International

ADVANCE INFORMATION

Data Sheet No. PD60184-A

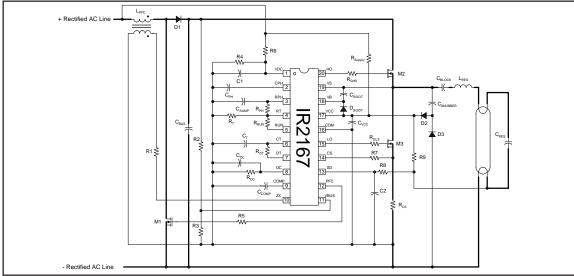
IR2167(S)

Features

- PFC, Ballast Control and Half Bridge Driver in One IC
- Critical Conduction Mode Boost Type PFC
- No PFC Current Sense Resistor Required
- Programmable Preheat Time & Frequency
- Programmable Ignition Ramp
- Programmable Over-Current
- Lamp Filament Sensing & Protection

Description

- Capacitive Mode Protection
- Brown-Out Protection
- Automatic Restart for Lamp Exchange
- Thermal Overload Protection
- Programmable Deadtime
- Internal 15.6V Zener Clamp Diode on VCC


PFC BALLAST CONTROL IC

- Micropower Startup (150µA)
- Latch Immunity and ESD Protection

The IR2167 is a fully integrated, fully protected 600V ballast control IC designed to drive virtually all types of rapid start fluorescent lamp ballasts. PFC circuitry provides for high PF, low THD and DC Bus regulation. Externally programmable features such as preheat time & frequency, ignition ramp characteristics, and running mode operating frequency provide a high degree of flexibility for the ballast design engineer. Comprehensive protection features such as protection from failure of a lamp to strike, filament failures, low AC line conditions, thermal overload, or lamp failure during normal operation, as well as an automatic restart function, have been included in the design. The heart of this control IC is a variable frequency oscillator with externally programmable deadtime. Precise control of a 50% duty cycle is accomplished using a T-flip-flop. The IR2167 is available in both 20 pin DIP and 20 pin wide body SOIC packages.

Typical Application Diagram

ADVANCE INFORMATION

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM, all currents are defined positive into any lead. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units				
VB	High side floating supply voltage	-0.3	625					
VS	High side floating supply offset voltage	V _B - 25	V _B + 0.3					
V _{HO}	High side floating output voltage		V _S - 0.3	V _B + 0.3	V			
V _{LO}	Low side output voltage		-0.3	V _{CC} + 0.3				
VPFC	PFC gate driver output voltage		-0.3	V _{CC} + 0.3				
I _{OMAX}	Max. allowable output current (HO,LO,PFC power transistor miller effect) due to external	-500	500	mA			
I _{RT}	RT pin current		-5	5				
V _{CT}	CT pin voltage	-0.3	6.5					
V _{DC}	VDC pin voltage		-0.3	V _{CC} + 0.3	V			
ICPH	CPH pin current		-5	5				
I _{RPH}	RPH pin current	-5	5					
I _{RUN}	RUN pin current	-5	5	mA				
I _{DT}	Deadtime pin current		-5	5				
V _{CS}	Current sense pin voltage	-0.3	6.5	V				
ICS	Current sense pin current	-5	5					
loc	Over-current threshold pin current	-5	5	mA				
I _{SD}	Shutdown pin current		-5	5				
V _{BUS}	DC bus sensing input voltage		-0.3	V _{CC}	V			
I _{ZX}	PFC inductor current, zero crossing detect	ion input	-5	5				
ICOMP	PFC error amplifier compensation current		-5	5	mA			
Icc	Supply current (note 1)		-20	20				
dV/dt	Allowable offset supply voltage slew ratet		-50	50	V/ns			
PD	Package power dissipation @ $T_A \le +25^{\circ}C$	(20 lead PDIP)	—	1.50				
		(20 lead SOIC)	—	1.25	W			
RthJA	Thermal resistance, junction to ambient	(20 lead PDIP)	_	85	°C/W			
		(20 lead SOIC)	_	90	0.00			
TJ	Junction temperature		-55	150				
Τ _S	Storage temperature		-55	150	°C			
ΤL	Lead temperature (soldering, 10 seconds)	_	300					

International **TOR** Rectifier

ADVANCE INFORMATION

Recommended Operating Conditions

For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute voltages referenced to COM, all currents are defined positive into any lead

Symbol	Definition	Min.	Max.	Units
V _{BS}	High side floating supply voltage	V _{CC} - 0.7	VCLAMP	
Vs	Steady state high side floating supply offset voltage	-3.0	600	V
Vcc	Supply voltage	V _{CCUV+}	VCLAMP	
ICC	Supply current	Note 2	10	mA
V _{DC}	V _{DC} lead voltage	0	VCC	V
CT	C _T lead capacitance	220	-	pF
R _{DT}	Deadtime resistance	1.0	—	kΩ
I _{RT}	R _T lead current (Note 3)	-500	-50	
I _{RPH}	RPH lead current (Note 3)	0	450	uA
I _{RUN}	RUN lead current (Note 3)	0	450	
I _{SD}	Shutdown lead current	-1	1	
ICS	Current sense lead current	-1	1	mA
I _{ZX}	Zero crossing detection lead current	-1	1	
Тj	Junction temperature	-40	125	°C

Electrical Characteristics

 $V_{CC} = V_{BS} = V_{BIAS} = 14V +/- 0.25V$, $R_T = 40.0k\Omega$, $C_T = 470$ pF, RPH and RUN leads no connection, $V_{CPH} = 0.0V$, $R_{DT} = 6.1k\Omega$, $R_{OC} = 20.0k\Omega$, $V_{CS} = 0.5V$, $V_{SD} = 0.0V$, $C_L = 1000$ pF, $T_A = 25^{\circ}C$ unless otherwise specified.

Supply Characteristics						
Symbol Definition		Min.	Тур.	Max.	Units	Test Conditions
V _{CCUV+}	V _{CC} supply undervoltage positive going threshold		11.4	_		V _{CC} rising from 0V
VUVHYS	V _{CC} supply undervoltage lockout hysteresis	_	1.8	_	Ī	
IQCCUV	UVLO mode quiescent current	—	150	—	V _{CC} < V _{CCUV-}	
IQCCFLT	Fault-mode quiescent current	_	200	_	μΑ	SD = 5V, CS = 2V or Tj > T _{SD}
IQCC	Quiescent V _{CC} supply current	_	3.8	_		R _T no connection, C _T connected to COM
IQCC50K	V_{CC} supply current, f = 50kHz		4.5	_	mA	R _T =36kΩ, R _{DT} = 5.6kΩ, C _T =220pF
V _{CLAMP}	V _{CC} zener clamp voltage		15.6	_	V	ICC = 10mA

Note 2: Sufficient current should be supplied to the VCC pin to keep the internal 15.6V zener clamp diode on this pin regulating its voltage.

Note 3: Due to the fact that the RT pin is a voltage-controlled current source, the total RT pin current is the sum of all of the parallel current sources connected to that pin. For optimum oscillator current mirror performance, this total current should be kept between 50mA and 500mA. During the preheat mode, the total current flowing out of the RT pin consists of the RPH pin current plus the current due to the RT resistor. During the run mode, the total RT pin current consists of the RUN pin current plus the the current due to the RT resistor.

IR2167(S)

ADVANCE INFORMATION

International

Electrical Characteristics (cont.)

 $V_{CC} = V_{BS} = V_{BIAS} = 14V + 0.25V$, $R_T = 40.0k\Omega$, $C_T = 470$ pF, RPH and RUN leads no connection, $V_{CPH} = 0.0V$, $R_{DT} = 6.1k\Omega$, $R_{OC} = 20.0k\Omega$, $V_{CS} = 0.5V$, $V_{SD} = 0.0V$, $C_L = 1000$ pF, $T_A = 25^{\circ}$ C unless otherwise specified.

Floating Supply Characteristics

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
I _{QBS0}	Quiescent V _{BS} supply current	_	0	_	μA	$V_{HO} = V_S$
I _{QBS1}	Quiescent V _{BS} supply current	—	30	_		$V_{HO} = V_B$
VBSMIN	Min. req'd VBS voltage for proper HO functionality		_	4	5	V
I _{LK}	Offset supply leakage current	_	_	50	μΑ	$V_B = V_S = 600V$
PFC Er	ror Amplifier Characteristics			-		
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
VBUS	VBUS sense input threshold	_	0	- 1		V _{HO} = V _S
IVBUS	VBUS sense input bias current	—	30	_		$V_{HO} = V_B$
gm	Error amplifier transconductance	—	0	—		$V_{HO} = V_S$
ISOURCE	Error amplifier output current sourcing		—	30	—	V _{HO} = V _E
ISINK	Error amplifier output current sinking	—	0			$V_{HO} = V_S$
V _{OH(EA)}	Error amplifier output voltage swing (Hi state)			30	-	V _{HO} = V _E
V _{0L(EA)}	Error amplifier output voltage swing (Lo state)		—	0	—	V _{HO} = V _S
PFC Ov	ver Voltage Comparator					
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
V _{0V}	Over voltage comparator threshold		4.3	_	V	
PFC Ov	vervoltage Comparator					
V _{ZX}	ZX lead comparator threshold voltage	-	2.0	- 1	V	
VZXhys	ZX lead comparator hysterisis	—	120	—	mV	
V _{ZXclamp+}	ZX lead clamp voltage (high state)	_	7.5	—	V	$I_{ZX} = 2mA$
Oscillat	tor I/O Characteristics					
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
fosc	Oscillator frequency	_	30			$RT = 32k\Omega$, $RDT =$
	-	_	100	-	kHz	6.1kΩ, C _T =470pF RT = 6.1kΩ, RDT = 6.1kΩ, C _T =470pF
df/dV	Oscillator frequency voltage stability	_	0.5	_	%/V	V _{CCUV} + < V _{CC} < 15V
df/dT	Oscillator frequency temperature stability	_	0.02	—	%/C	-40°C < Tj < 125°C
					%	
d	Oscillator duty cycle	_	50		,	
d V _{CT+}	Oscillator duty cycle Upper CT ramp voltage threshold	_	50 4.0			
					V	
V _{CT+}	Upper CT ramp voltage threshold		4.0			SD = 5V, CS = 2V, or Tj > TSD
V _{CT+} V _{CT-} V _{CTFLT}	Upper C _T ramp voltage threshold Lower C _T ramp voltage threshold		4.0 2.0		V	
V _{CT+} V _{CT} -	Upper CT ramp voltage threshold Lower CT ramp voltage threshold Fault-mode CT lead voltage		4.0 2.0 0		v mV	
V _{CT+} V _{CT-} V _{CTFLT}	Upper CT ramp voltage threshold Lower CT ramp voltage threshold Fault-mode CT lead voltage RT lead voltage		4.0 2.0 0 2.0	- - - -	V mV V mV	or Tj > TSD SD = 5V, CS = 2V,
V _{CT+} V _{CT-} V _{CTFLT} V _{RT} V _{RTFLT}	Upper CT ramp voltage threshold Lower CT ramp voltage threshold Fault-mode CT lead voltage RT lead voltage Fault-mode RT lead voltage		4.0 2.0 0 2.0 0		V mV V	or Tj > TSD SD = 5V, CS = 2V,
V _{CT+} V _{CT-} V _{CTFLT} V _{RT} V _{RTFLT} tdlo	Upper CT ramp voltage threshold Lower CT ramp voltage threshold Fault-mode CT lead voltage RT lead voltage Fault-mode RT lead voltage LO output deadtime		4.0 2.0 0 2.0 0 2.0		V mV V mV	or Tj > TSD SD = 5V, CS = 2V,

International **ISR** Rectifier

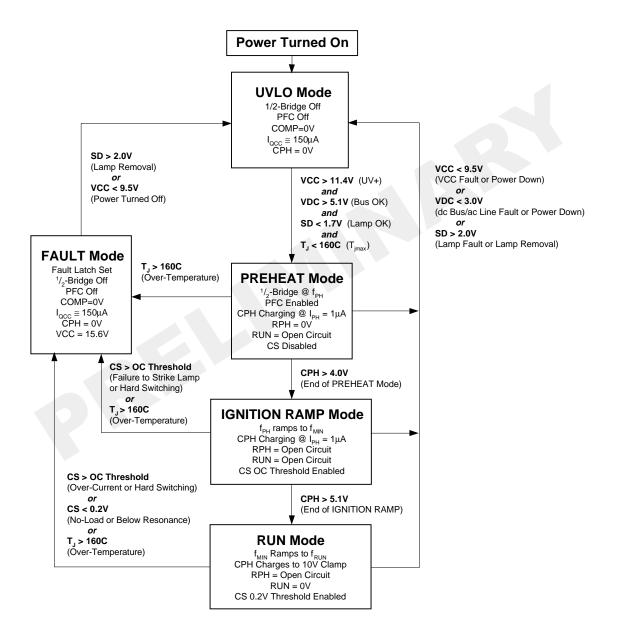
ADVANCE INFORMATION

Electrical Characteristics (cont.)

 $V_{CC} = V_{BS} = V_{BIAS} = 14V +/- 0.25V$, $R_T = 40.0k\Omega$, $C_T = 470$ pF, RPH and RUN leads no connection, $V_{CPH} = 0.0V$, $R_{DT} = 6.1k\Omega$, $R_{OC} = 20.0k\Omega$, $V_{CS} = 0.5V$, $V_{SD} = 0.0V$, $C_L = 1000$ pF, $T_A = 25^{\circ}$ C unless otherwise specified.

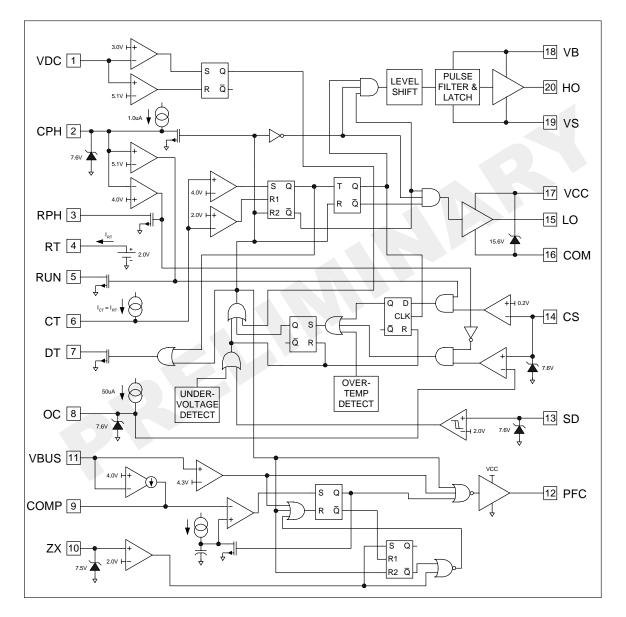
Frenea	t Characteristics					
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
I _{CPH}	CPH lead charging current	_	1.0	_	μA	V _{CPH} = 0V
V _{CPHIGN} CPH lead Ignition mode threshold voltage		_	4.0	-		
V _{CPHRUN} CPH lead run mode threshold voltage		—	5.15	—	T v	
VCPHCLMP CPH lead clamp voltage		_	10	_	1	I _{CPH} = 1μA
VCPHFLT	Fault-mode CPH lead voltage	_	0	_	mV	SD = 5V, CS = 2V, or Tj > TSD
RPH Ch	aracteristics					
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
IRPHLK	Open circuit RPH lead leakage current	_	0.1	_	μΑ	V _{RPH} =5V,V _{RPH} =6\
Vrphflt	Fault-mode RPH lead voltage	—	0		mV	SD = 5V, CS = 2V,
						or Tj > TSD
RUN Ch	naracteristics					
Symbol	bol Definition		Тур.	Max.	Units	Test Conditions
IRUNLK	Open circuit RUN lead leakage current		0.1	_	μA	V _{RUN} = 5V
VRUNFLT	Fault-mode RUN lead voltage	-	0	- 1	mV	SD = 5V, CS = 2V,
	c .					or Tj > TSD
Protect	ion Circuitry Characteristics		•	•	•	•
	Definition	Min.	Тур.	Max.	Units	Test Conditions
V _{SDTH+}	Rising shutdown lead threshold voltage		2.0	_	V	
VSDHYS	Shutdown lead threshold hysteresis	_	150		mV	
VCSTH+	Over-current sense threshold voltage	_	1.0	_		
	Under-current sense threshold voltage	_	0.2	_	V	
Vcsth-					nsec	Delay from CS to LO
VCSTH- TCS	Over-current sense propogation delay		160		11300	
	Over-current sense propogation delay Low V _{BUS} /rectified line input upper threshold	_	160 5.15			
T _{CS}					- V	
T _{CS} V _{DC+}	Low V _{BUS} /rectified line input upper threshold		5.15			Note 4
T _{CS} V _{DC+} V _{DC-} T _{SD}	Low V_{BUS} /rectified line input upper threshold Low V_{BUS} /rectified line input lower threshold		5.15 3.0		V	
T _{CS} V _{DC+} V _{DC-} T _{SD} Gate D	Low V_{BUS} /rectified line input upper threshold Low V_{BUS} /rectified line input lower threshold Thermal shutdown junction temperature		5.15 3.0		V	
T _{CS} V _{DC+} V _{DC-} T _{SD} Gate D	Low V _{BUS} /rectified line input upper threshold Low V _{BUS} /rectified line input lower threshold Thermal shutdown junction temperature river Output Characteristics		5.15 3.0 160		V °C Units	Note 4
T _{CS} V _{DC+} V _{DC-} T _{SD} Gate D Symbol VOL	Low V _{BUS} /rectified line input upper threshold Low V _{BUS} /rectified line input lower threshold Thermal shutdown junction temperature river Output Characteristics Definition		5.15 3.0 160 Typ.		- V °C	Note 4 Test Conditions I ₀ = 0
T _{CS} V _{DC+} V _{DC-} T _{SD} Gate D Symbol	Low V _{BUS} /rectified line input upper threshold Low V _{BUS} /rectified line input lower threshold Thermal shutdown junction temperature river Output Characteristics Definition Low level output voltage		5.15 3.0 160 Typ. 0		V °C Units	Note 4 Test Conditions

Note 4: When the IC senses an overtemperature condition (Tj > 160°C), the IC is latched off. In order to reset this Fault Latch, the SD lead must be cycled high and then low, or the V_{CC} supply to the IC must be cycled below the falling undervoltage lockout threshold (V_{CCUV}-).


www.irf.com

IR2167(S)

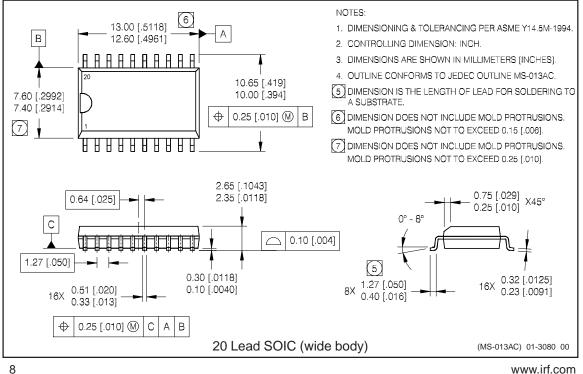
ADVANCE INFORMATION


International

State Diagram

International **TOR** Rectifier

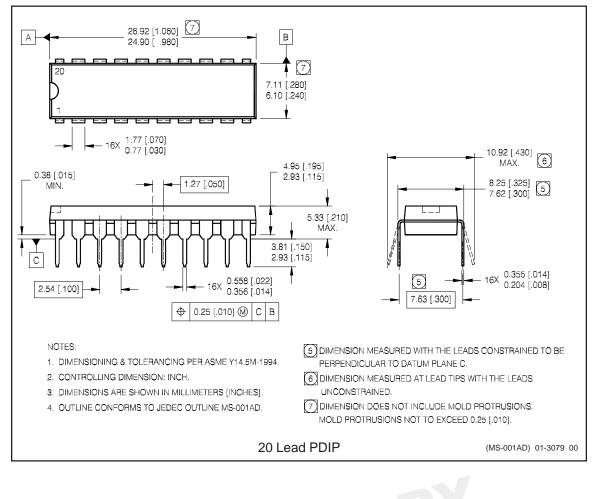
Functional Block Diagram


IR2167(S)

ADVANCE INFORMATION

Lead Assignments

Pin Assignments		Pin #	Symbol	Description
_		1	VDC	DC Bus Sensing Input
VDC 10	20 HO	2	CPH	Preheat Timing Capacitor
		3	RPH	Preheat Frequency Resistor & Ignition Capacitor
CPH 2	19 VS	4	RT	Oscillator Timing Resistor
		5	RUN	Run Frequency Resistor
RPH 3	18 VB	6	СТ	Oscillator Timing Capacitor
		7	DT	Deadtime Programming
RT 4	17 VCC	8	OC	Over-current (CS+) Threshold Programming
		9	COMP	Error Amplifier Compensation
RUN 5	16 COM	10	ZX	Zero-Crossing, PFC Inductor
ст 🐻 🧮	15 LO	11	VBUS	Bus Voltage Sense Input
ч ч О		12	PFC	PFC Gate Driver Output
DT 7	14 CS	13	SD	Shutdown Input
		14	CS	Current Sensing Input
OC 8	13 SD	15	LO	Low-Side Gate Driver Output
		16	COM	IC Power & Signal Ground
COMP 9	12 PFC	17	VCC	Logic & Low-Side Gate Driver Supply
		18	VB	High-Side Gate Driver Floating Supply
ZX 10	11 VBUS	19	VS	High Voltage Floating Return
	-	20	HO	High-Side Gate Driver Output


Caseoutline

www.irf.com

International

Caseoutline

International INTERRET IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 Data and specifications subject to change without notice. 3/29/2001

www.irf.com