a card is inserted or not.
* When a card detect pin is not available. The function shall return
* FS_MEDIA_STATE_UNKNOWN. The driver above will check, whether there
* a valid card
*
* Parameters:
* Unit - MCI Card unit that shall be used
*
* Return value:
* FS_MEDIA_STATE_UNKNOWN - Card state is unknown, no card detect pin available
* FS_MEDIA_NOT_PRESENT - No Card is inserted in slot.
* FS_MEDIA_IS_PRESENT - Card is inserted in slot.
*/
int FS_MCI_HW_IsCardPresent(U8 Unit) {
 U8 r;
 r = FS_MEDIA_STATE_UNKNOWN;
 if (CARD_DETECT_PIN_AVAILABLE) {
 r = READ_SFR_REG(CARD_DETECT_PIN_PIO_BASE, PIO_PDSR)
 & (1 << CARD_DETECT_PIN) ? FS_MEDIA_NOT_PRESENT : FS_MEDIA_IS_PRESENT;
 }
 return r;
}

Parameter Description

Unit Unit number (0�N).
Table 6.77: FS_MCI_HW_IsCardPresent() parameter list

Return value Description

FS_MEDIA_STATE_UNKNOWN The card state is unknown.
FS_MEDIA_NOT_PRESENT A card is not present.
FS_MEDIA_IS_PRESENT A card is present.

Table 6.78: FS_MCI_HW_IsCardPresent() - list of return values
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

254 CHAPTER 6 Device drivers
6.4.8.7 FS_MCI_HW_IsCardWriteProtected()
Description

Checks the status of the mechanical write protection of a SD card.

Prototype
char FS_MCI_HW_IsCardWriteProtected (U8 Unit);

Return value

== 0: If the card is not write protected.
== 1: Means that the card is write protected.

Additional Information

MultiMedia cards do not have mechanical write protection switches and should always
return 0. If you are using SD cards, be aware that the mechanical switch does not
really protect the card physically from being overwritten; it is the responsibility of
the host to respect the status of that switch.

Example

/***
*
* FS_MCI_HW_IsCardWriteProtected
*
* Function description:
* Checks whether a card is write protected or not.
*
* Parameters:
* Unit - MCI Card unit that shall be used
*
* Return value:
* 0 - Card is not write protected.
* 1 - Card is write protected.
*
*/
U8 FS_MCI_HW_IsCardWriteProtected(U8 Unit) {
 U8 r;
 r = 0;
 if (WRITE_PROTECT_PIN_AVAILABLE) {
 r = READ_SFR_REG(WRITE_PROTECT_PIN_PIO_BASE, PIO_PDSR)
 & (1 << WRITE_PROTECT_PIN) ? 0 : 1;
 }
 return r;
}

Parameter Description

Unit Unit number (0�N).
Table 6.79: FS_MCI_HW_IsCardWriteProtected() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

255
6.4.8.8 FS_MCI_HW_CleanDCacheRange()
Description

Used to clean a range in the data cache memory to ensure that the data is written
from the data cache into the memory. This function can be empty if data cache is not
used.

Prototype
void FS_MCI_HW_CleanDCacheRange(void * p,
 unsigned NumBytes);

Example

/***
*
* FS_MCI_HW_CleanDCacheRange
*
* Parameters:
* p - Pointer to the region that shall be flushed from cache.
* NumBytes - Number of bytes to flush
*
*/
void FS_MCI_HW_CleanDCacheRange(void * p, unsigned NumBytes) {
 OS_ARM_DCACHE_CleanRange(p, NumBytes);
}

Parameter Description

p Pointer to the region that shall be flushed from cache.
NumBytes Number of bytes to flush.

Table 6.80: FS_MCI_HW_CleanDCacheRange() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

256 CHAPTER 6 Device drivers
6.4.8.9 FS_MCI_HW_InvalidateDCache()
Description

Used to invalidate a memory area in the data cache. Invalidating means, mark all
entries in the specified area as invalid. Invalidation forces re-reading the data from
memory into the cache, when the specified area is accessed again. This function can
be empty if data cache is not used.

Prototype
void FS_MCI_HW_InvalidateDCache(void * p,
 unsigned NumBytes);

Example

/***
*
* FS_MCI_HW_InvalidateDCache
*
* Parameters:
* p - Pointer to the buffer that shall be invalidated in cache.
* NumBytes - Number of bytes to invalidate
*
*/
void FS_MCI_HW_InvalidateDCache(void * p, unsigned NumBytes) {
 OS_ARM_DCACHE_InvalidateRange(p, NumBytes);
}

Parameter Description

p Pointer to the region that shall be flushed from cache.
NumBytes Number of bytes to flush.

Table 6.81: FS_MCI_HW_InvalidateDCache() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

257
6.4.9 Additional information
For more technical details about MultiMedia & SD cards, check the documents and
specifications available on the following internet web pages:

http://www.mmca.org/

http://www.sdcard.org/

6.4.10 Additional driver functions

6.4.10.1 FS_MMC_CM_Allow4bitMode()
Description

Allows the driver to use 4bit mode for SD cards.

Prototype
void FS_MMC_CM_Allow4bitMode(U8 Unit, U8 OnOff);

Additional information

This function shall only be used when configuring the driver in FS_X_AddDevices().
Refer to FS_X_AddDevices() on page 320 for more information. The 4-bit mode is
disabled by default.

6.4.11 Resource usage

6.4.11.1 ROM usage
The ROM usage depends on the compiler options, the compiler version and the used
CPU. The memory requirements of the MMC/SD driver have been measured on a sys-
tem as follows: ARM7, IAR Embedded workbench V4.41A, Thumb mode, Size optimi-
zation.

6.4.11.2 Static RAM usage
Static RAM usage is the amount of RAM required by the driver for variables inside of
the driver. The number of bytes can be seen in a compiler list file

Static RAM usage of the SD card driver in SPI mode: 12 bytes
Static RAM usage of the SD card driver in card mode: 24 bytes

6.4.12 FAQs
None.

Parameter Description

Unit Unit number (0�N).

OnOff
1 means enable 4-bit mode.
0 means disable 4-bit mode.

Table 6.82: FS_MMC_CM_Allow4bitMode() parameter list

Module
ROM

[Kbytes]

emFile SD card SPI mode driver 2.8
emFile SD card mode driver 2.6
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

258 CHAPTER 6 Device drivers
6.4.13 Troubleshooting
If the driver test fails or if the card cannot be accessed at all, please follow the trou-
ble shooting guidelines below.

6.4.13.1 SPI mode troubleshooting guide
Verify SPI configuration

If an SPI is used, you should verify that it is set up as follows:

� 8 bits per transfer
� Most significant bit first
� Data changes on falling edge
� Data is sampled on rising edge.

Verify signals during initialization of the card

The oscilloscope has been set up as follows:

Trigger: Single, falling edge of CS

To check if your implementation of the hardware layer works correct, compare your
output of the relevant lines (SCLK, CS, MISO, MOSI) with the correct output which is
shown in the following screenshots. The output of your card should be similar.

In the example, MISO has a pull-up and a pull-down of equal value. This means that
the MISO signal level is at 50% (1.65V) when the output of the card is inactive. On
other target hardware, the inactive level can be low (in case a pull-down is used) or
high (if a pull-up is used).

Color Description

RED MOSI - Master Out Slave In (Pin 2)
PURPLE MISO - Master In Slave Out (Pin 7)
GREEN CLK - Clock (Pin 5)
YELLOW CS - Chip Select (Pin 1)

Table 6.83: Screenshot descriptions
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

259
Initial communication sequence

The initial communication sequence consists of the following three parts:

1. Outputs 10 dummy bytes with CS disabled, MOSI = 1.
2. Sets CS low and send a 6-byte command (GO_IDLE_STATE command).
3. Receives two bytes, sets CS high and outputs 1 dummy byte with CS disabled,

MOSI = 1.

Overview

The screenshot shows the data flow of a correct initialization. It has been captured
with an oscilloscope.

Verify command transfer (Step 2)

After sending 8 dummy bytes to the card, CS is activated and the GO_IDLE_STATE
command is sent to the card. The first byte is 0x40 or b01000000. You can see (and
should verify that MOSI changes on the falling edge of CLK. The GO_IDLE_STATE com-
mand is the reset command. It sets the card into idle state regardless of the current
card state.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

260 CHAPTER 6 Device drivers
Check output of card (Step 3)

The card responses to the command with two bytes. The SD Card Association defines
that the first byte of the response should always be ignored. The second byte is the
answer from the card. The answer to GO_IDLE_STATE command should be 0x01. This
means that the card is in idle state.

If your card does not return 0x01, check your initialization sequence. After the com-
mand sequence CS has to be deselected.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

261
Adapter

On some evaluation boards the pins required for measuring are not accessible, so
that an oscilloscope or logic analyzer cannot capture the outputs. An adapter which
can be inserted between the card slot and the card, is the best solution in those situ-
ations.

An example adapter is shown below and is available from Segger.

Adapter schematics

Use the schematic below to build an compatible adapter.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

262 CHAPTER 6 Device drivers
6.5 CompactFlash card & IDE driver
emFile supports the use of CompactFlash & IDE devices. An optional generic drivers
for CompactFlash & IDE devices is available.

To use the driver with your specific hardware, you will have to provide basic I/O func-
tions for accessing the ATA I/O registers. This section describes all these routines.

6.5.1 Supported Hardware
emFile's CompactFlash & IDE device driver can be used to access most ATA HD drives
or CompactFlash storage cards also known as CF using true IDE or Memory card
mode.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

263
 True IDE mode pin functions

Signal
name

Dir Pin Description

A2-A0 I 18, 19,
20

Only A[2:0] are used to select one of eight registers in
the Task File, the remaining address lines should be
grounded by the host.

PDIAG I/O 46 This input / output is the Pass Diagnostic signal in the
Master / Slave handshake protocol.

DASP I/O 45 This input/output is the Disk Active/Slave Present sig-
nal in the Master/Slave handshake protocol.

CD1, CD2 O 26, 25

These Card Detect pins are connected to ground on
the CompactFlash Storage Card or CF+ Card. They are
used by the host to determine that the CompactFlash
Storage Card or CF+ Card is fully inserted into its
socket.

CS0, CS1 I 7, 32
CS0 is the chip select for the task file registers while
CS1 is used to select the Alternate Status Register and
the Device Control Register.

CSEL I 39

This internally pulled up signal is used to configure this
device as a Master or a Slave when configured in True
IDE Mode. When this pin is grounded, the device is
configured as a Master. When the pin is open, the
device is configured as a Slave.

D15 - D00 I/O

27 - 31
47 - 49
2 - 6
21 - 23

All Task File operations occur in byte mode on the low
order bus D00-D07 while all data transfers are 16 bit
using D00-D15.

GND -- 1, 5 Ground.

IORD I 34

This is an I/O Read strobe generated by the host. This
signal gates I/O data onto the bus from the Compact-
Flash Storage Card or CF+ Card when the card is con-
figured to use the I/O interface.

IOWR I 35

I/O Write strobe pulse is used to clock I/O data on the
Card Data bus into the CompactFlash Storage Card or
CF+ Card controller registers when the CompactFlash
Storage Card or CF+ Card is configured to use the I/O
interface. The clocking will occur on negative to posi-
tive edge of the signal (trailing edge).

OE (ATA
SEL) I 9 To enable True IDE Mode this input should be grounded

by the host.
INTRQ O 37 Signal is the active high interrupt request to the host.

REG I 44 This input signal is not used and should be connected
to VCC by the host.

RESET I 41 This input pin is the active low hardware reset from
the host.

VCC -- 13, 38 +5V, +3.3V power.

VS1, VS2 O 33, 4

Voltage Sense Signals. -VS1 is grounded so that the
CompactFlash Storage Card or CF+ Card CIS can be
read at 3.3 volts and -VS2 is reserved by PCMCIA for a
secondary voltage.

IORDY O 42 This output signal may be used as IORDY.

WE I 36 This input signal is not used and should be connected
to VCC by the host.

IOIS16 O 24 This output signal is asserted low when the device is
expecting a word data transfer cycle.

Table 6.84: True IDE pin functions
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

264 CHAPTER 6 Device drivers
Sample block schematic

Memory card mode pin functions

Signal
name

Dir Pin Description

A10 - A0 I

8, 10, 11, 1
2, 14, 15, 1
6, 17, 18, 1
9, 20

These address lines along with the -REG signal are
used to select the following: the I/O port address
registers within the CompactFlash Storage Card or
CF+ Card, the memory mapped port address regis-
ters within the CompactFlash Storage Card or CF+
Card, a byte in the card's information structure and
its configuration control and status registers.

BVD1 I/O 46 This signal is asserted high, as BVD1 is not sup-
ported.

BVD2 I/O 45 This signal is asserted high, as BVD2 is not sup-
ported.

Table 6.85: Pin functions in memory card mode

MPU

Open

Open

Open

GND

VCC

For card detection

IDE interface/
IDE Controller

A0-2

D0-15

CS0

CS1

IORD

IOWR

RESET

IORDY

INTRQ

IOIS16

A0-2

D0-15

CE0

CE1

IORD

IOWR

RESET

IORDY

INTRQ

IOIS16

DASP

PDIAG

INPACK

A3-10

CSEL

OE (ATASEL)

GND

WE

REG

VCC

CD1

CD2

VS1

VS2

Compact Flash
Card

CSEL = 1
(Master Mode)
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

265
CD1, CD2 O 26, 25

These Card Detect pins are connected to ground on
the CompactFlash Storage Card or CF+ Card. They
are used by the host to determine that the Com-
pactFlash Storage Card or CF+ Card is fully inserted
into its socket.

CE1, CE2 I 7, 32

These input signals are used both to select the card
and to indicate to the card whether a byte or a word
operation is being performed. -CE2 always accesses
the odd byte of the word. We recommend connect-
ing these pins together.

CSEL I 39 This signal is not used for this mode, but should be
grounded by the host.

D15 - D00 I/O

27 - 31
47 - 49
2 - 6
21 - 23

These lines carry the Data, Commands and Status
information between the host and the controller.
D00 is the LSB of the Even Byte of the Word. D08 is
the LSB of the Odd Byte of the Word.

GND -- 1, 5 Ground.
INPACK O 43 This signal is not used in this mode.
IORD I 34 This signal is not used in this mode.
IOWR I 35 This signal is not used in this mode.

OE (ATA
SEL) I 9

This is an Output Enable strobe generated by the
host interface. It is used to read data from the
CompactFlash Storage Card or CF+ Card in Memory
Mode and to read the CIS and configuration regis-
ters.

READY O 37

In Memory Mode, this signal is set high when the
CompactFlash Storage Card or CF+ Card is ready to
accept a new data transfer operation and is held low
when the card is busy. At power up and at Reset,
the READY signal is held low (busy) until the Com-
pactFlash Storage Card or CF+ Card has completed
its power up or reset function. No access of any
type should be made to the CompactFlash Storage
Card or CF+ Card during this time.Note, however,
that when a card is powered up and used with
+RESET continuously disconnected or asserted, the
reset function of this pin is disabled and conse-
quently the continuous assertion of +RESET will not
cause the READY signal to remain continuously in
the busy state.

REG I 44

This signal is used during Memory Cycles to distin-
guish between Common Memory and Register
(Attribute) Memory accesses. High for Common
Memory, Low for Attribute Memory. To use it with
emFile, this signal should be high.

RESET I 41

When the pin is high, this signal Resets the Com-
pactFlash Storage Card or CF+ Card. The Compact-
Flash Storage Card or CF+ Card is reset only at
power up if this pin is left high or open from power-
up.

VCC -- 13, 38 +5 V, +3.3 V power.

VS1, VS2 O 33, 4

Voltage Sense Signals. -VS1 is grounded so that the
CompactFlash Storage Card or CF+ Card CIS can be
read at 3.3 volts and -VS2 is reserved by PCMCIA
for a secondary voltage.

Signal
name

Dir Pin Description

Table 6.85: Pin functions in memory card mode (Continued)
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

266 CHAPTER 6 Device drivers
Sample block schematic

WAIT O 42

The -WAIT signal is driven low by the CompactFlash
Storage Card or CF+ Card to signal the host to
delay completion of a memory or I/O cycle that is in
progress.

WE I 36

This is a signal driven by the host and used for
strobing memory write data to the registers of the
CompactFlash Storage Card or CF+ Card when the
card is configured in the memory interface mode.

WP O 24

The CompactFlash Storage Card or CF+ Card does
not have a write protect switch. This signal is held
low after the completion of the reset initialization
sequence.

Signal
name

Dir Pin Description

Table 6.85: Pin functions in memory card mode (Continued)

CFVCC

A020

A119

A218

A317

A416

A515

A614

A712

A811

A910

A108

D0 21

D1 22

D2 23

D3 2

D4 3

D5 4

D6
D7 6

D8 47

D9 48

D10 49

D11 27

D12 28

D13 29

D14 30

D15 31

GND 50GND 1

VS133 VS240

VCC 13VCC 38

CD2 25CD1 26

CE1_CS07

CE2_CS132

OE_ATASEL9

WE36

RESET 41

REG44 INTRQ_IREQ37

IOCS16_WP 24

WAIT_IORDY 42

STSCHG_PDIAG 46

SPKR_DASP 45

IORD34

IOWR35

INPK 43

CSEL39

10u/6,3V

CFGND

CFA1
CFA2
CFA3

CFRD

CFWRL

CFCS

CFGND

CFGND

CFVCC

CFVCC

CFGND

CFRDY

CFRES

CFD0
CFD1
CFD2
CFD3
CFD4
CFD5
CFD6
CFD7
CFD8
CFD9
CFD10
CFD11
CFD12
CFD13
CFD14
CFD15

100n

100n

100n

CFVCC

1010k

CFGND

5

emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

267
6.5.2 Theory of operation

6.5.2.1 CompactFlash
CompactFlash is a mechanically small, removable mass storage device. The Com-
pactFlash Storage Card contains a single chip controller and flash memory module(s)
in a matchbox-sized package with a 50-pin connector consisting of two rows of 25
female contacts each on 50 mil (1.27 mm) centers. The controller interfaces with a
host system allowing data to be written to and read from the flash memory mod-
ule(s).

Figure 6.1: CompactFlash schematic

There are two different Compact Flash Types, namely CF Type I and CF Type II.
The only difference between CF Type I and CF Type II cards is the card thickness. CF
Type I is 3.3 mm thick and CF Type II cards are 5mm thick. A CF Type I card will
operate in a CF Type I or CF Type II slot. A CF Type II card will only fit in a CF Type II
slot. The electrical interfaces are identical. CompactFlash is available in both CF Type
I and CF Type II cards, though predominantly in CF Type I cards. The Microdrive is a
CF Type II card. Most CF I/O cards are CF Type I, but there are some CF Type II I/O
cards.

CompactFlash cards are designed with flash technology, a
nonvolatile storage solution that does not require a battery to
retain data indefinitely.
The CompactFlash card specification version 2.0 supports
data rates up to 16MB/sec and capacities up to 137GB.
CF cards consume only five percent of the power required by
small disk drives.

CompactFlash cards support both 3.3V and 5V operation and can be interchanged
between 3.3V and 5V systems. This means that any CF card can operate at either
voltage. Other small form factor flash cards may be available to operate at 3.3V or
5V, but any single card can operate at only one of the voltages.
CF+ data storage cards are also available using magnetic disk (IBM Microdrive).

Controller
Flash

Module(s)
Control

Data
In/Out

Compact Flash Card

Host
Interface
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

268 CHAPTER 6 Device drivers
Modes of operation (interface modes)

Compact Flash cards can operate in three modes:

� Memory card mode
� I/O Card mode
� True IDE mode

Supported modes of operation (interface modes)

Currently, TRUE IDE and MEMORY CARD mode are supported.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

269
Memory card mode pin functions

Signal
name

Dir Pin Description

A10 - A0 I

8, 10, 11, 1
2, 14, 15, 1
6, 17, 18, 1
9, 20

These address lines along with the -REG signal are
used to select the following: the I/O port address
registers within the CompactFlash Storage Card or
CF+ Card, the memory mapped port address regis-
ters within the CompactFlash Storage Card or CF+
Card, a byte in the card's information structure and
its configuration control and status registers.

BVD1 I/O 46 This signal is asserted high, as BVD1 is not sup-
ported.

BVD2 I/O 45 This signal is asserted high, as BVD2 is not sup-
ported.

CD1, CD2 O 26, 25

These Card Detect pins are connected to ground on
the CompactFlash Storage Card or CF+ Card. They
are used by the host to determine that the Com-
pactFlash Storage Card or CF+ Card is fully inserted
into its socket.

CE1, CE2 I 7, 32

These input signals are used both to select the card
and to indicate to the card whether a byte or a word
operation is being performed. -CE2 always accesses
the odd byte of the word. We recommend connect-
ing these pins together.

CSEL I 39 This signal is not used for this mode, but should be
grounded by the host.

D15 - D00 I/O

27 - 31
47 - 49
2 - 6
21 - 23

These lines carry the Data, Commands and Status
information between the host and the controller.
D00 is the LSB of the Even Byte of the Word. D08 is
the LSB of the Odd Byte of the Word.

GND -- 1, 5 Ground.
INPACK O 43 This signal is not used in this mode.
IORD I 34 This signal is not used in this mode.
IOWR I 35 This signal is not used in this mode.

OE (ATA
SEL) I 9

This is an Output Enable strobe generated by the
host interface. It is used to read data from the
CompactFlash Storage Card or CF+ Card in Memory
Mode and to read the CIS and configuration regis-
ters.

READY O 37

In Memory Mode, this signal is set high when the
CompactFlash Storage Card or CF+ Card is ready to
accept a new data transfer operation and is held low
when the card is busy. At power up and at Reset,
the READY signal is held low (busy) until the Com-
pactFlash Storage Card or CF+ Card has completed
its power up or reset function. No access of any
type should be made to the CompactFlash Storage
Card or CF+ Card during this time.Note, however,
that when a card is powered up and used with
+RESET continuously disconnected or asserted, the
reset function of this pin is disabled and conse-
quently the continuous assertion of +RESET will not
cause the READY signal to remain continuously in
the busy state.

Table 6.86: Pin functions in memory card mode
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

270 CHAPTER 6 Device drivers
REG I 44

This signal is used during Memory Cycles to distin-
guish between Common Memory and Register
(Attribute) Memory accesses. High for Common
Memory, Low for Attribute Memory. To use it with
emFile, this signal should be high.

RESET I 41

When the pin is high, this signal Resets the Com-
pactFlash Storage Card or CF+ Card. The Compact-
Flash Storage Card or CF+ Card is reset only at
power up if this pin is left high or open from power-
up.

VCC -- 13, 38 +5 V, +3.3 V power.

VS1, VS2 O 33, 4

Voltage Sense Signals. -VS1 is grounded so that the
CompactFlash Storage Card or CF+ Card CIS can be
read at 3.3 volts and -VS2 is reserved by PCMCIA
for a secondary voltage.

WAIT O 42

The -WAIT signal is driven low by the CompactFlash
Storage Card or CF+ Card to signal the host to
delay completion of a memory or I/O cycle that is in
progress.

WE I 36

This is a signal driven by the host and used for
strobing memory write data to the registers of the
CompactFlash Storage Card or CF+ Card when the
card is configured in the memory interface mode.

WP O 24

The CompactFlash Storage Card or CF+ Card does
not have a write protect switch. This signal is held
low after the completion of the reset initialization
sequence.

Signal
name

Dir Pin Description

Table 6.86: Pin functions in memory card mode (Continued)
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

271
Sample block schematic

CFVCC

A020

A119

A218

A317

A416

A515

A614

A712

A811

A910

A108

D0 21

D1 22

D2 23

D3 2

D4 3

D5 4

D6
D7 6

D8 47

D9 48

D10 49

D11 27

D12 28

D13 29

D14 30

D15 31

GND 50GND 1

VS133 VS240

VCC 13VCC 38

CD2 25CD1 26

CE1_CS07

CE2_CS132

OE_ATASEL9

WE36

RESET 41

REG44 INTRQ_IREQ37

IOCS16_WP 24

WAIT_IORDY 42

STSCHG_PDIAG 46

SPKR_DASP 45

IORD34

IOWR35

INPK 43

CSEL39

10u/6,3V

CFGND

CFA1
CFA2
CFA3

CFRD

CFWRL

CFCS

CFGND

CFGND

CFVCC

CFVCC

CFGND

CFRDY

CFRES

CFD0
CFD1
CFD2
CFD3
CFD4
CFD5
CFD6
CFD7
CFD8
CFD9
CFD10
CFD11
CFD12
CFD13
CFD14
CFD15

100n

100n

100n

CFVCC

1010k

CFGND

5

emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

272 CHAPTER 6 Device drivers
6.5.2.2 IDE (ATA) Drives
Just like Compact Flash cards, ATA drives have a built-in controller to drive and con-
trol the mechanical hardware in a drive. Actually there are two types of connecting
ATA drives. 5.25 and 3.5 inch drives are using a 40 pin male interface to connect to
an IDE controller. 2.5 and 1.8 inch drives, mostly used in Notebooks and embedded
systems, have a 50 pin male interface.

Modes of operation (interface modes)

ATA drives can operate in a variety of different modes:

� PIO (Programmed I/O)
� Multiword DMA
� Ultra DMA

Supported modes of operation (interface modes)

Currently, only PIO mode through TRUE IDE is supported.

ATA drives: True IDE mode pin functions

Refer to True IDE mode pin functions on page 263 for information.

ATA drives: Hardware interfaces

6.5.3 Fail-safe operation
Unexpected Reset

The data will be preserved.

Power failure

Power failure can be critical: If the card does not have sufficient time to complete a
write operation, data may be lost. Countermeasures: make sure the power supply for
the card drops slowly.

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

Ground

DD8

DD9

DD10

DD11

DD12

DD13

DD14

DD15

key (no pin)

Ground

Ground

Ground

SPSYNC:CSEL

Ground

IOCS16Ð

PDIAGÐ

DA2

CS3FXÐ

Ground

Pin Pin SignalSignal

RESETÐ

DD7

DD6

DD5

DD4

DD3

DD2

DD1

DD0

Ground

DMARQ

DIOWÐ

DIORÐ

IORDY

DMACKÐ

INTRQ

DA1

DA0

CS1FXÐ

DASPÐ

Pin

A

C

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

Pin

B

D

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

Signal / use

master/slave jumper

master/slave jumper

no pin

Ground

DD8

DD9

DD10

DD11

DD12

DD13

DD14

DD15

key (no pin)

Ground

Ground

Ground

SPSYNC:CSEL

Ground

IOCS16–

PDIAG–

DA2

CS3FX–

Ground

+5V (motor)

Type

Signal / use

master/slave jumper

master/slave jumper

no pin

RESET–

DD7

DD6

DD5

DD4

DD3

DD2

DD1

DD0

Ground

DMARQ

DIOW–

DIOR–

IORDY

DMACK–

INTRQ

DA1

DA0

CS1FX–

DASP–

+5V (logic)

+Ground
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

273
6.5.4 Wear-leveling
CompactFlash card are controlled by an internal controller, this controller also han-
dles wear leveling. Therefore, the driver does not need to handle wear-leveling.

6.5.5 Configuring the driver

6.5.5.1 Adding the driver to emFile
To add the driver, use FS_AddDevice() with the driver label FS_IDE_Driver. This
function has to be called from within FS_X_AddDevices(). Refer to
FS_X_AddDevices() on page 320 for more information.

Example

FS_AddDevice(&FS_IDE_Driver);

6.5.5.2 FS_IDE_Configure()
Description

Configures the IDE/CF drive. This function has to be called from FS_X_AddDevices().
FS_IDE_Configure() can be called before or after adding the device driver to the file
system. Refer to FS_X_AddDevices() on page 320 for more information.

Prototype
void FS_IDE_Configure(U8 Unit, U8 IsSlave);

Additional information

This function only needs to be called when the device does not use the default IDE
master/slave configuration. By default, all even units (0,2,4...) are master, all odd
units are slave (1, 3, 5 ...).

Example

Configure 2 different IDE/CF devices:

void FS_X_AddDevices(void) {
 FS_AssignMemory(&_aMemBlock[0], sizeof(_aMemBlock));
 //
 // Add 2 instances of the IDE driver
 //
 FS_AddDevice(&FS_IDE_Driver);
 FS_AddDevice(&FS_IDE_Driver);
 //
 // Set the first unit as MASTER
 //
 FS_IDE_Configure(0, 0);
 //
 // Set the second unit as MASTER
 //
 FS_IDE_Configure(1, 0);
}

Parameter Description

Unit Unit number (0�N).
ISSlave Specifies whether the unit is connected

Table 6.87: FS_IDE_Configure() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

274 CHAPTER 6 Device drivers
6.5.6 Hardware functions

Routine Explanation

Control line function
FS_IDE_HW_Reset() Resets the bus interface.
FS_IDE_HW_Delay400ns() Waits 400ns.
FS_IDE_HW_IsPresent() Checks if a device is present.

ATA I/O register access functions

FS_IDE_HW_ReadReg()
Reads an IDE register. Data from the IDE
register are read 16-bit wide.

FS_IDE_HW_WriteReg()
Write an IDE register. Data to the IDE
register are written 16-bit wide.

FS_IDE_HW_ReadData() Reads data from the IDE data register.
FS_IDE_HW_WriteData() Writes data to the IDE data register.

Table 6.88: CompactFlash / IDE device driver functions
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

275
6.5.6.1 FS_IDE_HW_Reset()
Description

Resets the bus interface.

Prototype
void FS_IDE_HW_Reset (U8 Unit);

Additional Information

This function is called, when the driver detects a new media is present. For ATA HD
drives, there is no action required and this function can be empty.

Example

void FS_IDE_HW_X_Reset(U8 Unit) {
 FS_USE_PARA(Unit);
}

Parameter Meaning

Unit Unit number (0�N).
Table 6.89: FS_IDE_HW_Reset() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

276 CHAPTER 6 Device drivers
6.5.6.2 FS_IDE_HW_Delay400ns()
Description

Waits 400ns.

Prototype
void FS_IDE_HW_Delay400ns (U8 Unit);

Additional Information

FS_IDE_HW_X_Delay400ns() is always called when a command is sent or parameters
are set in the IDE/CF drive. The integrated logic may need a delay of 400ns.
When using slow IDE/CF drives with fast processors this function should guarantee
that a delay of 400ns is kept.
However this function may be empty if you intend to use fast drives (Modern CF-
Cards and IDE drives are faster than 400ns when executing commands.)

Example

void FS_IDE_HW_X_Delay400ns(U8 Unit) {
 FS_USE_PARA(Unit);
}

Parameter Meaning

Unit Unit number (0�N).
Table 6.90: FS_IDE_HW_Delay400ns() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

277
6.5.6.3 FS_IDE_HW_IsPresent()
Description

Checks if the device is connected.

Prototype
U8 FS_IDE_HW_IsPresent (U8 Unit);

Return value

== 1: Device is connected.
== 0: Device is not connected.

Example

int FS_IDE_HW_IsPresent(U8 Unit) {
 FS_USE_PARA(Unit);
 return 1;
}

Parameter Meaning

Unit Unit number (0�N).
Table 6.91: FS_IDE_HW_IsPresent() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

278 CHAPTER 6 Device drivers
6.5.6.4 FS_IDE_HW_ReadReg()
Description

Reads an IDE register. Data from the IDE register are read 16-bit wide.

Prototype
U16 FS_IDE_HW_ReadReg (U8 Unit,
 unsigned AddrOff);

Return value

Data read from the IDE register.

Example

U16 FS_IDE_HW_ReadReg(U8 Unit, unsigned AddrOff) {
 volatile U16 * pIdeReg;

 FS_USE_PARA(Unit);
 pIdeReg = _Getp(AddrOff);
 return *pIdeReg;
}

Parameter Meaning

Unit Unit number (0�N).
AddrOff Address offset that specifies which IDE register should be read.

Table 6.92: FS_IDE_HW_ReadReg() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

279
6.5.6.5 FS_IDE_HW_WriteReg()
Description

Writes an IDE register. Data to the IDE register are written 16-bit wide.

Prototype
void FS_IDE_HW_WriteReg (U8 Unit,
 unsigned AddrOff,
 U16 Data);

Example

void FS_IDE_HW_WriteReg(U8 Unit, unsigned AddrOff, U16 Data) {
 volatile U16 * pIdeReg;

 FS_USE_PARA(Unit);
 pIdeReg = _Getp(AddrOff);
 *pIdeReg = Data;
}

Parameter Meaning

Unit Unit number (0�N).
AddrOff Address offset that specifies which IDE register should be written.
Data Value that should be written to the register.

Table 6.93: FS_IDE_HW_WriteReg() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

280 CHAPTER 6 Device drivers
6.5.6.6 FS_IDE_HW_ReadData()
Description

Reads data from the IDE data register.

Prototype
void FS_IDE_HW_ReadData (U8 Unit,
 U16 pData,
 unsigned NumBytes);

Example

void FS_IDE_HW_ReadData(U8 Unit, U8 * pData, unsigned NumBytes) {
 unsigned NumItems;
 volatile U16 * pIdeReg;
 U16 * pData16;

 pIdeReg = _Getp(AddrOff);
 NumItems = NumBytes >> 1;
 pData16 = (U16 *)pData;
 do {
 *pData16++ = *pIdeReg;
 } while (--NumItems);
}

Parameter Meaning

Unit Unit number (0�N).
pData Pointer to a read buffer.
NumBytes Number of bytes that should be read.

Table 6.94: FS_IDE_HW_ReadData() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

281
6.5.6.7 FS_IDE_HW_WriteData()
Description

Writes data to the IDE data register.

Prototype
void FS_IDE_HW_WriteData (U8 Unit,
 U16 Data,
 unsigned NumBytes);

Example

void FS_IDE_HW_WriteData(U8 Unit, const U8 * pData, unsigned NumBytes) {
 unsigned NumItems;
 volatile U16 * pIdeReg;
 U16 * pData16;

 pIdeReg = _Getp(AddrOff);
 NumItems = NumBytes >> 1;
 pData16 = (U16 *)pData;
 do {
 *pIdeReg = *pData16++;
 } while (--NumItems);
}

Parameter Meaning

Unit Unit number (0�N).
pData Pointer to a buffer of data which should be written.
NumBytes Number of bytes that should be read.

Table 6.95: FS_IDE_HW_WriteData() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

282 CHAPTER 6 Device drivers
6.5.7 Additional information
The emFile's generic CompactFlash & IDE device driver can be used to access most
ATA HD drives or CompactFlash storage cards also known as CF using true IDE or
Memory card mode. For details on CompactFlash cards, check the specification,
which is available at:

 http://www.compactflash.org/

Information about the AT Attachment interface can be found at the Technical Com-
mittee T13, who is responsible for the ATA standard:

 http://www.t13.org/

6.5.8 Resource usage

6.5.8.1 ROM usage
The ROM usage depends on the compiler options, the compiler version, and the used
CPU. The memory requirements of the IDE/CF driver displayed in the table have been
measured on a system as follows: ARM7, IAR Embedded Workbench V4.41A, Thumb
mode, Size optimization.

6.5.8.2 Static RAM usage
Static RAM usage is the amount of RAM required by the driver for variables inside the
driver. The number of bytes can be seen in a compiler list file

Static RAM usage of the IDE/CF driver: 24 bytes.

6.5.9 FAQs
None.

Module
ROM

[Kbytes]

emFile IDE/CF driver 1.6
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

283
6.6 NOR flash driver
emFile supports the use of NOR flashes. An optional driver for NOR flashes is avail-
able. The NOR flash driver can work with almost any NOR flash and is extremely effi-
cient.

This section first describes which devices are supported and will afterwards describe
the configuration and the additional information functions of emFile�s NOR flash
driver.

6.6.1 Supported hardware
The NOR flash driver can be used with almost any NOR flash. This includes NOR
flashes with 1x8-bit and 1x16-bit parallel interfaces, as well as 2x16-bit interfaces in
parallel, as well as serial NOR flashes.

Requirements

To be more precise, any NOR flash which fulfills the following requirements:

� Minimum of 2 physical sectors. At least 2 sectors need to be identical in size.
� Physical sectors need to be at least 2048 bytes each.
� Physical sectors do not need to be uniform

(for example, 8 * 8 Kbytes + 3 * 64 Kbytes is permitted).
� Flash needs to be re-writable without erase: The same location can be written to

multiple times without erase, as long as only 1-bits are converted to 0-bits.
� Erase clears all bits in a physical sector to 1.

Physical layer

The driver requires a physical layer for the flash device.

The following physical layers are available:

� FS_NOR_PHY_CFI_1x16 - CFI compliant parallel NOR flash with 1x16-bit inter-
face

� FS_NOR_PHY_CFI_2x16 - CFI compliant parallel NOR flash with 2x16-bit inter-
face

� FS_NOR_PHY_SERIALFLASH_M25P - Serial flash (ST M25Pxx family)
� Physical layer template

Common flash interface (CFI)

The NOR flash driver can be used with any CFI-compliant 16-bit chip. The Common
Flash Memory Interface (CFI) is an open specification which may be implemented
freely by flash memory vendors in their devices. It was developed jointly by Intel,
AMD, Sharp, and Fujitsu.

The idea behind CFI was the interchangeability of current and future flash memory
devices offered by different vendors. If you use only CFI compliant flash memory
chips, you are able to use one driver for different flash products by reading identify-
ing information out of the flash chip itself.

The identifying information for the device, such as memory size, byte/word configu-
ration, block configuration, necessary voltages, and timing information, is stored
directly on the chip.

6.6.1.1 Tested and compatible NOR flashes
In general, the driver supports almost all serial and parallel NOR flashes which fulfill
the listed requirements. This includes NOR flashes with 1x8-bit, 1x16-bit and 2x16-
bit interfaces.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

284 CHAPTER 6 Device drivers
The table below shows the serial NOR flashes that have been tested or are compati-
ble with a tested device:

The table below shows the parallel NOR flashes that have been tested or are compat-
ible with a tested device:

Support for devices not available in this list

Most other NOR flash devices are compatible with one of the supported devices. Thus
the driver can be used with these devices or may only need a little modification,
which can be easily done. Get in touch with us, if you have questions about support
for devices not in this list.

6.6.2 Theory of operation
Differentiating between �logical sectors� or �blocks� and �physical sectors� is very
essential to understand this section. A logical sector/block is the base unit of any file
system, its usual size is 512 bytes. A physical sector is an array of bytes on the flash
chip that are erased together (typically between 2 Kbytes - 128 Kbytes). The flash
chip driver is an abstraction layer between these two types of sectors.

Every time a logical sector is being updated, it is marked as invalid and the new con-
tent of this sector is written into another area of the flash. The physical address and
the order of physical sectors can change with every write access. Hence, there can-
not exist a direct relation between the sector number and its physical location.

The flash driver manages the logical sector numbers by writing it into special head-
ers. It does not matter to the upper layer were the logical sector is stored or how
much flash memory is used as a buffer. All logical sectors (starting with Sector #0)
do always exist and are always available for user access.

Using the same NOR flash for code and data

Most NOR flashes cannot be read out during a program, erase or identify operation.
This means that code cannot be read from the NOR flash during a program or erase
operation. If code which resides in the same NOR flash used for data storage is exe-
cuted during program or erase, a program crash is almost certain.

Manufacturer Device Size

ST Microelectronics

M25P40
M25P80
M25P16
M25P32
M25P128

4 Mbytes (512 Kbytes x 8)
8 Mbytes (1Mbytes x 8)
16 Mbytes (2Mbytes x 8)
32 Mbytes (4Mbytes x 8)
128 Mbytes (16Mbytes x 8)

Table 6.96: List of supported serial NOR flashes

Manufacturer Device Size [Bits]

Intel Intel 28FxxxP30
Intel 28FxxxP33

64 Mbytes - 1 Gbytes
64 Mbytes - 512 Mbytes

ST-Microelectronics

M28W160
M28W320
M28W640
M29F080
M29W160
M29W320
M29W640
M58LW064

16 Mbytes (1 Mbytes x 16)
32 Mbytes (2 Mbytes x 16)
64 Mbytes (4 Mbytes x 16)
8 Mbytes (1 Mbytes x 8)
16 Mbytes (2 Mbytes x 8 or 1 Mbytes x 16)
32 Mbytes (4 Mbytes x 8 or 2 Mbytes x 16)
64 Mbytes (8 Mbytes x 8 or 4 Mbytes x 16)
64 Mbytes (8 Mbytes x 8, 4Mbytes x 16)

Micron

MT28F128
MT28F256
MT28F320
MT28F640

128 Mbytes
256 Mbytes
32 Mbytes
64 Mbytes

Table 6.97: List of supported serial NOR flashes
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

285
There are multiple options to solve this:

1. Use multiple NOR flashes. Use one flash for code and one for data.
2. Use a NOR flash with multiple banks, which allows reading Bank A while Bank B is

being programmed.
3. Make sure the hardware routines which program, erase or identify the NOR flash

are located in RAM and interrupts are disabled.

Physical interfaces

A device can consist of a single or two identical CFI compliant flash interfaces with a
16-bit interface. The most common is a CFI compliant NOR flash chip with a 16-bit
interface.

Beside this solution, emFile supports two CFI compliant NOR flash chips with a 16-bit
interface which are connected to the same address bus.

The emFile NOR flash driver supports both options.

D0...D15

Address bus

NOR
flash

CPU

D0...D15

D16...D31

Address bus

NOR
flash

NOR
flash

CPU
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

286 CHAPTER 6 Device drivers
6.6.2.1 Software structure
The NOR flash driver is divided into different layers, which are shown in the illustra-
tion below.

It is possible to use the NOR flash driver also with serial NOR flashes. Only the hard-
ware layer needs to be ported. Normally no changes to the physical layer are
required. If the physical layer needs to be adapted, a template is available.

6.6.3 Fail-safe operation
The emFile NOR driver is fail-safe. That means that the driver makes only atomic
actions and takes the responsibility that the data managed by the file system is
always valid. In case of power loss or power reset during a write operation it is
always assured that only valid data is stored in the flash. If the power loss interrupts
the write operation, the old data will be kept and not corrupted.

6.6.4 Wear leveling
Wear leveling is supported by the driver. Wear leveling makes sure that the number
of erase cycles remains approximately equal for each sector. Maximum erase count
difference is set to 5. This value specifies a maximum difference of erase counts for
different physical sectors before the wear leveling uses the sector with the lowest
erase count.

NOR driver

Logical Layer

NOR driver

Physical Layer

User provided

Hardware Layer

NOR driver

Logical Layer

NOR driver

Physical Layer

Serial NOR flashes Parallel CFI compliant
NOR flashes

(1x16-bit or 2x16-bit
interfaces)
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

287
6.6.5 Configuring the driver

6.6.5.1 Adding the driver to emFile
To add the driver, use FS_AddDevice() with the driver label FS_NOR_Driver. This
function has to be called from FS_X_AddDevices(). Refer to FS_X_AddDevices() on
page 320 for more information.

Example

FS_AddDevice(&FS_NOR_Driver);

6.6.5.2 Configuration API

6.6.5.2.1 FS_NOR_Configure()

Description

Configures the NOR flash drive. Needs to be called for CFI flashes. Typically, this
function has to be called from FS_X_AddDevices() after adding the device driver to
file system. Refer to FS_X_AddDevices() on page 320 for more information.

Prototype
void FS_NOR_Configure(U8 Unit,
 U32 BaseAddr,
 U32 StartAddr,
 U32 NumBytes);

Additional information

If your consists of two identical CFI compliant NOR flash chips with 16 bit interface
FS_NOR_Configure() configures both flash chips. Refer to FS_NOR_SetPhyType() on
page 288 for more information about the different physical type of your device.

Example

Configure a single NOR flash chip:

void FS_X_AddDevices(void) {
 FS_AssignMemory(&_aMemBlock[0], sizeof(_aMemBlock));
 //
 // Add driver
 //
 FS_AddDevice(&FS_NOR_Driver);
 //
 // Set physical type, single CFI compliant NOR flash chips with 16 bit interface
 //
 FS_NOR_SetPhyType(0, &FS_NOR_PHY_CFI_1x16);
 //
 // Configure a single NOR flash interface (256 Mbytes)

Parameter Description

Unit Unit number (0�N).

BaseAddr
Base address of the NOR flash chip. This is the address of the first
byte of the NOR flash.

StartAddr
Start address of the NOR flash disk. This is the address of the first
byte of the NOR flash to be used as flash disk. It needs to be >=
BaseAddr.

NumBytes

Specifies the size of the NOR flash device in bytes.The size of the
flash disk will be:
min(NumBytes, DeviceSize - (StartAddr - BaseAddr)
where DeviceSize is the size of the NOR flash found.

Table 6.98: FS_NOR_Configure() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

288 CHAPTER 6 Device drivers
 //
 FS_NOR_Configure(0, 0x1000000, 0x1000000, 0x200000);
}

Configure two NOR flash chips:

void FS_X_AddDevices(void) {
 //
 // Add driver
 //
 FS_AddDevice(&FS_NOR_Driver);
 //
 // Set physical type, 2 identical CFI compliant NOR flash chips
 // with 16 bit interface
 //
 FS_NOR_SetPhyType(0, &FS_NOR_PHY_CFI_2x16);
 //
 // Configure two NOR flash interfaces (256 Mbytes each)
 //
 FS_NOR_Configure(0, 0x1000000, 0x1000000, 0x400000);
}

6.6.5.2.2 FS_NOR_SetPhyType()

Description

Sets the physical type of the device. The NOR flash driver comes with different phys-
ical interfaces. The most common is a CFI compliant NOR flash chip with a 16 bit
interface. A device can consist of a single or two identical CFI compliant flash inter-
faces with a 16 bit interface. Set pPhyType to FS_NOR_PHY_CFI_1x16 if you use a sin-
gle NOR flash chip. If your device consists of two identical NOR flash chips, set
pPhyType to FS_NOR_PHY_CFI_2x16.

This function has to be called from within FS_X_AddDevices() after adding the
device driver to file system. Refer to FS_X_AddDevices() on page 320 for more infor-
mation.

Prototype
void FS_NOR_SetPhyType(U8 Unit, const FS_NOR_PHY_TYPE * pPhyType);

Additional information

If you want to access special flash devices (for example, the internal NOR flash of a
microcontroller), you can define your own physical type. Use the supplied template
NOR_Phy_Template.c for the implementation. The template is located in the \Sam-
ple\Driver\NOR\ directory.

Note: Most NOR flashes cannot be read out during a program, erase or identify
operation. This means that code cannot be read from the NOR flash during a program
or erase operation. If code which resides in the same NOR flash used for data storage
is executed during program or erase, a program crash is almost certain. To avoid

Parameter Meaning

Unit Unit number (0�N).
pPhyType Pointer to physical type.

Table 6.99: FS_NOR_SetPhyType() parameter list

Permitted values for parameter pPhyType

FS_NOR_PHY_CFI_1x16
One CFI compliant NOR flash chip with
16 bit interface.

FS_NOR_PHY_CFI_2x16
Two CFI compliant NOR flash chip with
16 bit interfaces.

FS_NOR_PHY_ST_M25 Serial NOR flashes.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

289
this, you have to make sure that routines which program, erase or identify are
located in RAM and interrupts are disabled. The responsibility therefor is on user
side.

Example

Refer to FS_NOR_Configure() on page 287 for an example of usage.

6.6.5.3 Sample configurations
In the following some sample configurations how to create multiple volumes, logical
volumes etc., using the NOR driver are shown. All configuration steps have to be per-
formed inside the FS_X_AddDevices() function. For more information about the
FS_X_AddDevices() function, please refer to FS_X_AddDevices() on page 320.

Creating multiple volumes on a single NOR flash chip

The following example illustrates how to create multiple volumes on a single NOR
flash chip. In this sample we create 2 volumes on one NOR flash.

//
// Config: 1 NOR flash, where NOR flash size -> 2 MB
// 2 volumes, , where volume 0 size -> 1MB, volume 1 -> 0.5MB
//
#define FLASH_BASE_ADDR 0x80000000

#define FLASH_VOLUME_0_START_ADDR 0x80000000
#define FLASH_VOLUME_0_SIZE 0x00100000 // 1 MByte

#define FLASH_VOLUME_1_START_ADDR 0x80100000
#define FLASH_VOLUME_1_SIZE 0x00080000 // 0.5 MByte

//
// Volume 0
//
FS_AddDevice(&FS_NOR_Driver);
FS_NOR_SetPhyType(0, &FS_NOR_PHY_CFI_1x16);
FS_NOR_Configure(0, FLASH_BASE_ADDR, FLASH_VOLUME_0_START_ADDR,
FLASH_VOLUME_0_SIZE);
//
// Volume 1
//
FS_AddDevice(&FS_NOR_Driver);
FS_NOR_SetPhyType(1, &FS_NOR_PHY_CFI_1x16);
FS_NOR_Configure(1, FLASH_BASE_ADDR, FLASH_VOLUME_1_START_ADDR,
FLASH_VOLUME_1_SIZE);
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

290 CHAPTER 6 Device drivers
Creating multiple volumes with multiple NOR flash chips

The following example illustrates how to create multiple volumes on multiple NOR
flash chips. In this sample we create 2, each on one NOR flash.

//
// Config: 2 NOR flash chips, where NOR flash 0 size -> 2 MB, NOR flash 1 -> 16MB
// 2 volumes, volume 0 size -> complete NOR 0, volume 1 -> complete NOR 1
//
#define FLASH0_BASE_ADDR 0x80000000
#define FLASH_VOLUME_0_START_ADDR FLASH0_BASE_ADDR
#define FLASH_VOLUME_0_SIZE 0xFFFFFFFF // Use the complete flash

#define FLASH1_BASE_ADDR 0x40000000
#define FLASH_VOLUME_1_START_ADDR FLASH1_BASE_ADDR
#define FLASH_VOLUME_1_SIZE 0xFFFFFFFF // Use the complete flash

//
// Volume 0
//
FS_AddDevice(&FS_NOR_Driver);
FS_NOR_SetPhyType(0, &FS_NOR_PHY_CFI_1x16);
FS_NOR_Configure(0,
 FLASH0_BASE_ADDR,
 FLASH_VOLUME_0_START_ADDR,
 FLASH_VOLUME_0_SIZE
);
//
// Volume 1
//
FS_AddDevice(&FS_NOR_Driver);
FS_NOR_SetPhyType(1, &FS_NOR_PHY_CFI_1x16);
FS_NOR_Configure(1,
 FLASH1_BASE_ADDR,
 FLASH_VOLUME_1_START_ADDR,
 FLASH_VOLUME_1_SIZE
);
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

291
Creating volumes which spread over multiple NOR flash chips

The following example illustrates how to create a volume which spreads over multiple
NOR flash chips. This is achieved by using the logical volume functions. In this sam-
ple a logical volume which spreads over 2 NOR flash chips is created.

//
// Config: 2 NOR flash chips, where NOR flash 0 size -> 2 MB, NOR flash 1 -> 16MB
// 1 volume, where volume is NOR flash 0 + NOR flash 1
//
#define FLASH0_BASE_ADDR 0x80000000
#define FLASH_VOLUME_0_START_ADDR FLASH0_BASE_ADDR
#define FLASH_VOLUME_0_SIZE 0xFFFFFFFF // Use the complete flash

#define FLASH1_BASE_ADDR 0x40000000
#define FLASH_VOLUME_1_START_ADDR FLASH1_BASE_ADDR
#define FLASH_VOLUME_1_SIZE 0xFFFFFFFF // Use the complete flash

//
// Create physical device 0, this device will not be visible as a volume
//
FS_AddPhysDevice(&FS_NOR_Driver);
FS_NOR_SetPhyType(0, &FS_NOR_PHY_CFI_1x16);
FS_NOR_Configure(0,
 FLASH0_BASE_ADDR,
 FLASH_VOLUME_0_START_ADDR,
 FLASH_VOLUME_0_SIZE
);
//
// In order to know whether the volume is low-level-formatted, we do the check here.
// When the device is added to the logical volume,
// a single check for low-level-format can not be performed.
//
if (FS_NOR_IsLLFormatted(0) == 0) {
 FS_NOR_FormatLow(0);
}
//
// Create physical device 1, this device will not be visible as a volume
//
FS_AddPhysDevice(&FS_NOR_Driver);
FS_NOR_SetPhyType(1, &FS_NOR_PHY_CFI_1x16);
FS_NOR_Configure(1,
 FLASH1_BASE_ADDR,
 FLASH_VOLUME_1_START_ADDR,
 FLASH_VOLUME_1_SIZE
);
//
// In order to know whether the volume is low-level-formatted, we do the check here.
// When the device is added to the logical volume,
// a single check for low-level-format can not be performed.
//
if (FS_NOR_IsLLFormatted(1) == 0) {
 FS_NOR_FormatLow(1);
}
//
// Now create a logical volume, containing the physical devices
//
FS_LOGVOL_Create("LogVol");
FS_LOGVOL_AddDevice("LogVol", &FS_NOR_Driver, 0, 0, 0);
FS_LOGVOL_AddDevice("LogVol", &FS_NOR_Driver, 1, 0, 0);
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

292 CHAPTER 6 Device drivers
6.6.6 Physical layer
There is normally no need to change the physical layer of the NOR driver, only the
hardware layer has to be adapted if a non CFI compliant NOR flash chip is used in
your hardware.

In some special cases, when the low-level hardware routines provided by the driver
are not compatible with the target hardware the physical layer has to be adapted.

6.6.6.1 Available physical layers
The following physical layers are available. Refer to Configuring the driver on
page 287 for detailed information about how to add the required physical layer to
your application.

Available physical layers

FS_NOR_PHY_CFI_1x16 One CFI compliant NOR flash chip with 16 bit interface.
FS_NOR_PHY_CFI_2x16 Two CFI compliant NOR flash chip with 16 bit interfaces.
FS_NOR_PHY_ST_M25 Serial NOR flashes.

Table 6.100: Available physical layer

NOR driver

Logical Layer

NOR driver

Physical Layer

User provided

Hardware Layer

NOR driver

Logical Layer

NOR driver

Physical Layer

Serial NOR flashes Parallel CFI compliant
NOR flashes

(1x16-bit or 2x16-bit
interfaces)
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

293
6.6.6.2 Physical layer functions
If there is a reason to change the physical layer anyhow, the functions which have to
be changed are organized in a function table. The function table is implemented in a
structure of type FS_NOR_PHY_TYPE.

struct FS_NOR_PHY_TYPE {
 int (*pfWriteOff) (U8 Unit, U32 Off, const void * pSrc, U32 Len);
 int (*pfReadOff) (U8 Unit, void * pDest, U32 Off, U32 Len);
 int (*pfEraseSector) (U8 Unit, unsigned int SectorIndex);
 void (*pfGetSectorInfo)(U8 Unit, unsigned int SectorIndex, U32 * pOff, U32 * pLen);
 int (*pfGetNumSectors)(U8 Unit);
 void (*pfConfigure) (U8 Unit, U32 BaseAddr, U32 StartAddr, U32 NumBytes);
 void (*pfOnSelectPhy) (U8 Unit);
 void (*pfDeInit) (U8 Unit);
} FS_NOR_PHY_TYPE;

If the physical layer should be modified, the following members of the structure
FS_NOR_PHY_TYPE have to be adapted:

Routine Explanation

(*pfWriteOff) Writes data into any section of the flash.

(*pfReadOff)
Reads data from the given offset of the
flash.

(*pfEraseSector) Erases one sector.

(*pfGetSectorInfo)
Returns the offset and length of the given
sector.

(*pfGetNumSectors) Returns the number of flash sectors.
(*pfConfigure) Configures a single instance of the driver.
(*pfOnSelectPhy) Retrieves information from flash.
(*pfDeInit) Deinitialize the hardware.

Table 6.101: Physical layer hardware functions
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

294 CHAPTER 6 Device drivers
6.6.6.2.1 (*pfWriteOff)()

Description

This routine writes data into any section of the flash. It does not check if this section
has been previously erased; this is in the responsibility of the user program. Data
written into multiple sectors at a time can be handled by this routine.

Prototype
int (*pfWriteOff) (U8 Unit,
 U32 Off,
 const void * pSrc,
 unsigned NumBytes);

Return value
== 0: Data successfully transferred.
!= 0: An error has occurred.

Parameter Meaning

Unit Unit number (0...N).
Off Zero-based byte offset.
pSrc Pointer to a buffer of data which should be written.
NumBytes Number of bytes which should be written.

Table 6.102: (*pfWriteOff)() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

295
6.6.6.2.2 (*pfReadOff)()

Description

Reads data from the given offset of the flash.

Prototype
int (*pfReadOff) (U8 Unit,
 U32 Off,
 const void * pDest,
 unsigned NumBytes);

Return value
== 0: Data successfully transferred.
!= 0: An error has occurred.

Parameter Meaning

Unit Unit number (0...N).
pDest Pointer to a buffer of data which should be read.
Off Zero-based byte offset.
NumBytes Number of bytes which should be written.

Table 6.103: (*pfReadOff)() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

296 CHAPTER 6 Device drivers
6.6.6.2.3 (*pfEraseSector)()

Description

Erases one sector.

Prototype
int (*pfEraseSector) (U8 Unit,
 U32 SectorIndex);

Return value
== 0: OK. Sector is erased.
!= 0: An error has occurred; sector might not be erased.

Parameter Meaning

Unit Unit number (0...N).
SectorIndex zero-based index.

Table 6.104: (*pfEraseSector)() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

297
6.6.6.2.4 (*pfGetSectorInfo)()

Description

Returns the offset and length of the given sector.

Prototype
void (*pfGetSectorInfo) (U8 Unit,
 U32 SectorIndex,
 U32 * pOff,
 U32 * pLen);

Parameter Meaning

Unit Unit number (0...N).
SectorIndex Zero-based sector index.
pOff Buffer to store the offset of the specified sector.
pLen Buffer to store the length of the specified sector.

Table 6.105: (*pfGetSectorInfo)() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

298 CHAPTER 6 Device drivers
6.6.6.2.5 (*pfGetNumSectors)()

Description

Returns the number of flash sectors.

Prototype
int (*pfGetNumSector) (U8 Unit);

Return value
Number of flash sectors.

Parameter Meaning

Unit Unit number (0...N).
Table 6.106: (*pfGetNumSectors)() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

299
6.6.6.2.6 (*pfConfigure)()

Description

Configures a single instance of the driver.

Prototype
void (*pfConfigure) (U8 Unit,
 U32 BaseAddr,
 U32 StartAddr,
 U32 NumBytes);

Parameter Meaning

Unit Unit number (0...N).
BaseAddr Base address of the flash.
StartAddr Start address that should be used for the device.
NumBytes Number of bytes which should be used for the device.

Table 6.107: (*pfConfigure)() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

300 CHAPTER 6 Device drivers
6.6.6.2.7 (*pfOnSelectPhy)()

Description

This function might be neccessary to retrieve the information from flash. It is called
right after selection of the physical layer.

Prototype
void (*pfOnSelectPhy) (U8 Unit);

Parameter Meaning

Unit Unit number (0...N).
Table 6.108: (*pfOnSelectPhy)() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

301
6.6.7 Hardware functions
Depending on the used NOR flash type and the corresponding physical layer, different
hardware functions are required. CFI compliant NOR flashes do not need any hard-
ware function, refer to Hardware functions - Serial NOR flashes on page 301 for
detailed information about the hardware functions required by the physical layer for
serial NOR flashes.

6.6.7.1 Hardware functions - CFI compliant chips
The NOR flash driver for CFI compliant chips does not need any hardware function.

6.6.7.2 Hardware functions - Serial NOR flashes

Routine Explanation

Control line functions

FS_NOR_SPI_HW_X_EnableCS()
Activates chip select signal (CS) of the
serial NOR flash chip.

FS_NOR_SPI_HW_X_DisableCS()
Deactivates chip select signal (CS) of the
DataFlash chip.

FS_NOR_SPI_HW_X_Init() Initializes the SPI hardware.
Data transfer functions

FS_NOR_SPI_HW_X_Read()
Receives a number of bytes from the
serial NOR flash.

FS_NOR_SPI_HW_X_Write()
Sends a number of bytes to the serial
NOR flash.

Table 6.109: Serial NOR flash device driver hardware functions
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

302 CHAPTER 6 Device drivers
6.6.7.2.1 FS_NOR_SPI_HW_X_EnableCS()

Description

Activates chip select signal (CS) of the specified serial NOR flash.

Prototype
void FS_NOR_SPI_HW_X_EnableCS (U8 Unit);

Additional Information

The CS signal is used to address a specific serial NOR flash chip connected to the SPI.
Enabling is equal to setting the CS line to low.

Example

/* Excerpt from NOR SPI hardware layer for Atmel AT91SAM9261. */

void FS_NOR_SPI_HW_X_EnableCS(U8 Unit) {
 _SPI_CLR_CS();
}

Parameter Meaning

Unit Unit number (0�N).
Table 6.110: FS_NOR_SPI_HW_X_EnableCS() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

303
6.6.7.2.2 FS_NOR_SPI_HW_X_DisableCS()

Description

Deactivates chip select signal (CS) of the specified serial NOR flash chip.

Prototype
void FS_NOR_SPI_HW_X_DisableCS (U8 Unit);

Additional Information

The CS signal is used to address a specific serial NOR flash connected to the SPI. Dis-
abling is equal to setting the CS line to high.

Example

/* Excerpt from NOR SPI hardware layer for Atmel AT91SAM9261. */

void FS_NOR_SPI_HW_X_DisableCS(U8 Unit) {
 _SPI_SET_CS();
}

Parameter Meaning

Unit Unit number (0�N).
Table 6.111: FS_NOR_SPI_HW_X_DisableCS() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

304 CHAPTER 6 Device drivers
6.6.7.2.3 FS_NOR_SPI_HW_X_Init()

Description

Initializes the SPI hardware.

Prototype
int FS_NOR_SPI_HW_X_Init (U8 Unit);

Return value

== 0 Initialization was successful.
== 1 Initialization failed.

Example

/* Excerpt from NOR SPI hardware layer for Atmel AT91SAM9261. */

void FS_NOR_SPI_HW_X_Init(U8 Unit) {
 _SPI_SETUP_PINS();
}

Parameter Meaning

Unit Unit number (0�N).
Table 6.112: FS_NOR_SPI_HW_X_Init() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

305
6.6.7.2.4 FS_NOR_SPI_HW_X_Read()

Description

Receives a number of bytes from the serial NOR flash chip.

Prototype
void FS_NOR_SPI_HW_X_Read (U8 Unit,
 U8 * pData,
 int NumBytes);

Example

/* Excerpt from NOR SPI hardware layer for Atmel AT91SAM9261. */

void FS_NOR_SPI_HW_X_Read (U8 Unit, U8 * pData, int NumBytes) {
 do {
 SPI_TDR = 0xff;
 while ((SPI_SR & (1 << 9)) == 0);
 while ((SPI_SR & (1 << 0)) == 0);
 *pData++ = SPI_RDR;
 } while (--NumBytes);
}

Parameter Meaning

Unit Unit number (0�N).
pData Pointer to a buffer for data to be receive.
NumBytes Number of bytes to receive.

Table 6.113: FS_NOR_SPI_HW_X_Read() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

306 CHAPTER 6 Device drivers
6.6.7.2.5 FS_NOR_SPI_HW_X_Write()

Description

Sends a number of bytes to the card.

Prototype
void FS_NOR_SPI_HW_X_Write (U8 Unit,
 const U8 * pData,
 int NumBytes);

Example
/* Excerpt from NOR SPI hardware layer for Atmel AT91SAM9261. */

void FS_NOR_SPI_HW_X_Write(U8 Unit, const U8 * pData, int NumBytes) {
 do {
 SPI_TDR = *pData++;
 while ((SPI_SR & (1 << 9)) == 0);
 } while (--NumBytes);
}

Parameter Meaning

Unit Unit number (0�N).
pData Pointer to a buffer for data to be receive.
NumBytes Number of bytes to be written.

Table 6.114: FS_NOR_SPI_HW_X_Write() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

307
6.6.8 Additional Information
Low-level format

Before using the NOR flash as storage device. A low-level format has to be per-
formed. Refer to FS_FormatLow() on page 98 and FS_FormatLLIfRequired() on
page 97 for detailed information about low-level formatting.

6.6.8.1 Further reading
For more technical details about CFI compliant flash memory, check the documents
and specifications that are available free of charge:

� Common Flash Interface (CFI) and Command Sets
Intel - Application Note 646 - April 2000

� Common Flash Memory Interface Specification
AMD - Revision 2.0 - December 1, 2001

6.6.9 Additional driver functions

6.6.9.1 FS_NOR_GetDiskInfo()
Description

Returns information about the flash disk.

Prototype
void FS_NOR_GetDiskInfo(U8 Unit, FS_NOR_DISK_INFO * pDiskInfo);

Additional information

Refer to Structure FS_NOR_DISK_INFO on page 310 for more information about the
structure elements.

Parameter Description

Unit Unit number (0�N).
pDiskInfo Pointer to a structure of type FS_NOR_DISK_INFO.

Table 6.115: FS_NOR_GetDiskInfo() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

308 CHAPTER 6 Device drivers
6.6.9.2 FS_NOR_GetSectorInfo()
Description

Returns info about a particular physical sector.

Prototype
void FS_NOR_GetSectorInfo(U8 Unit,
 U32 PhysSectorIndex,
 FS_NOR_SECTOR_INFO * pSectorInfo);

Additional information

Refer to Structure FS_NOR_SECTOR_INFO on page 311 for more information about
the structure elements.

Example

/***
*
* ShowDiskInfo
*
*/
void ShowDiskInfo(FS_NOR_DISK_INFO* pDiskInfo) {
 char acBuffer[80];

 FS_X_Log("Disk Info: \n");
 FS_NOR_GetDiskInfo(0, pDiskInfo);
 sprintf(acBuffer," Physical sectors: %d\n"
 " Logical sectors : %d\n"
 " Used sectors: %d\n", pDiskInfo->NumPhysSectors, pDiskInfo-
>NumLogSectors, pDiskInfo->NumUsedSectors);
 FS_X_Log(acBuffer);
}

/***
*
* ShowSectorInfo
*/
void ShowSectorInfo(FS_NOR_SECTOR_INFO* pSecInfo, U32 PhysSectorIndex) {
 char acBuffer[400];

 FS_X_Log("Sector Info: \n");
 FS_NOR_GetSectorInfo(0, PhysSectorIndex, pSecInfo);
 sprintf(acBuffer," Physical sector No. : %d\n"
 " Offset : %d\n"
 " Size : %d\n"
 " Erase Count : %d\n"
 " Used logical sectors : %d\n"
 " Free logical sectors : %d\n"
 " Erasable logical sectors: %d\n", PhysSectorIndex,
 pSecInfo->Off,
 pSecInfo->Size,
 pSecInfo->EraseCnt,
 pSecInfo->NumUsedSectors,
 pSecInfo->NumFreeSectors,
 pSecInfo->NumEraseableSectors);
 FS_X_Log(acBuffer);
}

/***
*
* MainTask
*/
void MainTask(void) {
 U32 i, j;
 char ac[0x400];
 FS_NOR_DISK_INFO DiskInfo;

Parameter Description

Unit Unit number (0�N).
PhysSectorIndex Index of physical sector.
pDiskInfo Pointer to a structure of type FS_NOR_DISK_INFO.

Table 6.116: FS_NOR_GetSectorInfo() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

309
 FS_NOR_SECTOR_INFO SecInfo;

 FS_FILE * pFile;
 FS_Init();
 FS_FormatLLIfRequired("");
 for(i = 0; i < strlen(ac); i++) {
 ac[i] = 'A';
 }
 //
 // Check if volume needs to be high-level formatted.
 //
 if (FS_IsHLFormatted("") == 0) {
 printf("High level formatting\n");
 FS_Format("", NULL);
 }
 ShowDiskInfo(&DiskInfo);
 for (i = 0; i < 1000; i++) {
 pFile = FS_FOpen("Test.txt","w");
 if(pFile != 0) {
 FS_Write(pFile, &ac, strlen(ac));
 FS_FClose(pFile);
 printf("Loop cycle: %d\n", i);
 for(j = 0; j < DiskInfo.NumPhysSectors; j++) {
 ShowSectorInfo(&SecInfo, j);
 }
 }
 }
 while(1);
}

emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

310 CHAPTER 6 Device drivers
6.6.9.3 Structure FS_NOR_DISK_INFO
Description

The FS_NOR_SECTOR_INFO structure contains physical and logical sector information.

Prototype
typedef struct {
 U32 NumPhysSectors;
 U32 NumLogSectors;
 U32 NumUsedSectors; /* Number of used logical sectors */
} FS_NOR_DISK_INFO;

Members Description

NumPhysSectors Number physical sectors of the chip.
NumLogSectors Number of logical sectors of the chip.
NumUsedSectors Number of used sectors of the chip.

Table 6.117: FS_NOR_DISK_INFO - list of structure elements
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

311
6.6.9.4 Structure FS_NOR_SECTOR_INFO
Description

The FS_NOR_SECTOR_INFO structure contains physical and logical sector information.

Prototype
typedef struct {
 U32 Off;
 U32 Size;
 U32 EraseCnt;
 U16 NumUsedSectors;
 U16 NumFreeSectors;
 U16 NumEraseableSectors;
} FS_NOR_SECTOR_INFO;

6.6.10 Resource usage
This section describes the ROM and RAM (static + dynamic) RAM usage of the emFile
NOR driver.

6.6.10.1 ROM usage
The ROM usage depends on the compiler options, the compiler version, the used CPU
and the physical layer which is used. The memory requirements of the NOR driver
have been measured on a system as follows: ARM7, IAR Embedded workbench
V5.50.1, Thumb mode, Size optimization.

In addition, one of the following physical layers is required:

Members Description

Off Offset of the physical sector.
Size Size of the physical sector.
EraseCnt Erase count of sector.
NumUsedSectors Number of used logical sector inside the physical sector.
NumFreeSectors Number of free logical sector inside the physical sector.
NumEraseableSectors Number of erasable logical sector inside the physical sector.

Table 6.118: FS_NOR_SECTOR_INFO - list of structure elements

Module
ROM

[Kbytes]

emFile NOR driver 4.0
Physical layer: SPI 1.1
Physical layer: CFI 1x16 2.1
Physical layer: CFI 2x16 1.5

Physical layer Description
ROM

[Kbytes]

FS_NOR_PHY_ST_M25
Physical layer for SPI NOR flash devices (ST
M25Pxx family). 1.1

FS_NOR_PHY_CFI_1x16
Physical layer for CFI-compliant parallel NOR
flash devices with a configuration of 1x16 (1
chip, 16-bits buswidth)

2.1

FS_NOR_PHY_CFI_2x16
Physical layer for CFI-compliant parallel NOR
flash devices with a configuration of 2x16 (2
chips, 16-bits buswidth)

1.5
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

312 CHAPTER 6 Device drivers
6.6.10.2 Static RAM usage
Static RAM usage is the amount of RAM required by the driver for static variables
inside the driver. The number of bytes can be seen in a compiler list file

6.6.10.3 Runtime (dynamic) RAM usage
Runtime (dynamic) RAM usage is the amount of RAM allocated by the driver at runt-
ime. The amount required depends on the runtime configuration and the connected
device. The approximately RAM usage for the NOR flash driver can be calculated as
follows:

MemAllocated = 500 bytes + 2 bytes * FlashSize / LogicalSectorSize

The following table lists the approximate RAM consumption for different combinations
of medium and sector sizes:

Note: When choosing a bigger logical sector size keep in mind that the RAM
usage of the file system increases as more space is needed for the sector buffers.
There is an optimal logical sector size that depends on the flash size. For a 1Mbyte
flash memory the ideal configuration is 1Kbyte sectors.

Module
RAM

[bytes]

emFile NOR driver 20
Physical layer: SPI 50
Physical layer: CFI 1x16 100
Physical layer: CFI 2x16 100

Logical sector size

512 bytes 1024 bytes 2048 bytes

Flash Size

1Mbyte 4.6Kbyte 2.5Kbyte 1.5Kbyte

2Mbyte 8.7Kbyte 4.6Kbyte 2.5Kbyte

4Mbyte 16.8Kbyte 8.7Kbyte 4.6Kbyte

8Mbyte 33.2Kbyte 16.8Kbyte 8.7Kbyte
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

313
6.7 WinDrive driver
The purpose of this driver is to run emFile for test and simulation purposes on a PC
running Windows. Refer to the chapter Getting started on page 21 for a sample using
the WinDrive driver.

6.7.1 Supported hardware
This driver is compatible with use any Windows logical driver on a Windows NT sys-
tem.

Be aware, that Win9X is not supported, because it cannot access logical
drives with �CreateFile�.

6.7.2 Theory of operation
emFile supports in this version FAT and EFS file systems only. NTFS logical drives
cannot be accessed by emFile. It can be used either to store/access files on a floppy
disk or using an USB-Card reader for accessing flash cards. It works also on FAT for-
matted hard disks or partitions.

Note: Do not use this driver on partitions containing important data. It is prima-
rily meant to be used for evaluation purposes. Problems may occur if the program
using emFile is debugged or terminated using the task manager.

6.7.3 Fail-safe operation
Although not important since the driver is not designed to be used in an embedded
device, the data is normally safe. Data safety is handled by the underlying operating
system and hardware.

6.7.4 Wear leveling
The driver does not need wear leveling.

6.7.5 Configuring the driver

6.7.5.1 Adding the driver to emFile
To add the driver use FS_AddDevice() with the driver label FS_WINDRIVE_Driver.
This function has to be called from within FS_X_AddDevices(). Refer to
FS_X_AddDevices() on page 320 for more information.

Example

FS_AddDevice(&FS_WINDRIVE_Driver);

6.7.5.2 FS_Windrive_Configure()
Description

Configures a windows drive instance. This function has to be called from within
FS_X_AddDevices() after adding an instance of the Windrive driver. Refer to
FS_X_AddDevices() on page 320 for more information.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

314 CHAPTER 6 Device drivers
Prototype
void WINDRIVE_Configure(U8 Unit, const char * sDriveName);

Additional information

If sDriveName is NULL a configuration dialog will be opened to select which drive
should be used.

6.7.6 Hardware functions
The WinDrive driver does not need any hardware functions.

6.7.7 Additional information
None.

Parameter Description

Unit Unit number (0�n).

sDriveName
Pointer to string which contains the windows drive name.
For example:”\\\\.\\a:”

Table 6.119: FS_Windrive_Configure() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

315
6.8 Writing your own driver
If you are going to use emFile with your own hardware, you may have to write your
own device driver. This section describes which functions are required and how to
integrate your own device driver into emFile.

6.8.1 Device driver functions
This section provides descriptions of the device driver functions required by emFile.
Note that the names used for these functions are not really relevant for emFile
because the file system accesses them through a function table.

Routine Explanation

AddDevice() Adds a device to file system.
GetName() Returns the name of the device.
GetNumUnits() Returns the number of units.
GetStatus() Returns the Status of the device.
InitMedium() Initializes the device.
IoCtl() Executes a special command on a device.
Read() Reads data from a device.
Write() Writes data to a device.

Table 6.120: Device driver functions

Storage Layer

Device Driver
Function Table

GetName

Call function in
table

Read

AddDevice GetStatus

GetNumUnits

InitMedium

IoCtlWrite
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

316 CHAPTER 6 Device drivers
6.8.2 Device driver function table
emFile uses function tables to call the appropriate driver function for a device.

Data structure
typedef struct {
 const char * (*pfGetName) (U8 Unit);
 int (*pfAddDevice) (void);
 int (*pfRead) (U8 Unit,
 U32 SectorNo,
 void * pBuffer,
 U32 NumSectors);
 int (*pfWrite) (U8 Unit,
 U32 SectorNo,
 const void * pBuffer,
 U32 NumSectors,
 U8 RepeatSame);
 int (*pfIoCtl) (U8 Unit,
 I32 Cmd,
 I32 Aux,
 void * pBuffer);
 int (*pfInitMedium) (U8 Unit);
 int (*pfGetStatus) (U8 Unit);
 int (*pfGetNumUnits) (void);
} FS_DEVICE_TYPE;

Elements of FS_DEVICE_TYPE

Example

/* sample implementation taken from the RAM device driver */

const FS_DEVICE_TYPE FS_RAMDISK_Driver = {
 _GetDriverName,
 _AddDevice,
 _Read,
 _Write,
 _IoCtl,
 NULL,
 _GetStatus,
 _GetNumUnits
};

Element Meaning

pfGetName Pointer to a function that returns the name of the driver.
pfRead Pointer to the device read sector function.
pfWrite Pointer to the device write sector function.
pfIoCtl Pointer to the device IoCtl function.
pfInitMedium Pointer to the medium initialization function. (optional)
pfGetStatus Pointer to the device status function.
pfGetNumUnits Pointer to a function that returns the number of available devices.

Table 6.121: FS_DEVICE_TYPE - List of structure member variables
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

317
6.8.3 Integrating a new driver
There is an empty skeleton driver called generic in the Sample\Driver\DriverTem-
plate\ folder. This driver can be easily modified to get any block oriented storage
device working with the file system.

To add the driver to emFile, FS_AddDevice() should be called from within
FS_X_AddDevices() to mount the device driver to emFile before accessing the device
or its units. Refer to FS_X_AddDevices() on page 320 for more information.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

318 CHAPTER 6 Device drivers
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

319
Chapter 7

Configuration of emFile
emFile can be used without the need for changing any of the compile time flags. All
compile time configuration flags are preconfigured with valid values, which matches
the requirements of the most applications. Device drivers can be added at runtime.

The default configuration of emFile can be changed via compile time flags which can
be added to FS_Conf.h. This is the main configuration file for the file system.

Every driver folder includes a configuration file (e.g. FS_ConfigRamDisk.c) with
implementations of runtime configuration functions explained in this chapter. The
configuration files are a good start, to run emFile �out of the box�.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

320 CHAPTER 7 Configuration of emFile
7.1 Runtime configuration
Every driver folder includes a configuration file (e.g. FS_ConfigRamDisk.c) with
implementations of runtime configuration functions explained in this chapter. These
functions can be customized.

7.1.1 Driver handling
FS_X_AddDevices() is called by the initialization of the file system from FS_Init().
This function should help to bundle the process of adding and configuring the driver.

7.1.1.1 FS_X_AddDevices()
Description

Helper function called by FS_Init() to add devices to the file system and configure
them.

Prototype
void FS_X_AddDevices(void);

Example

/***
*
* FS_X_AddDevices
*/
void FS_X_AddDevices(void) {
 void * pRamDisk;

 FS_AssignMemory(_aMemBlock[0], sizeof(_aMemBlock));
 //
 // Allocate memory for the RAM disk
 //
 pRamDisk = FS_Alloc(RAMDISK_NUM_SECTORS * RAMDISK_BYTES_PER_SECTOR);
 //
 // Add driver
 //
 FS_AddDevice(&FS_RAMDISK_Driver);
 //
 // Configure driver
 //
 FS_RAMDISK_Configure(0, pRamDisk, RAMDISK_BYTES_PER_SECTOR, RAMDISK_NUM_SECTORS);
}

emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

321
7.1.2 System configuration

7.1.2.1 FS_X_GetTimeDate()
Description

Returns the current time and date.

Prototype
U32 FS_X_OS_GetTimeDate(void);

Return value

Current time and date as U32 in a format suitable for the file system.

Additional Information

The format of the time is arranged as follows:
Bit 0-4: 2-second count (0-29)
Bit 5-10: Minutes (0-59)
Bit 11-15: Hours (0-23)
Bit 16-20: Day of month (1-31)
Bit 21-24: Month of year (1-12)
Bit 25-31: Number of years since 1980 (0-127)

Example

U32 FS_X_GetTimeDate(void) {
 U32 r;
 U16 Sec, Min, Hour, Day, Month, Year;

 Sec = FS_X_GET_SECOND();
 Min = FS_X_GET_MINUTE();
 Hour = FS_X_GET_HOUR();
 Day = FS_X_GET_DAY();
 Month = FS_X_GET_MONTH();
 Year = FS_X_GET_YEAR();

 r = Sec / 2 + (Min << 5) + (Hour << 11);
 r |= (Day + (Month << 5) + (Year << 9)) << 16;
 return r;
}

7.1.2.2 Logging functions
Logging is used in higher debug levels only. The typical target build does not use log-
ging and does therefore not require any of the logging functions. For a release build
without logging the functions may be eliminated from configuration file to save some
space. (If the linker is not function aware and eliminates unreferenced functions
automatically). Refer to the chapter Debugging on page 337 for further information
about the different logging functions.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

322 CHAPTER 7 Configuration of emFile
7.2 Compile time configuration
The following types of configuration macros exist:

Binary switches “B”

Switches can have a value of either 0 or 1, for deactivated and activated respectively.
Actually, anything other than 0 works, but 1 makes it easier to read a configuration
file. These switches can enable or disable a certain functionality or behavior.
Switches are the simplest form of configuration macros.

Numerical values “N”

Numerical values are used somewhere in the code in place of a numerical constant. A
typical example is the configuration of the sector size of a storage medium.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

323
7.2.1 General file system configuration

Type Macro Default Description

B FS_SUPPORT_FAT 1

Defines if emFile should use the
FAT file system layer.

Note: FAT and EFS cannot be used
simultaneously.

B FS_SUPPORT_EFS 0

Defines if emFile should use the
optional EFS file system layer.

Note: FAT and EFS cannot be used
simultaneously.

B FS_SUPPORT_CACHE 1

Determines whether
FS_AssignCache() can be used.
FS_AssignCache() allows runtime
assignment of a cache. Refer to
FS_AssignCache() on page 157 for
further information.

Note: FS_AssignCache() needs to
be called to activate the cache
functionality for a specific device.

B FS_MULTI_HANDLE_SAFE 0
If you intend to open a file simul-
taneously for read/write, set this
macro to 1.

String FS_DIRECTORY_DELIMITER �\\�
Defines the character/string that
should be used to delimit directo-
ries in a path.

N FS_DRIVER_ALIGNMENT 4 Defines the minimum alignment in
bytes a driver needs.

B FS_USE_FILE_BUFFER 1

Disables/Enables file buffer sup-
port. File buffers make file access
faster when reading/writing files in
small chunks. When using file
buffers, emFile requires a bit more
ROM and RAM. By default, file
buffers are enabled in emFile, but
not used, since the buffer size has
to be configured before they can
be used. For more information
about how to configure the file
buffers, please refer to
FS_ConfigFileBufferDefault() on
page 60.

Table 7.1: General file system configuration macros
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

324 CHAPTER 7 Configuration of emFile
B FS_SUPPORT_DEINIT 0

Allows to deinitialize the file sys-
tem. This can be useful when
device may not longer use the file
system and the resources shall be
used for other purposes.
ON: FS_DeInit() is enabled and
will free all resource that have
been used, including all memory
block that have been used. For
more information about
FS_DeInit() please refer to
FS_DeInit() on page 44.
OFF: FS_DeInit() is disabled and
therefore resources are not freed.

B FS_SUPPORT_EXT_MEM_MANAGER 0

Defines whether the internal or an
external memory allocation func-
tion should be used.
ON: The file system shall use
external memory allocation rou-
tines. This routines shall be set
through the function FS_Set
OFF: The internal memory alloca-
tion routines of the file system
should be used. To use the

B FS_VERIFY_WRITE 0

Verify every write sector opera-
tion (tests the driver and hard-
ware). This switch should always
be off for production code. It is
normally switched on only when
investigating driver problems.

Type Macro Default Description

Table 7.1: General file system configuration macros
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

325
7.2.2 FAT configuration
The current version of emFile supports FAT12/FAT16/FAT32.

Type Macro Default Description

B FS_FAT_SUPPORT_FAT32 1 To enable support for FAT32
media, define this macro to 1.

B FS_FAT_USE_FSINFO_SECTOR 1

When retrieving the free disk
amount on large FAT32 volumes,
this may take a long time, since
the FAT table can extend to many
Mbytes. To improve this, this
macro should be set to 1. This will
enable the feature of using the
FAT32 specific FSInfo sector. This
sector stores the information of
the free clusters that are available
and the last known free cluster.
ON: Higher speed, Bigger code.
OFF: Lower speed, Smaller code.

B FS_FAT_OPTIMIZE_DELETE 1

When deleting a large contiguous
file on a FAT system, it may take
some time to delete the FAT
entries for the file. This macro set
to 1 enables a sequence to accel-
erate this operation.
ON: Higher speed, Bigger code.
OFF: Lower speed, Smaller code.

B FS_FAT_SUPPORT_UTF8 0

When using the LFN package, the
file/directory name is stored as
Unicode string. This macros
enables the support for accessing
such files and directories, where
characters in the file/directory
name are others than the standard
Latin characters such as Greek or
Cyrillic. To open such a file the
string should be UTF-8 encoded.

Table 7.2: FAT configuration macros
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

326 CHAPTER 7 Configuration of emFile
7.2.3 EFS configuration

7.2.4 OS support
emFile can be used with operating systems. For no OS support at all, set all of them
to 0. If you need support for an additional OS, you will have to provide functions
described in the chapter OS integration on page 329.

Default setting of emFile is not configured for a multitasking environment.

Type Macro Default Description

B FS_EFS_CASE_SENSITIVE 0
If EFS file/directory operations
should be case sensitive, define
this macro to 1.

Table 7.3: EFS configuration macros

Type Macro Default Description

N FS_OS_LOCKING 0

Set this to 1 determines that an
operating system should be used.
When using an operating system,
generally every file system opera-
tion is locked by a semaphore.
When this macro is defined to 1
only one lock is used to lock each
file system function (Coarse lock
granularity). If FS_OS_LOCKING is
defined to 2 the file system locks
on every critical file system opera-
tion. (Fine lock granularity). Fine
lock granularity requires more
semaphores.

Table 7.4: Operating system support macros
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

327
7.2.5 Debugging
emFile can be configured to generate useful debug information which can help you
analyze a potential problem. You can control the amount of generated information by
changing the value of the FS_DEBUG_LEVEL define.

The following table lists the permitted values for FS_DEBUG_LEVEL:

emFile outputs the debug information in text form using logging routines (see
Debugging on page 337). These routines can be left empty as they are not required
for the proper function of emFile. This is typically the case for release (production)
builds which usually use the lowest debug level.

The following table lists the logging functions and on which debug level they are
active:

7.2.6 Miscellaneous configurations

Value Symbolic name Explanation

0 FS_DEBUG_LEVEL_NOCHECK No runtime checks are performed.

1 FS_DEBUG_LEVEL_CHECK_PARA
Parameter checks are performed to avoid
crashes. (Default for target system)

2 FS_DEBUG_LEVEL_CHECK_ALL
Parameter checks and consistency checks
are performed.

3 FS_DEBUG_LEVEL_LOG_ERRORS Errors are recorded.

4 FS_DEBUG_LEVEL_LOG_WARNINGS
Errors and warnings are recorded.
(Default for PC-simulation)

5 FS_DEBUG_LEVEL_LOG_ALL
Errors, warnings and messages are
recorded.

Table 7.5: Debug level macros

Function Debug level Explanation

FS_X_ErrorOut() >= 3 Fatal errors.
FS_X_Warn() >= 4 Warnings.
FS_X_Log() >= 5 Execution trace.

Table 7.6: Logging functions

Type Macro Default Description

B FS_NO_CLIB 0

Setting this macro to 1, emFile
does not use the standard C
library functions (such as strcmp()
etc.) that come with the compiler.

Table 7.7: Miscellaneous configuration macros
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

328 CHAPTER 7 Configuration of emFile
7.2.7 Sample configuration
The emFile configuration file FS_Conf.h is located in the \Config directory of your
shipment. emFile compiles and runs without any problem with the default settings. If
you want to change the default configuration, insert the corresponding macros in the
delivered FS_Conf.h.

/***
* SEGGER MICROCONTROLLER GmbH & Co. KG *
* Solutions for real time microcontroller applications *
**
* *
* (c) 2002 - 2007 SEGGER MICROCONTROLLER GmbH & Co. KG *
* *
* Internet: www.segger.com Support: support@segger.com *
* *
**

**** emFile file system for embedded applications ****
emFile is protected by international copyright laws. Knowledge of the
source code may not be used to write a similar product. This file may
only be used in accordance with a license and should not be re-
distributed in any way. We appreciate your understanding and fairness.

--
File : FS_Conf.h
Purpose : emFile compile-time configuration settings
---------------------------END-OF-HEADER------------------------------
*/
#ifndef _FS_CONF_H_
#define _FS_CONF_H_

#define FS_DEBUG_LEVEL 1
#define FS_MAX_SECTOR_SIZE 512

#endif /* Avoid multiple inclusion */
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

329
Chapter 8

OS integration
emFile is suitable for any multithreaded environment. To ensure that different tasks
can access the file system concurrently, you need to implement a few operating sys-
tem-dependent functions.

For embOS and MS Windows, you will find implementations of these functions in the
file system's source code. This chapter provides descriptions of the functions
required to fully support emFile in multithreaded environments. If you do not use an
OS, or if you do not make file access from different tasks, you can left these func-
tions empty.

You may also add date and time support functions for use by the FAT file system. The
sample implementations provided with emFile use ANSI C standard functions to
obtain the correct date and time.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

330 CHAPTER 8 OS integration
8.1 OS layer API functions
To use emFile with an operating system set the define FS_OS_LOCKING to 1 for coarse
lock granularity (or alternatively to 2 for file lock granularity) in FS_Conf.h. Set this
to 1 determines that an operating system should be used. When using an operating
system, generally every file system operation is locked by a semaphore. When this
macro is defined to 1 only one lock is used to lock each file system function (Coarse
lock granularity). If FS_OS_LOCKING is defined to 2 the file system locks on every crit-
ical file system operation. (Fine lock granularity). Fine lock granularity requires more
semaphores. You have to implement the following functions to integrate emFile into
your operating system. Samples for the implementation of an operating system can
be found in the directory \Sample\OS\.

Example

/***
* SEGGER MICROCONTROLLER GmbH & Co. KG *
* Solutions for real time microcontroller applications *
**
* *
* (c) 2006 SEGGER MICROCONTROLLER GmbH & Co. KG *
* *
* Internet: www.segger.com Support: support@segger.com *
* *
**

**** emFile file system for embedded applications ****
emFile is protected by international copyright laws. Knowledge of the
source code may not be used to write a similar product. This file may
only be used in accordance with a license and should not be re-
distributed in any way. We appreciate your understanding and fairness.
--
File : FS_Conf.h
Purpose : File system configuration
---------------------------END-OF-HEADER------------------------------
*/

#ifndef _FS_CONF_H_
#define _FS_CONF_H_

#define FS_OS_LOCKING 1
#endif /* Avoid multiple inclusion */
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

331
8.1.1 FS_X_OS_Init()
Description

Initializes the OS resources. Specifically, you will need to create at least NumLocks
binary semaphores.

Prototype
void FS_X_OS_Init (unsigned NumLocks);

Additional Information

This function is called by FS_Init(). You should create all resources required by the
OS to support multithreading of the file system.

Parameter Meaning

NumLocks Number of binary semaphores/mutexes that should be created.
Table 8.1: FS_X_OS_Init() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

332 CHAPTER 8 OS integration
8.1.2 FS_X_OS_DeInit()
Description

Frees the OS resources.

Prototype
void FS_X_OS_DeInit(void);

Additional Information

This function is optional and is called by FS_DeInit() which is only available when
FS_SUPPORT_DEINIT is set to 1. You should delete all resources what were required
by the OS to support multithreading of the file system.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

333
8.1.3 FS_X_OS_Lock()
Description

Locks a specific file system operation.

Prototype
void FS_X_OS_LockFileHandle (unsigned LockIndex);

Additional Information

This routine is called by the file system before it accesses the device or before using
a critical internal data structure. It blocks other threads from entering the same crit-
ical section using a resource semaphore/mutex until FS_X_Unlock() has been called
with the same LockIndex.
When using a real time operating system, you normally have to increment a counting
resource semaphore.

Parameter Meaning

LockIndex
Index number of the binary semaphore/mutex created before in
FS_X_OS_Init().

Table 8.2: FS_X_OS_Lock() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

334 CHAPTER 8 OS integration
8.1.4 FS_X_OS_Unlock()
Description

Unlock FAT memory block table.

Prototype
void FS_X_OS_Unlock (unsigned LockIndex);

Additional Information

This routine is called by the file system after accessing the device or after using a
critical internal data structure. When using a real time operating system, you nor-
mally have to decrement a counting resource semaphore.

Parameter Meaning

LockIndex
Index number of the binary semaphore/mutex created before in
FS_X_OS_Init().

Table 8.3: FS_X_OS_Unlock() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

335
8.1.5 Examples
OS interface routine for embOS

The following example shows an adaptation for embOS (excerpt from file
FS_X_embOS.c located in the folder \FS\OS\):

#include "FS_Int.h"
#include "FS_OS.h"
#include "RTOS.h"

static OS_RSEMA * _FS_Sema;

void FS_X_OS_Lock(unsigned LockIndex) {
 OS_RSEMA * pSema;

 pSema = _paSema + LockIndex;
 OS_Use(pSema);
}

void FS_X_OS_Unlock(unsigned LockIndex) {
 OS_RSEMA * pSema;

 pSema = _paSema + LockIndex;
 OS_Unuse(pSema);
}

void FS_X_OS_Init(unsigned NumLocks) {
 unsigned i;
 OS_RSEMA * pSema;

 _paSema = (OS_RSEMA *)FS_AllocZeroed(NumLocks* sizeof(OS_RSEMA));
 pSema =_paSema;
 for (i = 0; i < NumLocks; i++) {
 OS_CREATERSEMA(pSema++);
 }
}

OS interface routines for uC/OS

The following example shows an adaptation for µC/OS (excerpt from file
FS_X_uCOS_II.c located in the folder \Sample\OS\):

#include "FS_Int.h"
#include "FS_OS.h"
#include "ucos_ii.h"

static OS_EVENT **FS_SemPtrs;

void FS_X_OS_Init (unsigned nlocks) {
 unsigned i;
 OS_EVENT **p_sem;

 FS_SemPtrs = (OS_EVENT **)FS_AllocZeroed(nlocks * sizeof(OS_EVENT *));
 p_sem = FS_SemPtrs;

 for(i = 0; i < nlocks; i++) {
 *p_sem = OSSemCreate(1);
 p_sem += 1;
 }
}

void FS_X_OS_Unlock (unsigned index) {
 OS_EVENT *p_sem;

 p_sem = *(FS_SemPtrs + index);
 OSSemPost(p_sem);
}

void FS_X_OS_Lock (unsigned index) {
 INT8U err;
 OS_EVENT *p_sem;

 p_sem = *(FS_SemPtrs + index);
 OSSemPend(p_sem, 0, &err);
}

emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

336 CHAPTER 8 OS integration
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

337
Chapter 9

Debugging
For debug purpose the functions in this chapter are helpful. The functions display
information on a display or through a serial communication port.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

338 CHAPTER 9 Debugging
9.1 FS_X_Log()
Description

Outputs debug information from emFile. This function has to integrated into your
application if FS_DEBUG_LEVEL >= 5. Refer to section Debugging on page 327 of the
Configuration chapter for further information about the different debug-level.

Prototype
void FS_X_Log (const char * s);

Example

/* sample using ANSI C printf function */

U16 FS_X_Log(const char* s) {
 printf("%s", s);
}

Parameter Meaning

s Pointer to the string to be sent.
Table 9.1: FS_X_Log() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

339
9.2 FS_X_Warn()
Description

Outputs warnings from emFile. This function has to integrated into your application if
FS_DEBUG_LEVEL >= 4. Refer to section Debugging on page 327 of the Configuration
chapter for further information about the different debug-level.

Prototype
void FS_X_Warn (const char * s);

Example

/* sample using ANSI C printf function */

U16 FS_X_Warn(const char* s) {
 printf("%s", s);
}

Parameter Meaning

s Pointer to the string to be sent.
Table 9.2: FS_X_Warn() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

340 CHAPTER 9 Debugging
9.3 FS_X_ErrorOut()
Description

Outputs errors from emFile. This function has to integrated into your application if
FS_DEBUG_LEVEL >= 3. Refer to section Debugging on page 327 of the Configuration
chapter for further information about the different debug-level.

Prototype
void FS_X_ErrorOut (const char * s);

Example

/* sample using ANSI C printf function */

U16 FS_X_ErrorOut(const char* s) {
 printf("%s", s);
}

Parameter Meaning

s Pointer to the string to be sent.
Table 9.3: FS_X_ErrorOut() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

341
9.4 Troubleshooting
If you are used to C-like file operations, you already know the fopen() function. In
emFile, there is an equivalent function called FS_FOpen(). You specify a name, an
access mode and if this kind of file access is allowed and no error occurs, you get a
pointer to a file handle in return. For more information about the parameters refer to
FS_FOpen() on page 65: Open a file

FS_FILE * pfile;
pfile = FS_FOpen("test.txt","r");
if (pFile == 0) {
 return -1; /* report error */
} else {
 return 0; /* file system is up and running! */
}

If this pointer is zero after calling FS_FOpen(), there was a problem opening the file.
There are basically some common reasons why this could happen:

� The file or path does not exist
� The drive could not be read or written
� The drive contains an invalid BIOS parameter block or partition table

These faults can be caused by corrupted media. To verify the validity of your
medium, either check if the medium is physically okay or check the medium with
another operation system (for example Windows).

But there are also faults that are relatively seldom but also possible:

� A compiler/linker error has occurred
� Stack overflow
� Memory failure
� Electro-magnetic influence (EMC, EMV, ESD)

To find out what the real reason for the error is, you may just try reading and writing
a raw sector. Here is an example function that tries writing a single sector to your
device. After reading back and verifying the sector data, you know if sectored access
to the device is possible and if your device is working.

int WriteSector(void) {
 U8 acBufferOut[FS_MAX_SECTOR_SIZE];
 U8 acBufferIn[FS_MAX_SECTOR_SIZE];
 U32 SecNum;
 int x, i;
 SecNum = 80; /* Do not write on the first sectors. They contain
 information about partitioning and media geometry. */
 for (i = 0; i < FS_MAX_SECTOR_SIZE; i++) { /* we fill the buffer with data */
 acBufferOut[i] = i % 256;
 }
 x = FS_IoCtl("",FS_CMD_WRITE_SECTOR, SecNum, acBufferOut); /* Write one sector */
 if (x != 0) {
 FS_X_Log("Cannot write to sector.\n");
 return -1;
 }
 x = FS_IoCtl("",FS_CMD_READ_SECTOR, SecNum, acBufferIn); /* read the sector */
 if (x != 0) {
 FS_X_Log("Cannot read from sector.\n");
 return -1;
 }
 for (i = 0; i < FS_MAX_SECTOR_SIZE; i++) {
 if (acBufferIn[i] != acBufferOut[i]) {
 FS_X_Log("Sector not correctly written.\n");
 return -1;
 }
 }
 return 0;
}

emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

342 CHAPTER 9 Debugging
If you still receive no valid file pointer although the sectors of the device is accessible
and other operating systems report the device to be valid, you may have to take a
look into the running system by stepping through the function FS_FOpen().
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

343
Chapter 10

Performance & resource usage
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

344 CHAPTER 10 Performance & resource usage
10.1 Memory footprint
The file system is designed to fit many kinds of embedded design requirements. Sev-
eral features can be excluded from a build to get a minimal system that can effi-
ciently access any FAT media.

The operation area of emFile is very different and the memory requirements (RAM
and ROM) differs in depending on the used features. The following section will show
the memory requirements of different modules which are used in typical applications.

Note that the values are valid for the given configuration. Features can affect the size
of others. For example, if FAT32 is deactivated, the format function gets smaller
because the 32 bit specific part of format is not added into the compilation.

10.1.1 System
The following table shows the hardware and the toolchain details of the project:

10.1.2 File system configuration
The following excerpts of FS_Conf.h shows the used configuration options:

#define FS_OS_LOCKING 0 // Disable OS support
#define FS_SUPPORT_FAT 1 // Support the FAT file system if enabled
#define FS_DEBUG_LEVEL 0 // Set debug level

10.1.3 Sample project
We use the following code to calculate the memory resources of commonly used
functions. You can easily reproduce the measurement when you compile the following
sample. Build the application listed below and generate a linker listing to get the
memory requirements of an application which only includes startup code and the-
empty main() function. Afterwards, set the value of the macro STEP to 1 to get the
memory requirement of the minimum file system. Subtract the ROM requirements
from STEP==0 from the ROM requirements of STEP==1 to get the exact ROM require-
ments of a minimal file system. Increment the value of the macro STEP to include
more file system functions and repeat your calculation.

#include "FS.h"’
#include "FS_Int.h"

/**
*
* defines, configurable
*
***/
#define STEP 0 // Change this line to adjust which portions of code are linked

/***
*
* Public code

Detail Description

CPU ARM7
Tool chain IAR Embedded Workbench for ARM V4.41A
Model ARM7, Thumb instructions; no interwork;
Compiler
options Highest size optimization;

Device driver
Empty dummy driver. For information about the memory usage of a
specific emFile device driver refer to the Unit number section of the
respective driver in the Device drivers on page 165.

Table 10.1: ARM7 sample configuration
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

345
*
***/

/***
*
* main
*/
void main(void) {
#if STEP >= 1 // Step 1: Minimum file system
 FS_FILE * pFile;
 FS_Init();
 pFile = FS_FOpen("File.txt", "w");
#endif
#if STEP >= 2 // Step 2: Write a file
 FS_Write(pFile, "Test", 4);
#endif
#if STEP >= 3 // Step 3: Remove a file
 FS_Remove("File.txt");
#endif
#if STEP >= 4 // Step 4: Open a directory
 FS_FIND_DATA fd;
 FS_FindFirstFile(&fd, "\\YourDir\\", "File.txt", 8);
 FS_FindClose(&fd);
#endif
#if STEP >= 5 // Step 5: Create a directory
 FS_MkDir ("");
#endif
#if STEP >= 6 // Step 6: Add long file name support
 FS_FAT_SupportLFN();
#endif
#if STEP >= 7 // Step 7: Low-level format a medium
 FS_FormatLow("");
#endif
#if STEP >= 8 // Step 8: High-level format a medium
 FS_Format("", NULL);
#endif
#if STEP >= 9 // Step 9: Assign cache - Cache module: FS_CACHE_ALL
 FS_AssignCache("", NULL, 0, FS_CACHE_ALL);
// FS_AssignCache("", NULL, 0, FS_CACHE_MAN);
// FS_AssignCache("", NULL, 0, FS_CACHE_RW);
// FS_AssignCache("", NULL, 0, FS_CACHE_RW_QUOTA);
#endif
#if STEP >= 10 // Step 10: Checkdisk
 FS_FAT_CheckDisk("", NULL, 0, 0, NULL);
#endif
#if STEP >= 11 // Step 11: Get device info
 FS_GetDeviceInfo("", NULL);
#endif
#if STEP >= 12 // Step 12: Get the size of a file
 FS_GetFileSize(NULL);
#endif
 FS_FClose(pFile);

}

emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

346 CHAPTER 10 Performance & resource usage
10.1.4 Static ROM requirements
The following table shows the ROM requirement of the used functions:

Summary

A simple system will typically use around 10 KByte of ROM. To compute the overall
ROM requirements, the ROM requirements of the driver need to be added.

10.1.4.1 ROM requirements for long filename support
This section describes the additional ROM usage of emFile if the long filename sup-
port is used. Please note that long filename support is not part of the emFile FAT
packet, but is sold separately.

RAM requirements for long filename support

The long filename support of emFile does not require any additional RAM.

Description
ROM

[Kbytes]

Step 1: File system core (without driver)
 Contains the following functionality:
 Init / Configuration
 Open file

7.0

Step 2: Read file 1.1
Step 3: Write file 1.1
Step 4: Remove file 0.1
Step 5: Open directory 0.5
Step 6: Create directory 0.5
Step 7: Long file name support 2.0
Step 8: Low-level format a medium 0.2
Step 9: High-level format a medium 1.8
Step 10: Assign a cache - FS_CACHE_ALL 0.4
 Assign a cache - FS_CACHE_MAN 0.7
 Assign a cache - FS_CACHE_RW 0.7
 Assign a cache - FS_CACHE_RW_QUOTA 1.0
Step 11: Checkdisk 3.3
Step 12: Get device info 0.1
Step 13: Get the size of a file 0.1

Module
ROM

[Kbytes]

emFile LFN 2.2
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

347
10.1.5 Static RAM requirements
The static RAM requirement of the file system without any driver is around 150 bytes.

10.1.6 Dynamic RAM requirements
During the initialization emFile will dynamically allocate memory depending on the
number of added devices, the number of simultaneously opened files and the OS
locking type:

Note: FS_FILE and FS_FILE_OBJ structures can be allocated even after initializa-
tion depending on how many files are simultaneously opened.

10.1.7 RAM usage example
For example, a small file system application with the following configuration:

� only one file is opened at a time
� no operating system support
� using the SD card driver

requires approximately 1300 bytes.

Type Size [Bytes] Count

FS_FILE 16
Maximum number of simulta-
neously open files. Depends
on application, minimum is 1.

FS_FILE_OBJ 40
Maximum number of simulta-
neously open files. Depends
on application, minimum is 1.

FS_VOLUME 88 Number of FS_AddDevice()
calls.

No operating system should be used: FS_OS_LOCKING == 0

FS_SECTOR_BUFFER
8 + FS__MaxSectorSize
By default, FS__MaxSectorSize
is 512 bytes.

2

OS should be used: FS_OS_LOCKING == 1

FS_SECTOR_BUFFER
8 + FS__MaxSectorSize
By default, FS__MaxSectorSize
is 512 bytes.

2

OS_LOCKS sizeof(SEMAPHORE) 1
OS should be used. Every critical operations is locked: FS_OS_LOCKING == 2

FS_SECTOR_BUFFER
8 + FS__MaxSectorSize
By default, FS__MaxSectorSize
is 512 bytes.

2 x Number of used drivers

OS_LOCKS 1 + sizeof(SEMAPHORE) Number of used drivers
DRIVER_LOCK_TABLE 16 Number of used drivers
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

348 CHAPTER 10 Performance & resource usage
10.2 Performance
A benchmark is used to measure the speed of the software on available targets. This
benchmark is in no way complete, but it gives an approximation of the length of time
required for common operations on various targets.

10.2.1 Configuration and performance table
All values are in Kbytes/sec.

Device
CPU

speed
Medium W R

Atmel AT91SAM7S 48 MHz MMC/SD using SPI with
24MHz 2300.00 2300.00

Atmel AT91SAM7S 48 MHz NAND with 512 bytes per
page using Port mode. 800.00 2000.00

Atmel AT91SAM7S 48 MHz
NAND with 2048 bytes per
page and a sector size of 512
bytes using Port mode.

695.65 2000.00

Atmel AT91SAM7S 48 MHz

NAND with 2048 bytes per
page and a sector size of
2048 bytes using the built-in
NAND controller / external
bus-interface.

1333.33 2285.71

Atmel AT91SAM7SE 48 MHz

NAND with 2048 bytes per
page and a sector size of 512
bytes using the built-in
NAND controller / external
bus-interface.

1087.05 3103.03

Atmel AT91SAM7SE 48 MHz

NAND with 2048 bytes per
page and a sector size of
2048 bytes using the built-in
NAND controller / external
bus-interface.

3792.59 5885.06

Atmel AT91SAM9261 200 MHz RAM disk 128000 128000

Atmel AT91SAM9261 200 MHz

NAND with 2048 bytes per
page and a sector size of 512
bytes using the built-in
NAND controller / external
bus-interface.

1446.33 4923.08

Atmel AT91SAM9261 200 MHz

NAND with 2048 bytes per
page and a sector size of
2048 bytes using the built-in
NAND controller / external
bus-interface.

2598.98 10666.67

Atmel AT91SAM9261 178 MHz MMC/SD driver using SPI
with 24 MHz. 2312.30 2535.10

Atmel AT91SAM9263 200 MHz
MMC/SD card mode driver
using card controller with 25
MHz.

10039.21 9309.09

LogicPD LH79520 51 MHz RAM disk 20000 20000
LogicPD LH79520 51 MHz IDE mem-mapped 1454.55 1753.42
LogicPD LH79520 51 MHz MMC using SPI with 12MHz 558.95 1368.98

Cogent EP7312 74 MHz CompacFlash card,
True IDE mode 1951.24 2500.00

Cogent EP7312 74 MHz HDD, True IDE mode 1760.55 2450.16
Table 10.2: Performance values for sample configurations
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

349
10.2.1.1 Description of the performance tests
The performance tests are executed as described and in the order below.
Performance test procedure:

1. Format the drive.
2. Create and open a file for writing.

W: Start measuring of write performance.
3. Write a multiple of 8 Kbytes.

W: Stop measuring of write performance.
4. Close the file
5. Reopen the file.

R: Start measuring of read performance.
6. Read a multiple of 8 Kbytes.

R: Stop measuring of read performance.
7. Close the file
8. Show the performance results.

The Performance test can be reproduced. Include FS_PerformanceSimple.c (located
in the folder .\Sample\API) into your project. Compile and run the project on your
target hardware.

NXP LPC2478 57 MHz
MMC/SD card mode driver
using card controller with 25
MHz.

2378.80 3144.60

NXP LPC3250 208 MHz
MMC/SD card mode driver
using card controller with 25
MHz.

3878.70 8393.40

Toshiba TMPA910 192 MHz
MMC/SD card mode driver
using card controller with 25
MHz.

3908.30 8393.40

ST STR912 96 MHz NOR connected over SPI 75 2625

Device
CPU

speed
Medium W R

Table 10.2: Performance values for sample configurations
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

350 CHAPTER 10 Performance & resource usage
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

351
Chapter 11

Journaling (Add-on)
This chapter documents and explains emFile�s journaling add-on. Journaling is an
extension to emFile that makes the file system layer fail-safe.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

352 CHAPTER 11 Journaling (Add-on)
11.1 Introduction
emFile Journaling is an additional component which sits on top of the file system and
makes the file system layer fail-safe. File systems without journaling support (for
example, FAT) are not fail-safe. Journaling means that a file system logs all changes
to a journal before committing them to the main file system.

Driver fail-safety

Data can be lost in case of unexpected Reset in either the file system Layer (FAT or
EFS) or in the driver layer. Your entire system is fail-safe only if BOTH layers are fail-
safe. The journaling add-on makes the file system layer fail-safe. Your entire system
is only fail-safe if the driver layer is fail-safe as well. For fail-safety of the driver
layer, refer to Device drivers on page 165.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

353
11.2 Features
� Non fail-safe file systems will be fail-safe.
� Fully compatible to standard file system implementations (e.g. FAT)
� Every storage solution can be used.

No reformat required.
� Multiple write accesses to the storage medium can be combined in user applica-

tion.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

354 CHAPTER 11 Journaling (Add-on)
11.3 Backgrounds
emFile is typically used with non fail-safe file systems like FAT. Loss of data can occur
in either the driver layer or the file system layer. The driver layer is typically fail-safe
so the only place for typical data loss is the file system layer. The file system can be
corrupted through an interrupted write access for example in the event of power fail-
ure or system crash. This is by design of FAT and true for all implementations from
any vendor. The emFile journaling add-on adds journaling to the file system layer.

The goal of this additional layer is to guarantee a file system that is always in a con-
sistent state. Operations on File System Layer are mostly not atomic. For example, a
single call of FS_FWrite() to write data into a new file causes the execution of the
following three Storage Layer operations:

1. Allocate cluster and update FAT
2. Write user data
3. Update directory entry

An unexpected interrupt (such as a power failure) in this process can corrupt the file
system. To prevent such corruptions the Journaling Layer caches every write access
to achieve an always consistent state of the file system. All changes to the file sys-
tem are stored in a journal. The data stored in the journal is copied into the file sys-
tem only if the File System Layer operation has been finished without interruption.
This procedure guarantees an always consistent state of the file system, because an
interruption of the copy process leads not to data loss. The interrupted copy process
will be restarted after a restart of the target.

11.3.1 File System Layer error scenarios
The following table lists the possible error scenarios:

Moment of error State Data

1. Journal empty. Consistent ---
2. While writing into journal. Consistent Lost
3. While finalizing of the journal. Consistent Lost
4. After finalization. Consistent Obtained
Table 11.1: Error scenarios

File System Layer

Storage Layer

Application Layer

Hardware Layer

e
m

F
ile

File System APIStorage API
API Layer

Device Driver
(CF / IDE / MMC / NAND / NOR / SD /...)

Driver Layer

Journaling (optional)

FAT / EFS
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

355
5. While copying from journal into file sys-
tem. Consistent Obtained

6. After copy process, before invalidating of
the journal. Consistent Obtained

7. While invalidating of the journal. Consistent Obtained

Moment of error State Data

Table 11.1: Error scenarios
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

356 CHAPTER 11 Journaling (Add-on)
11.4 How to use journaling

11.4.1 What do I need to do to use journaling?
Using journaling is very simple from a user perspective.

You have to

1. Enable journaling in the emFile configuration.
Refer to Configuration on page 357 for detailed information.

2. Call FS_JOURNAL_Create() after formatting the volume.
Refer to FS_JOURNAL_Create() on page 360 for detailed information.

That's it. Everything else is done by the emFile Journaling extension.

11.4.2 How can I use journaling in my application?
Journaling can also be used in your application. You can combine multiple write
accesses in your application. Start the section that should use the journal with a call
of FS_JOURNAL_Begin() and finish the section with a call of FS_JOURNAL_End() to
assure that only all write operations of the section or non will be executed.

Example
void FailSafeSample(void) {
 FS_FILE * pFile;

 //
 // Create journal on first device of the volume.
 // Size: 200 KBytes.
 //
 FS_JOURNAL_Create("", 200 * 1024);
 //
 // Begin an operations which have to be be fail-safe.
 // All following steps will be stored into journal.
 //
 FS_JOURNAL_Begin("");
 pFile = FS_FOpen(“File001.txt”, "w");
 if (pFile) {
 FS_Write(pFile, "Test...", 7);
 FS_FClose(pFile);
 }
 pFile = FS_FOpen(“File002.txt”, "w");
 if (pFile) {
 FS_Write(pFile, "Another Test...", 15);
 FS_FClose(pFile);
 }
 //
 // End an operation which has to be be fail-safe.
 // Data will be copied from journal into file system.
 //
 FS_JOURNAL_End("");
}

emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

357
11.5 Configuration
The following types of configuration macros exist:

Binary switches “B”

Switches can have a value of either 0 or 1, for deactivated and activated respectively.
Actually, anything other than 0 works, but 1 makes it easier to read a configuration
file. These switches can enable or disable a certain functionality or behavior.
Switches are the simplest form of configuration macros.

Numerical values “N”

Numerical values are used somewhere in the code in place of a numerical constant. A
typical example is the configuration of the sector size of a storage medium.

11.5.1 Journaling file system configuration
The configuration of emFile can be changed via compile time flags which can be
added to FS_Conf.h. FS_Conf.h is the main configuration file for the file system.

For detailed information about the configuration of emFile, refer to Configuration of
emFile on page 319.

Type Macro Default Description

B FS_SUPPORT_JOURNAL 0 Defines if emFile should enable
journaling for the used file system.

Table 11.2: Journaling configuration macros
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

358 CHAPTER 11 Journaling (Add-on)
11.6 Journaling API
The table below lists the available API functions within their respective categories.

Function Description

FS_JOURNAL_Begin() Start data caching in the journal.
FS_JOURNAL_Create() Creates the journal.
FS_JOURNAL_End() End data caching in the journal.

Table 11.3: emFile Journaling API function overview
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

359
11.6.1 FS_JOURNAL_Begin()
Description

Starts the data buffering in the journal. This means all relevant data is written to the jour-
nal, instead of the �real destination�.

Prototype
void FS_JOURNAL_Begin(const char *sVolume);

Return value

== 0: O.K.
!= 0: Error.

Example

Refer to How can I use journaling in my application? on page 356.

Parameter Description

sVolume
sVolume is the name of a volume. If not specified, the first device in
the volume table will be used.

Table 11.4: FS_JOURNAL_Begin() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

360 CHAPTER 11 Journaling (Add-on)
11.6.2 FS_JOURNAL_Create()
Description

Creates the journal.

Prototype
void FS_JOURNAL_Create(const char * sVolume,
 U32 NumBytes);

Return value

== 0: O.K.
!= 0: Error.

Example

Refer to How can I use journaling in my application? on page 356.

Parameter Description

sVolume
sVolume is the name of a volume. If not specified, the first device in
the volume table will be used.

NumBytes Sets the size of the journal.
Table 11.5: FS_JOURNAL_Create() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

361
11.6.3 FS_JOURNAL_End()
Description

Ends the data buffering in the journal. This means all journal data should be written to the
real destination.

Prototype
int FS_JOURNAL_End(const char *sVolume);

Return value

== 0: O.K.
!= 0: Error.

Example

Refer to How can I use journaling in my application? on page 356.

Parameter Description

sVolume
sVolume is the name of a volume. If not specified, the first device in
the volume table will be used.

Table 11.6: FS_JOURNAL_End() parameter list
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

362 CHAPTER 11 Journaling (Add-on)
11.7 Resource usage
In this section the RAM (static and dynamic) and ROM resource usage of the journal-
ing Add-On is described.

11.7.1 ROM usage
The ROM usage depends on the compiler options, the compiler version and the used
CPU. The memory requirements of the journaling have been measured on a system
as follows: ARM7, IAR Embedded workbench V5.50.1, Thumb mode, Size optimiza-
ion.

11.7.2 Static RAM usage
Static RAM usage is the amount of RAM required by the journal module for static
variables. The number of bytes can be seen in a compiler list file:

Static RAM usage of the journaling Add-on: 16 bytes

11.7.3 Runtime (dynamic) RAM usage
Runtime (dynamic) RAM usage is the amount of RAM allocated by the journaling Add-
on at runtime. The amount required depends on the number of volumes which are
mounted.

The approximately runtime RAM usage for the journaling Add-on can be calculated as
follows:

56 bytes * number of mounted volumes

Module
ROM

[Kbytes]

emFile journal 1.9
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

363
Chapter 12

Porting emFile 2.x to 3.x
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

364 CHAPTER 12 Porting emFile 2.x to 3.x
12.1 Differences from version 2.x to 3.x
Most of the differences from emFile version 2.x to version 3.x are internal. The API of
emFile version 2.x is a subset of the API of version 3.x. Only few functions are com-
pletely removed. Refer to section API differences on page 364 for a complete over-
view of the removed and obsolete functions.

emFile version 3 has a new driver handling. You can include drivers and allocate the
required memory for the accordant driver without the need to recompile the whole
file system. Refer to Configuration of emFile on page 319 for detailed information
about the integration of a driver into emFile. For detailed information to the emFile
device drivers, refer to the chapter Device drivers on page 165.

Because of these differences, we recommend to start with a new file system project
and include your application code, if the start project runs without any problem.
Refer to the chapter Running emFile on target hardware on page 27 for detailed
information about the best way to start the work with emFile version 3.x.

The following sections gives an overview about the changes from emFile version 2.x.
to emFile version 3 in table form.

12.2 API differences

In emFile version 3 is the header file FS_Api.h renamed to FS.h, therefore change
the name of the file system header file in your application.

Function Description

Changed functions

FS_GetFreeSpace()
Number of parameters reduced. Parameter
DevIndex removed.

FS_GetTotalSpace()
Number of parameters reduced. Parameter
DevIndex removed.

Removed functions
FS_Exit() Should be removed from your application

source code.FS_CheckMediumPresent()

Obsolete directory handling functions
FS_CloseDir()

The directory handling has been changed in
emFile version 3.x. The functions should be
replaced. Refer to FS_FindClose() on
page 88 for an example of the new way of
directory handling.

FS_DirEnt2Attr()

FS_DirEnt2Name()

FS_DirEnt2Size()

FS_DirEnt2Time()

FS_GetNumFiles()

FS_OpenDir()

FS_ReadDir()

FS_RewindDir()

Obsolete file system extended functions

FS_IoCtl()

FS_IoCtl() should not be used in emFile
version 3.x. Use FS_IsLLFormatted() to
check if a low-level format is required and
FS_GetDeviceInfo() to get the device
information.

Table 12.1: Differences between emFile v.2.x / v.3.x - API differences
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

365
12.3 Configuration differences
The configuration of emFile version 3.x has been simplified compared to emFile v2.x.
emFile v3.x can be used �out of the box�. You can use it without the need for chang-
ing any of the compile time flags. All compile time configuration flags are preconfig-
ured with valid values, which matches the requirements of the most applications.

A lot of the compile time flags of emFile v.2.x are removed and replaced with runtime
configuration function.

Removed/replaced configuration macros

In version 3.x
removed macros

In version 3.x
used macros

File system configuration
FS_MAXOPEN FS_NUM_FILE_HANDLES

FS_POSIX_DIR_SUPPORT --

FS_DIR_MAXOPEN FS_NUM_DIR_HANDLES

FS_DIRNAME_MAX --

FS_SUPPORT_BURST --

FS_DRIVER_ALIGNMENT --

FAT configuration macros

FS_FAT_SUPPORT_LFN
Replaced by FS_FAT_SupportLFN(). Refer
to FS_FAT_SupportLFN() on page 130 for
more information.

Table 12.2: Differences between emFile v.2.x / v.3.x - removed/replaced configuration macros
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

366 CHAPTER 12 Porting emFile 2.x to 3.x
12.4 Device driver

12.4.1 Renamed drivers

12.4.2 Integrating a device driver into emFile
In version 2.x, you have to enable a device driver with a macro which has to be set
has to be set in the emFile configuration file FS_Conf.h and recompile your file sys-
tem project. emFile version 3.x is run time configurable, so that you can add all
device drivers by calling the FS_AddDevice() function with the proper parameter for
the accordant driver.

12.4.3 RAM disk driver differences

Refer to the section RAM disk driver on page 169 for detailed information about the
RAM disk driver in emFile version 3.x.

Old driver names Driver names in emFile version 3.x

NAND2K
In emFile version 3.x, the NAND driver could be used to
access small and large block NAND flashes similarly. The
driver is therefore renamed from NAND2K to NAND.

SMC

In emFile version 3, the SMC / small block NAND driver is
integrated in the NAND driver. The NAND driver could be
used to access small and large block NAND flashes simi-
larly.

SFLASH The serial flash driver is renamed into DataFlash driver.
FLASH FLASH driver renamed to NOR flash driver.

Table 12.3: Differences between emFile v.2.x / v.3.x - list of renamed device drivers

In version 3.x
removed macros

Alternative

FS_USE_FLASH_DRIVER FS_AddDevice(&FS_NOR_Driver)

FS_USE_IDE_DRIVER FS_AddDevice(&FS_IDE_Driver)

FS_USE_MMC_DRIVER
FS_AddDevice(&FS_MMC_SPI_Driver)
FS_AddDevice(&FS_MMC_CardMode_Driver)

FS_USE_RAMDISK_DRIVER FS_AddDevice(&FS_RAMDISK_Driver)

FS_USE_SFLASH_DRIVER FS_AddDevice(&FS_DataFlash_Driver)

FS_USE_SMC_DRIVER FS_AddDevice(&FS_NAND_Driver)

FS_USE_NAND2K_DRIVER FS_AddDevice(&FS_NAND_Driver)

FS_USE_WINDRIVE_DRIVER FS_AddDevice(&FS_WINDRIVE_Driver)
Table 12.4: Differences between emFile v.2.x / v.3.x - adding a driver

In version 3.x
removed macros

Alternative

FS_USE_RAMDISK_DRIVER FS_AddDevice(&FS_RAMDISK_Driver)

FS_RAMDISK_NUM_SECTORS FS_RAMDISK_Configure() - Refer to
FS_RAMDISK_Configure() on page 170 for detailed infor-
mation.

FS_RAMDISK_MAXUNIT

FS_RAMDISK_ADDR

FS_RAMDISK_SECTOR_SIZE
Table 12.5: Differences between emFile v.2.x / v.3.x - removed RAMDISK macros
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

367
12.4.4 NAND driver differences

Refer to the section NAND flash driver on page 173 for detailed information about the
NAND driver in emFile version 3.x.

In version 3.x
removed macros

Alternative

FS_USE_NAND2K_DRIVER FS_AddDevice(&FS_NAND_Driver)

FS_NAND2K_MAXUNIT FS_NAND_SetPhyType() - Refer to
FS_NAND_SetPhyType() on page 182 for detailed infor-
mation.
FS_NAND_SetBlockRange() - Refer to
FS_NAND_SetBlockRange() on page 183 for detailed
information.

FS_NAND2K_MAX_NUM_PHY_
BLOCKS

Table 12.6: Differences between emFile v.2.x / v.3.x - removed NAND driver macros

Hardware interface version 2.x Hardware interface version 3.x

FS_NAND2K_HW_X_SetAddr() FS_NAND_HW_X_SetAddrMode()

FS_NAND2K_HW_X_SetCmd() FS_NAND_HW_X_SetCmdMode()

FS_NAND2K_HW_X_SetData() FS_NAND_HW_X_SetDataMode()

FS_NAND2K_HW_X_SetStandby() FS_NAND_HW_X_SetStandby()

FS_NAND2K_HW_X_WaitWhileBusy() FS_NAND_HW_X_WaitWhileBusy()

FS_NAND2K_HW_X_IsWriteProtected() FS_NAND_HW_X_IsWriteProtected()

FS_NAND2K_HW_X_Read() FS_NAND_HW_X_Read()

FS_NAND2K_HW_X_Write() FS_NAND_HW_X_Write()

FS_NAND2k_HW_X_Delayus() FS_NAND_HW_X_Delayus()

FS_NAND2K_HW_X_Init() FS_NAND_HW_X_Init()

-- FS_NAND_HW_X_DisableCE()

-- FS_NAND_HW_X_EnableCE()
Table 12.7: Differences between emFile v.2.x / v.3.x - IDE driver hardware interface differences
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

368 CHAPTER 12 Porting emFile 2.x to 3.x
12.4.5 NAND driver differences

Refer to the section NAND flash driver on page 173 for detailed information about the
NAND driver in emFile version 3.x.

12.4.6 MMC driver differences

Refer to the section MultiMedia and SD card driver on page 216 for detailed informa-
tion about the MMC driver in emFile version 3.x.

In version 3.x
removed macros

Alternative

FS_USE_SMC_DRIVER FS_AddDevice(&FS_NAND_Driver)

FS_SMC_MAXUNIT FS_NAND_SetPhyType() - Refer to
FS_NAND_SetPhyType() on page 182 for detailed infor-
mation.
FS_NAND_SetBlockRange() - Refer to
FS_NAND_SetBlockRange() on page 183 for detailed
information.

FS_SMC_HW_SUPPORT_BSYL
INE_CHECK

Table 12.8: Differences between emFile v.2.x / v.3.x - adding a driver

Hardware interface version 2.x Hardware interface version 3.x

FS_SMC_HW_X_SetAddr()

In emFile version 3, the SMC / small
block NAND driver is integrated in the
NAND driver. The NAND driver could be
used to access small and large block
NAND flashes similarly.
Refer to NAND flash driver on page 173
for detailed information about the NAND
driver in emFile version 3.x

FS_SMC_HW_X_SetCmd()

FS_SMC_HW_X_SetData()

FS_SMC_HW_X_SetStandby()

FS_SMC_HW_X_VccOff()

FS_SMC_HW_X_VccOn()

FS_SMC_HW_X_ChkBusy()

FS_SMC_HW_X_ChkCardIn()

FS_SMC_HW_X_ChkPower()

FS_SMC_HW_X_ChkStatus()

FS_SMC_HW_X_ChkWP()

FS_SMC_HW_X_DetectStatus()

FS_SMC_HW_X_InData()

FS_SMC_HW_X_OutData()

FS_SMC_HW_X_ChkTimer()

FS_SMC_HW_X_SetTimer()

FS_SMC_HW_X_StopTimer()

FS_SMC_HW_X_WaitTimer()
Table 12.9: Differences between emFile v.2.x / v.3.x - IDE driver hardware interface differences

In version 3.x
removed macros

Alternative

FS_USE_MMC_DRIVER FS_AddDevice(&FS_MMC_CardMode_Driver)

FS_MMC_USE_SPI_MODE FS_AddDevice(&FS_MMC_SPI_Driver)

FS_MMC_MAXUNIT --

FS_USE_CRC FS_MMC_ActivateCRC() / FS_MMC_DeactivateCRC()

FS_MMC_SUPPORT_4BIT_MODE --
Table 12.10: Differences between emFile v.2.x / v.3.x - removed MMC macros
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

369
12.4.7 CF/IDE driver differences

In version 3.x is the hardware interface of the CF/IDE driver simplified. Only 6 hard-
ware functions have to implemented.

Refer to the section CompactFlash card & IDE driver on page 262 for detailed infor-
mation about the CF/IDE driver in emFile version 3.x.

In version 3.x
removed macros

Alternative

FS_USE_IDE_DRIVER FS_AddDevice(&FS_IDE_Driver)

FS_IDE_MAXUNIT --
Table 12.11: Differences between emFile v.2.x / v.3.x - removed CF/IDE macros

Hardware interface version 2.x Hardware interface version 3.x

FS_IDE_HW_X_HWReset() FS_IDE_HW_X_HWReset()

FS_IDE_HW_X_Delay400ns() FS_IDE_HW_X_Delay400ns()

FS_IDE_HW_X_GetAltStatus() --

FS_IDE_HW_X_GetCylHigh() --

FS_IDE_HW_X_GetCylLow() --

FS_IDE_HW_X_GetData() FS_IDE_HW_X_ReadData()

FS_IDE_HW_X_GetError() --

FS_IDE_HW_X_GetSectorCount() --

FS_IDE_HW_X_GetSectorNo() --

FS_IDE_HW_X_GetStatus() --

FS_IDE_HW_X_SetCommand() --

FS_IDE_HW_X_SetCylHigh() --

FS_IDE_HW_X_SetCylLow() --

FS_IDE_HW_X_SetData() FS_IDE_HW_X_WriteData()

FS_IDE_HW_X_SetDevControl() --

FS_IDE_HW_X_SetDevice() --

FS_IDE_HW_X_SetFeatures() --

FS_IDE_HW_X_SetSectorCount() --

FS_IDE_HW_X_SetSectorNo() --

FS_IDE_HW_X_DetectStatus() --

-- FS_IDE_HW_X_ReadReg()

-- FS_IDE_HW_X_WriteReg()
Table 12.12: Differences between emFile v.2.x / v.3.x - CF/IDE driver hardware interface differences
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

370 CHAPTER 12 Porting emFile 2.x to 3.x
12.4.8 Flash / NOR flash differences

Refer to the section NOR flash driver on page 283 for detailed information about the
NOR flash driver in emFile version 3.x.

12.4.9 Serial Flash / DataFlash differences

Note: The DataFlash support is integrated into the NAND flash driver since ver-
sion 3.10. Refer to NAND flash driver on page 173 for detailed information.

12.4.10 Windrive differences

Refer to the section WinDrive driver on page 313 for detailed information about the
Windrive driver in emFile version 3.x.

In version 3.x
removed macros

Alternative

FS_USE_FLASH_DRIVER FS_AddDevice(&FS_NOR_Driver)

FS_FLASH_MAX_ERASE_CNT_DIFF

FS_NOR_Configure() - Refer to
FS_NOR_Configure() on page 287 for detailed
information.
FS_NOR_SetPhyType() - Refer to
FS_NOR_SetPhyType() on page 288 for
detailed information.

FS_FLASH_NUM_FREE_SECTORCACHE

FS_FLASH_CHECK_INFO_SECTOR

FLASH_BASEADR

FLASH_USER_START

FLASH_BYTEMODE

FLASH_RELOCATECODE

FS_FLASH_CAN_REWRITE

FS_FLASH_LINE_SIZE

FS_FLASH_SECTOR_SIZE
Table 12.13: Differences between emFile v.2.x / v.3.x - removed Flash / NOR flash macros

In version 3.x
removed macros

Alternative

FS_USE_SFLASH_DRIVER FS_AddDevice(&FS_DataFlash_Driver);

FS_SFLASH_MAXUNIT --
Table 12.14: Differences between emFile v.2.x / v.3.x - removed Serial Flash / DataFlash macros

In version 3.x
removed macros

Alternative

FS_WD_DEV0NAME FS_Windrive_Configure() - Refer to
FS_Windrive_Configure() on page 313 for
detailed information.FS_WD_DEV1NAME

Table 12.15: Differences between emFile v.2.x / v.3.x - removed Windrive macros
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

371
12.5 OS Integration

In version 3.x
removed macros

In version 3.x
used macros

OS configuration macros

FS_OS_LOCKING_PER_FILE Removed. If you want to use emFile version
3.x with an RTOS, define FS_OS_LOCKING in
your FS_Conf.h. Refer to OS integration on
page 329 for information about he functions
which has to be implemented to use emFile
with an RTOS.

FS_OS_EMBOS

FS_OS_UCOS_II

FS_OS_WINDOWS

FS_OS

Table 12.16: Differences between emFile v.2.x / v.3.x - removed/replaced configuration macros

Function Description

Changed functions

FS_X_OS_Init()
In emFile version 3.x gets FS_X_OS_Init()
an additional parameter. Refer to
FS_X_OS_Init()

Removed functions
FS_X_OS_ Exit() --

Time and date functions
FS_X_OS_GetDate() In emfile version 3.x is only one version

used to handle the time and date function-
ality. Refer to FS_X_GetTimeDate() on
page 321 for more information.

FS_X_OS_GetDateTime()

Table 12.17: Differences between emFile v.2.x / v.3.x - Changes in the OS interface
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

372 CHAPTER 12 Porting emFile 2.x to 3.x
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

373
Chapter 13

FAQs
You can find in this chapter a collection of frequently asked questions (FAQs)
together with answers.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

374 CHAPTER 13 FAQs
13.1 FAQs
Q: Is my data safe, when an unexpected RESET occurs?
A: In general, the data which is already on the medium is safe. If a read operation is

interrupted, this is completely harmless. If a write operation is interrupted, the
data written in this operation may or may not be stored on the medium, depending
on when the unexpected RESET occurred. In any case, the data which was on the
media prior to the write operation is not affected; directory entries are not messed
up, the file-allocation-table is kept in order. This is true if your storage medium is
not affected by the RESET, meaning that it is able to complete a pending write
operation. (Which is typically the case with Flash memory cards other than SMC)

Q: I use FAT and I can only create a limited number of root directory entries. Why?
A: With FAT12 and FAT16 the root directory is special because it has a fixed size. Dur-

ing media format one can determine the size, but once formatted this value is con-
stant and determines the number of entries the root directory can hold. FAT32
does not have this limitation and the root directory's size can be variable.

Microsoft's �FAT32 File System Specification� says on page 22: �For FAT12 and
FAT16 media, the root directory is located in a fixed location on the disk immedi-
ately following the last FAT and is of a fixed size in sectors computed from the
BPB_RootEntCnt value [...] For FAT32, the root directory can be of variable size
and is a cluster chain, just like any other directory is.�. Here BPB_RootEntCnt
specifies the count of 32-byte directory entries in the root directory and as the
citation says, the number of sectors is computed from this value.

In addition, which file system is used depends on the size of the medium, that is
the number of clusters and the cluster size, where each cluster contains one or
more sectors. Using small cluster sizes (for example cluster size = 512 bytes) one
can use FAT32 on media with more than 32 MB. (FAT16 can address at least 216
clusters with a 512 byte cluster size. That is 65536 * 512 = 33554432 bytes =
32768 KB = 32 MB). If the media is smaller than or equal to 32 MB or the cluster
size is greater than 512 bytes, FAT32 cannot be used.

To actually set a custom root directory size for FAT12/FAT16 one can use the
emFile API function int FS_Format(const char *pDevice, FS_FORMAT_INFO *
pFormatInfo); where FS_FORMAT_INFO is declared as:

typedef struct {
 U16 SectorsPerCluster;
 U16 NumRootDirEntries;
 FS_DEV_INFO * pDevInfo;
} FS_FORMAT_INFO;

Set NumRootDirEntries to the desired number of root directory entries you want
to store.
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

375
Index
A
Add device driver source to project32
Add template for hardware routines33
API functions

Directory functions88
error-handling 135
Extended functions 102
FAT related functions125, 132
file access ..64
file positioning71
file system control 43, 51
Formatting a medium94
Obsolete functions 139
Operations on file75

ATA drives
Hardware 272
Hardware interface 272
Modes of operation 272
Pin functions 272
Supported modes of operation 272
True IDE mode 272

B
Build ..31
Build the project and test it31

C
Cache functions

FS_AssignCache() 157
FS_Cache_Clean() 159
FS_CACHE_SetMode() 160
FS_CACHE_SetQuota() 161

CF/IDE
FS_IDE_HW_ReadData() 280
FS_IDE_HW_ReadReg() 278
FS_IDE_HW_WriteData() 281
FS_IDE_HW_WriteReg() 279

Checkdisk error codes127, 134
CompactFlash

Hardware 267
Memory CARD mode264, 269
Modes of operation 268

Pin functions263
Supported modes of operation268

CRC ...220
Creating a simple project without emFile 29

D
DataFlash HW

FS_DF_HW_X_Write213
FS_FS_HW_X_DisableCS210
FS_FS_HW_X_EnableCS209

Debugging
FS_X_ErrorOut340
FS_X_Log338
FS_X_Warn339

Device drivers
default names166
function table for316
integrating your own317

Directory functions
FS_FindClose() 88
FS_FindFirstFile() 89
FS_FindNextFile() 90
FS_MkDir() 91
FS_RmDir() 92
Structure FS_FIND_DATA 93

E
EFS configuration326
emFile

Add directories 31
Add files .. 30
Configuration of 32
features of 14
installing ... 22
Integrating into your system 28
layers ... 15

Error code ...137
Error handling

FS_ClearErr()135
FS_ErrorNo2Text()138
FS_FEof()136
FS_FError()137
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

376 Index
Extended functions
FS_FileTimeToTimeStamp() 102
FS_GetFileSize() 103
FS_GetNumVolumes() 104
FS_GetVolumeFreeSpace() 105
FS_GetVolumeInfo() 106
FS_GetVolumeName() 108
FS_GetVolumeSize() 109
FS_GetVolumeStatus() 110
FS_IsVolumeMounted() 111
FS_SetBusyLEDCallback() 115
FS_SetVolumeLabel() 116
FS_TimeStampToFileTime() 113
FS_WriteSector() 152
Structure FS_FILETIME 114

F
FAQs ... 373
FAT configuration 325
FAT related functions

FS_FAT_CheckDisk() 125, 132
FS_FAT_CheckDisk_ErrCode2Text() .. 127,

134
FS_FAT_SupportLFN() 130
FS_FormatSD() 129

File access
FS_FClose() 64
FS_FOpen() 65
FS_FRead() 67
FS_FWrite() 69
FS_Read() 68
FS_Write() 70

File positioning
FS_FSeek() 71
FS_FTell() .. 72
FS_GetFilePos() 73
FS_SetFilePos() 74

File System API 15
File system configuration

FS_AddDevice() 51
FS_AddPhysDevice() 53
FS_AssignMemory() 54
FS_LOGVOL_AddDevice() 56
FS_LOGVOL_Create() 55
FS_SetMaxSectorSize() 57
FS_SetMemHandler() 58

File system control
FS_Init() .. 43
FS_InitStorage() 146
FS_Mount()45, 50
FS_SetAutoMount() 46
FS_UnmountForced() 48
FS_UnmountLL() 151
Unmount ... 47

Formatting a medium
FormatLow() 98
FS_Format() 99
FS_FormatLLIfRequired() 97
FS_IsHLFormatted() 95
FS_IsLLFormatted() 96
Structure FS_DEV_INFO 101
Structure FS_FORMAT_INFO 100

FS_DeInit() .. 44
Function table, for device drivers 316

I
IDE/CF HW

FS_IDE_HW_Delay400ns() 276
FS_IDE_HW_IsPresent() 277
FS_IDE_HW_Reset() 275

Include files ..31
Initializing the file system18

L
Layer

API Layer ...15
Driver ..16
File System Layer16
Hardware Layer16
Storage Layer16

M
Microsoft compiler22
Miscellaneous configurations 327
MMC .. 216
MMC card mode

pin description 217
MMC CardMode HW

FS_MMC_HW_X_Delay 246
FS_MMC_HW_X_GetResponse 240
FS_MMC_HW_X_IsPresent 239
FS_MMC_HW_X_IsWriteProtected 238
FS_MMC_HW_X_ReadData 242
FS_MMC_HW_X_SendCmd 243
FS_MMC_HW_X_SetHWBlockLen 236
FS_MMC_HW_X_SetHWNumBlocks 237
FS_MMC_HW_X_SetMaxSpeed 233
FS_MMC_HW_X_SetReadDataTimeOut 235
FS_MMC_HW_X_SetResponseTimeOut 234
FS_MMC_HW_X_WriteData 245

MMC SPI HW
FS_MMC_HW_X_DisableCS 225
FS_MMC_HW_X_EnableCS ..221�222, 224
FS_MMC_HW_X_IsPresent 229
FS_MMC_HW_X_IsWriteProtected 228
FS_MMC_HW_X_Read 230
FS_MMC_HW_X_SetMaxSpeed 226
FS_MMC_HW_X_SetVoltage 227
FS_MMC_HW_X_Write 231

MMC SPI mode
pin description 218

Multimedia & SD card device driver 216
MultiMedia Card 216

N
NAND flash driver

NAND flash device driver 173
Pin description 176
Supported hardware 174

NAND HW
FS_NAND_HW_X_DisableCE() 198

NOR flash driver 283
Configuration 287
Supported hardware 283

O
Obsolete functions

FS_CloseDir() 139
FS_DirEnt2Attr() 140
FS_DirEnt2Name() 141
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

Index 377
FS_DirEnt2Size() 142
FS_DirEnt2Time() 143
FS_GetNumFiles() 145
FS_OpenDir() 147
FS_ReadDir() 148
FS_RewindDir() 150

Operations on file
FS_CopyFile()75
FS_GetFileAttributes()76
FS_GetFileTime()77
FS_GetFileTimeEx()78
FS_Move() ..79
FS_Remove()80
FS_Rename()81
FS_SetEndOfFile()85
FS_SetFileAttributes()82
FS_SetFileTime()83
FS_SetFileTimeEx()84
FS_Truncate()86
FS_Verify()87

OS integration 329
API functions 330
Examples 335
FS_X_OS_Init 331�332
FS_X_OS_Lock 333
FS_X_OS_Unlock 334

OS support 326

S
Sample configuration 328
Sample project

building ..22
debugging ..22

SD Card ... 216
SDHC Card 216
Search path, configuration of31
SecureDigital Card 216
SecureDigital High Capacity Card 216
SerialFlash HW

FS_DF_HW_X_Read 212
FS_FS_HW_X_Init 211

Source code, Generic30
Storage API ..15
Syntax, conventions used 7

T
Troubleshooting 341

W
WinDrive disk driver 313

Configuration 313
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

378 Index
emFile User Guide © 2002 - 2010 SEGGER Microcontroller GmbH & Co. KG

	About this document
	Table of Contents
	Introduction to emFile
	1.1 What is emFile
	1.2 Features
	1.3 Basic concepts
	1.3.1 emFile structure
	1.3.2 Choice of file system type: FAT vs. EFS
	1.3.3 Fail safety
	1.3.4 Wear leveling

	1.4 Implementation notes
	1.4.1 File system configuration
	1.4.2 Runtime memory requirements
	1.4.3 Initializing the file system

	1.5 Development environment (compiler)

	Getting started
	2.1 Installation
	2.2 Using the Windows sample
	2.2.1 Building the sample program
	2.2.2 Stepping through the sample
	2.2.3 Further source code examples

	Running emFile on target hardware
	3.1 Step 1: Creating a simple project without emFile
	3.2 Step 2: Adding emFile to the start project
	3.3 Step 3: Adding the device driver
	3.3.1 Adding the device driver source to project
	3.3.2 Adding hardware routines to project

	3.4 Step 4: Activating the driver
	3.4.1 Modifying the runtime configuration

	3.5 Step 5: Adjusting the RAM usage

	API functions
	4.1 API function overview
	4.2 File system control functions
	4.2.1 FS_Init()
	4.2.2 FS_DeInit()
	4.2.3 FS_Mount()
	4.2.4 FS_SetAutoMount()
	4.2.5 FS_Unmount()
	4.2.6 FS_UnmountForced()
	4.2.7 FS_Sync()
	4.2.8 FS_AddOnExitHandler()

	4.3 File system configuration functions
	4.3.1 FS_AddDevice()
	4.3.2 FS_AddPhysDevice()
	4.3.3 FS_AssignMemory()
	4.3.4 FS_LOGVOL_Create()
	4.3.5 FS_LOGVOL_AddDevice()
	4.3.6 FS_SetMaxSectorSize()
	4.3.7 FS_SetMemHandler()
	4.3.8 FS_ConfigUpdateDirOnWrite()
	4.3.9 FS_ConfigFileBufferDefault()
	4.3.10 FS_ConfigFileBufferFlags()
	4.3.11 FS_SetFileWriteMode()

	4.4 File access functions
	4.4.1 FS_FClose()
	4.4.2 FS_FOpen()
	4.4.3 FS_FRead()
	4.4.4 FS_Read()
	4.4.5 FS_FWrite()
	4.4.6 FS_Write()

	4.5 File positioning functions
	4.5.1 FS_FSeek()
	4.5.2 FS_FTell()
	4.5.3 FS_GetFilePos()
	4.5.4 FS_SetFilePos()

	4.6 Operations on files
	4.6.1 FS_CopyFile()
	4.6.2 FS_GetFileAttributes()
	4.6.3 FS_GetFileTime()
	4.6.4 FS_GetFileTimeEx()
	4.6.5 FS_Move()
	4.6.6 FS_Remove()
	4.6.7 FS_Rename()
	4.6.8 FS_SetFileAttributes()
	4.6.9 FS_SetFileTime()
	4.6.10 FS_SetFileTimeEx()
	4.6.11 FS_SetEndOfFile()
	4.6.12 FS_Truncate()
	4.6.13 FS_Verify()

	4.7 Directory functions
	4.7.1 FS_FindClose()
	4.7.2 FS_FindFirstFile()
	4.7.3 FS_FindNextFile()
	4.7.4 FS_MkDir()
	4.7.5 FS_RmDir()
	4.7.6 Structure FS_FIND_DATA

	4.8 Formatting a medium
	4.8.1 FS_IsHLFormatted()
	4.8.2 FS_IsLLFormatted()
	4.8.3 FS_FormatLLIfRequired()
	4.8.4 FS_FormatLow()
	4.8.5 FS_Format()
	4.8.6 Structure FS_FORMAT_INFO
	4.8.7 Structure FS_DEV_INFO

	4.9 Extended functions
	4.9.1 FS_FileTimeToTimeStamp()
	4.9.2 FS_GetFileSize()
	4.9.3 FS_GetNumVolumes()
	4.9.4 FS_GetVolumeFreeSpace()
	4.9.5 FS_GetVolumeInfo()
	4.9.6 FS_GetVolumeLabel()
	4.9.7 FS_GetVolumeName()
	4.9.8 FS_GetVolumeSize()
	4.9.9 FS_GetVolumeStatus()
	4.9.10 FS_IsVolumeMounted()
	4.9.11 FS_TimeStampToFileTime()
	4.9.12 FS_GetNumFilesOpen()
	4.9.13 Structure FS_FILETIME
	4.9.14 FS_SetBusyLEDCallback()
	4.9.15 FS_SetVolumeLabel()

	4.10 Storage layer functions
	4.10.1 FS_STORAGE_GetDeviceInfo()
	4.10.2 FS_STORAGE_Init()
	4.10.3 FS_STORAGE_ReadSector()
	4.10.4 FS_STORAGE_ReadSectors()
	4.10.5 FS_STORAGE_Sync()
	4.10.6 FS_STORAGE_Unmount()
	4.10.7 FS_STORAGE_WriteSector()
	4.10.8 FS_STORAGE_WriteSectors()

	4.11 FAT related functions
	4.11.1 FS_FAT_CheckDisk()
	4.11.2 FS_FAT_CheckDisk_ErrCode2Text()
	4.11.3 FS_FAT_GrowRootDir()
	4.11.4 FS_FormatSD()
	4.11.5 FS_FAT_SupportLFN()
	4.11.6 FS_FAT_DisableLFN()

	4.12 EFS related functions
	4.12.1 FS_EFS_CheckDisk()
	4.12.2 FS_EFS_CheckDisk_ErrCode2Text()

	4.13 Error handling functions
	4.13.1 FS_ClearErr()
	4.13.2 FS_FEof()
	4.13.3 FS_FError()
	4.13.4 FS_ErrorNo2Text()

	4.14 Obsolete functions
	4.14.1 FS_CloseDir()
	4.14.2 FS_DirEnt2Attr()
	4.14.3 FS_DirEnt2Name()
	4.14.4 FS_DirEnt2Size()
	4.14.5 FS_DirEnt2Time()
	4.14.6 FS_GetDeviceInfo()
	4.14.7 FS_GetNumFiles()
	4.14.8 FS_InitStorage()
	4.14.9 FS_OpenDir()
	4.14.10 FS_ReadDir()
	4.14.11 FS_ReadSector()
	4.14.11.1 FS_RewindDir()

	4.14.12 FS_UnmountLL()
	4.14.13 FS_WriteSector()

	Optimizing performance - Caching and buffering
	5.1 Introduction
	5.2 Types of caches
	5.3 Cache API functions
	5.3.1 FS_AssignCache()
	5.3.2 FS_CACHE_Clean()
	5.3.3 FS_CACHE_SetMode()
	5.3.4 FS_CACHE_SetQuota()

	5.4 Example applications
	5.4.1 Example application: FS_50Files.c
	5.4.1.1 Source code listing: FS_50Files.c

	Device drivers
	6.1 General information
	6.1.1 Default device driver names
	6.1.2 Unit number
	6.1.3 Hardware layer
	6.1.3.1 Polled mode
	6.1.3.2 Interrupt driven hardware layer

	6.2 RAM disk driver
	6.2.1 Supported hardware
	6.2.2 Theory of operation
	6.2.3 Fail-safe operation
	6.2.4 Wear leveling
	6.2.5 Configuring the driver
	6.2.5.1 Adding the driver to emFile
	6.2.5.2 FS_RAMDISK_Configure()

	6.2.6 Hardware functions
	6.2.7 Addition information
	6.2.7.1 Formatting

	6.3 NAND flash driver
	6.3.1 Supported hardware
	6.3.1.1 Tested and compatible NAND flashes
	6.3.1.2 Tested and compatible DataFlash chips
	6.3.1.3 Pin description - NAND flashes
	6.3.1.4 Pin description - DataFlashes
	6.3.1.5 Sample block schematics

	6.3.2 Theory of operation
	6.3.2.1 Error correction code (ECC)
	6.3.2.2 Software structure

	6.3.3 Fail-safe operation
	6.3.4 Wear leveling
	6.3.5 Configuring the driver
	6.3.5.1 Adding the driver to emFile
	6.3.5.2 Driver specific configuration functions

	6.3.6 Physical layer
	6.3.6.1 Available physical layers
	6.3.6.2 Physical layer functions
	6.3.6.2.1 (*pfEraseBlock)()
	6.3.6.2.2 (*pfInitGetDeviceInfo)()
	6.3.6.2.3 (*pfIsWP)()
	6.3.6.2.4 (*pfRead)()
	6.3.6.2.5 (*pfReadEx)()
	6.3.6.2.6 (*pfWrite)()
	6.3.6.2.7 (*pfWrite Ex)()

	6.3.7 Hardware layer
	6.3.7.1 Hardware functions - NAND flash
	6.3.7.1.1 FS_NAND_HW_X_SetAddrMode()
	6.3.7.1.2 FS_NAND_HW_X_SetCmdMode()
	6.3.7.1.3 FS_NAND_HW_X_SetDataMode()
	6.3.7.1.4 FS_NAND_HW_X_DisableCE()
	6.3.7.1.5 FS_NAND_HW_X_EnableCE()
	6.3.7.1.6 FS_NAND_HW_X_WaitWhileBusy()
	6.3.7.1.7 FS_NAND_HW_X_Read_x8()
	6.3.7.1.8 FS_NAND_HW_X_Read_x16()
	6.3.7.1.9 FS_NAND_HW_X_Write_x8()
	6.3.7.1.10 FS_NAND_HW_X_Write_x16()
	6.3.7.1.11 FS_NAND_HW_X_Delayus()
	6.3.7.1.12 FS_NAND_HW_X_Init_x8()
	6.3.7.1.13 FS_NAND_HW_X_Init_x16()

	6.3.7.2 Hardware functions - ATMEL DataFlash
	6.3.7.2.1 FS_DF_HW_X_EnableCS()
	6.3.7.2.2 FS_DF_HW_X_DisableCS()
	6.3.7.2.3 FS_DF_HW_X_Init()
	6.3.7.2.4 FS_DF_HW_X_Read()
	6.3.7.2.5 FS_DF_HW_X_Write()

	6.3.8 Additional Information
	6.3.9 Resource usage
	6.3.9.1 ROM usage
	6.3.9.2 Static RAM usage
	6.3.9.3 Runtime RAM usage

	6.3.10 FAQs

	6.4 MultiMedia and SD card driver
	6.4.1 Supported hardware
	6.4.1.1 Pin description for MMC/SD card in Card mode
	6.4.1.2 Pin description for MMC/SD card in SPI mode

	6.4.2 Theory of operation
	6.4.3 Fail-safe operation
	6.4.4 Wear leveling
	6.4.5 Configuration
	6.4.5.1 Adding the driver to emFile
	6.4.5.2 Enable 4-bit mode (card mode only)
	6.4.5.3 Cyclic redundancy check (CRC)
	6.4.5.4 FS_MMC_ActivateCRC()
	6.4.5.5 FS_MMC_DeactivateCRC()

	6.4.6 Hardware functions - SPI mode
	6.4.6.1 FS_MMC_HW_X_EnableCS()
	6.4.6.2 FS_MMC_HW_X_DisableCS()
	6.4.6.3 FS_MMC_HW_X_SetMaxSpeed()
	6.4.6.4 FS_MMC_HW_X_SetVoltage()
	6.4.6.5 FS_MMC_HW_X_IsWriteProtected()
	6.4.6.6 FS_MMC_HW_X_IsPresent()
	6.4.6.7 FS_MMC_HW_X_Read()
	6.4.6.8 FS_MMC_HW_X_Write()

	6.4.7 Hardware functions - Card mode
	6.4.7.1 FS_MMC_HW_X_SetMaxSpeed()
	6.4.7.2 FS_MMC_HW_X_SetResponseTimeOut()
	6.4.7.3 FS_MMC_HW_X_SetReadDataTimeOut()
	6.4.7.4 FS_MMC_HW_X_SetHWBlockLen()
	6.4.7.5 FS_MMC_HW_X_SetHWNumBlocks()
	6.4.7.6 FS_MMC_HW_X_IsWriteProtected()
	6.4.7.7 FS_MMC_HW_X_IsPresent()
	6.4.7.8 FS_MMC_HW_X_GetResponse()
	6.4.7.9 FS_MMC_HW_X_ReadData()
	6.4.7.10 FS_MMC_HW_X_SendCmd()
	6.4.7.11 FS_MMC_HW_X_WriteData()
	6.4.7.12 FS_MMC_HW_X_Delay()

	6.4.8 Hardware functions - Card mode for ATMEL devices
	6.4.8.1 FS_MCI_HW_EnableClock()
	6.4.8.2 FS_MCI_HW_EnableISR()
	6.4.8.3 FS_MCI_HW_GetMCIInfo()
	6.4.8.4 FS_MCI_HW_GetMClk()
	6.4.8.5 FS_MCI_HW_Init()
	6.4.8.6 FS_MCI_HW_IsCardPresent()
	6.4.8.7 FS_MCI_HW_IsCardWriteProtected()
	6.4.8.8 FS_MCI_HW_CleanDCacheRange()
	6.4.8.9 FS_MCI_HW_InvalidateDCache()

	6.4.9 Additional information
	6.4.10 Additional driver functions
	6.4.10.1 FS_MMC_CM_Allow4bitMode()

	6.4.11 Resource usage
	6.4.11.1 ROM usage
	6.4.11.2 Static RAM usage

	6.4.12 FAQs
	6.4.13 Troubleshooting
	6.4.13.1 SPI mode troubleshooting guide

	6.5 CompactFlash card & IDE driver
	6.5.1 Supported Hardware
	6.5.2 Theory of operation
	6.5.2.1 CompactFlash
	6.5.2.2 IDE (ATA) Drives

	6.5.3 Fail-safe operation
	6.5.4 Wear-leveling
	6.5.5 Configuring the driver
	6.5.5.1 Adding the driver to emFile
	6.5.5.2 FS_IDE_Configure()

	6.5.6 Hardware functions
	6.5.6.1 FS_IDE_HW_Reset()
	6.5.6.2 FS_IDE_HW_Delay400ns()
	6.5.6.3 FS_IDE_HW_IsPresent()
	6.5.6.4 FS_IDE_HW_ReadReg()
	6.5.6.5 FS_IDE_HW_WriteReg()
	6.5.6.6 FS_IDE_HW_ReadData()
	6.5.6.7 FS_IDE_HW_WriteData()

	6.5.7 Additional information
	6.5.8 Resource usage
	6.5.8.1 ROM usage
	6.5.8.2 Static RAM usage

	6.5.9 FAQs

	6.6 NOR flash driver
	6.6.1 Supported hardware
	6.6.1.1 Tested and compatible NOR flashes

	6.6.2 Theory of operation
	6.6.2.1 Software structure

	6.6.3 Fail-safe operation
	6.6.4 Wear leveling
	6.6.5 Configuring the driver
	6.6.5.1 Adding the driver to emFile
	6.6.5.2 Configuration API
	6.6.5.2.1 FS_NOR_Configure()
	6.6.5.2.2 FS_NOR_SetPhyType()

	6.6.5.3 Sample configurations

	6.6.6 Physical layer
	6.6.6.1 Available physical layers
	6.6.6.2 Physical layer functions
	6.6.6.2.1 (*pfWriteOff)()
	6.6.6.2.2 (*pfReadOff)()
	6.6.6.2.3 (*pfEraseSector)()
	6.6.6.2.4 (*pfGetSectorInfo)()
	6.6.6.2.5 (*pfGetNumSectors)()
	6.6.6.2.6 (*pfConfigure)()
	6.6.6.2.7 (*pfOnSelectPhy)()

	6.6.7 Hardware functions
	6.6.7.1 Hardware functions - CFI compliant chips
	6.6.7.2 Hardware functions - Serial NOR flashes
	6.6.7.2.1 FS_NOR_SPI_HW_X_EnableCS()
	6.6.7.2.2 FS_NOR_SPI_HW_X_DisableCS()
	6.6.7.2.3 FS_NOR_SPI_HW_X_Init()
	6.6.7.2.4 FS_NOR_SPI_HW_X_Read()
	6.6.7.2.5 FS_NOR_SPI_HW_X_Write()

	6.6.8 Additional Information
	6.6.8.1 Further reading

	6.6.9 Additional driver functions
	6.6.9.1 FS_NOR_GetDiskInfo()
	6.6.9.2 FS_NOR_GetSectorInfo()
	6.6.9.3 Structure FS_NOR_DISK_INFO
	6.6.9.4 Structure FS_NOR_SECTOR_INFO

	6.6.10 Resource usage
	6.6.10.1 ROM usage
	6.6.10.2 Static RAM usage
	6.6.10.3 Runtime (dynamic) RAM usage

	6.7 WinDrive driver
	6.7.1 Supported hardware
	6.7.2 Theory of operation
	6.7.3 Fail-safe operation
	6.7.4 Wear leveling
	6.7.5 Configuring the driver
	6.7.5.1 Adding the driver to emFile
	6.7.5.2 FS_Windrive_Configure()

	6.7.6 Hardware functions
	6.7.7 Additional information

	6.8 Writing your own driver
	6.8.1 Device driver functions
	6.8.2 Device driver function table
	6.8.3 Integrating a new driver

	Configuration of emFile
	7.1 Runtime configuration
	7.1.1 Driver handling
	7.1.1.1 FS_X_AddDevices()

	7.1.2 System configuration
	7.1.2.1 FS_X_GetTimeDate()
	7.1.2.2 Logging functions

	7.2 Compile time configuration
	7.2.1 General file system configuration
	7.2.2 FAT configuration
	7.2.3 EFS configuration
	7.2.4 OS support
	7.2.5 Debugging
	7.2.6 Miscellaneous configurations
	7.2.7 Sample configuration

	OS integration
	8.1 OS layer API functions
	8.1.1 FS_X_OS_Init()
	8.1.2 FS_X_OS_DeInit()
	8.1.3 FS_X_OS_Lock()
	8.1.4 FS_X_OS_Unlock()
	8.1.5 Examples

	Debugging
	9.1 FS_X_Log()
	9.2 FS_X_Warn()
	9.3 FS_X_ErrorOut()
	9.4 Troubleshooting

	Performance & resource usage
	10.1 Memory footprint
	10.1.1 System
	10.1.2 File system configuration
	10.1.3 Sample project
	10.1.4 Static ROM requirements
	10.1.4.1 ROM requirements for long filename support

	10.1.5 Static RAM requirements
	10.1.6 Dynamic RAM requirements
	10.1.7 RAM usage example

	10.2 Performance
	10.2.1 Configuration and performance table
	10.2.1.1 Description of the performance tests

	Journaling (Add-on)
	11.1 Introduction
	11.2 Features
	11.3 Backgrounds
	11.3.1 File System Layer error scenarios

	11.4 How to use journaling
	11.4.1 What do I need to do to use journaling?
	11.4.2 How can I use journaling in my application?

	11.5 Configuration
	11.5.1 Journaling file system configuration

	11.6 Journaling API
	11.6.1 FS_JOURNAL_Begin()
	11.6.2 FS_JOURNAL_Create()
	11.6.3 FS_JOURNAL_End()

	11.7 Resource usage
	11.7.1 ROM usage
	11.7.2 Static RAM usage
	11.7.3 Runtime (dynamic) RAM usage

	Porting emFile 2.x to 3.x
	12.1 Differences from version 2.x to 3.x
	12.2 API differences
	12.3 Configuration differences
	12.4 Device driver
	12.4.1 Renamed drivers
	12.4.2 Integrating a device driver into emFile
	12.4.3 RAM disk driver differences
	12.4.4 NAND driver differences
	12.4.5 NAND driver differences
	12.4.6 MMC driver differences
	12.4.7 CF/IDE driver differences
	12.4.8 Flash / NOR flash differences
	12.4.9 Serial Flash / DataFlash differences
	12.4.10 Windrive differences

	12.5 OS Integration

	FAQs
	13.1 FAQs

	Index

