
A product of SEGGER Microcontroller Systeme GmbH

J-Link ARM

JTAG Emulator for
ARM Cores

2

Disclaimer
Specifications written in this document are believed to be accurate, but are not guar-
anteed to be entirely free of error. The information in this manual is subject to
change for functional or performance improvements without notice. Please make sure
your manual is the latest edition. While the information herein is assumed to be
accurate, SEGGER MICROCONTROLLER SYSTEME GmbH (the manufacturer) assumes
no responsibility for any errors or omissions. The manufacturer makes and you
receive no warranties or conditions, express, implied, statutory or in any communica-
tion with you. The manufacturer specifically disclaims any implied warranty of mer-
chantability or fitness for a particular purpose.

Copyright notice
You may not extract portions of this manual or modify the PDF file in any way without
the prior written permission of the manufacturer. The software described in this doc-
ument is furnished under a license and may only be used or copied in accordance
with the terms of such a license.

© 2005 SEGGER Microcontroller Systeme GmbH, Hilden / Germany

Trademarks
Names mentioned in this manual may be trademarks of their respective companies.
Brand and product names are trademarks or registered trademarks of their respec-
tive holders.

Contact address
SEGGER Microcontroller Systeme GmbH
Heinrich-Hertz-Str. 5
D-40721 Hilden
Germany
Tel.+49 2103-2878-0
Fax.+49 2103-2878-28
Email: support@segger.com
Internet: http://www.segger.com

Manual versions
This manual describes the J-Link ARM device.
For further information on topics or routines not yet specified, please contact us.

Manual version Date By Explanation

6 051118 OO

Chapter Working with J-Link: "Connecting multiple J-Links to
your PC" added.
Chapter Working with J-Link: "Multi core debugging" added.
Chapter Background information: "J-Link firmware" added.

5 051103 TQ Chapter Setup: "JTAG Speed" added.

4 051025 OO
Chapter Background information: "Flash programming" added.
Chapter Setup: "Scan chain configuration" added.
Some smaller changes.

3 051021 TQ Performance values updated.

2 051011 TQ Chapter "Working with J-Link" added.

1 050818 TW Initial version.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

3

Table of Contents
1 Introduction ..5

1.1 About this document ..6
1.2 Overview..6
1.2.1 Features of J-Link ARM...6
1.2.2 J-Link ARM download speed ..6
1.2.3 Specifications..7
1.3 Requirements..7

2 Hardware ...9

2.1 JTAG Connector...10
2.1.1 Pinout ..10
2.2 Supported ARM Cores ..12
2.3 Hardware versions ...13
2.3.1 How to determine the hardware version..13
2.3.2 Differences between different versions ...13
2.4 RESET, nTRST...14
2.5 Multiple devices in the scan chain ..15
2.5.1 Configuration ..15
2.6 Adapters ..16
2.6.1 JTAG 14 pin adapter ..16
2.6.2 5 Volt adapter ...16

3 Setup..19

3.1 Installing the USB driver...20
3.1.1 Verifying correct driver installation...22
3.2 Connecting the target system..23
3.2.1 Power-on Sequence ...23
3.2.2 Verifying target device connection ...23
3.2.3 Problems ..23
3.3 Scan chain configuration...24
3.3.1 Sample configuration dialogs...24
3.3.2 Determining values for scan chain configuration...25
3.4 JTAG Speed ..27
3.4.1 Fixed JTAG speed ..27
3.4.2 Automatic JTAG speed..27
3.4.3 Adaptive clocking...27

4 J-Link related software...29

4.1 Free software..30
4.1.1 JLink.exe (Command line tool) ..30
4.1.2 J-Link TCP/IP Server (Remote J-Link use) ...30
4.1.3 J-Mem Memory Viewer ...31
4.2 Additional software ..32
4.2.1 J-Flash ARM (Program flash memory via JTAG) ..32
4.2.2 J-Link ARM Developer Pack ...33
4.2.3 J-Link ARM Flash DLL ...34
4.2.4 RDI Support..34
4.2.5 JTAGLoad (Command line tool)..35

5 Working with J-Link..37
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

4

5.1 Reset strategies .. 38
5.1.1 Reset strategies in detail .. 38
5.2 Cache handling ... 39
5.2.1 Cache coherency... 39
5.2.2 Cache clean area... 39
5.2.3 Cache handling of ARM 7 cores ... 39
5.2.4 Cache handling of ARM 9 cores ... 39
5.3 Connecting multiple J-Links to your PC... 40
5.3.1 How does it work? ... 40
5.3.2 Configuring multiple J-Links.. 40
5.3.3 Connecting to a J-Link with non default USB-Address 41
5.4 Multi core debugging ... 42
5.4.1 How multi core debugging works ... 42
5.4.2 Using multi core debugging in detail .. 42
5.4.3 Things you should be aware of .. 43

6 Background information ...45

6.1 JTAG ... 46
6.1.1 Test access port (TAP) ... 46
6.1.2 Data registers... 46
6.1.3 Instruction register.. 46
6.1.4 The TAP controller ... 46
6.2 The ARM core ... 49
6.2.1 Processor modes ... 49
6.2.2 Registers of the CPU core ... 49
6.2.3 ARM /Thumb instruction set.. 50
6.3 EmbeddedICE ... 51
6.3.1 Breakpoints and watchpoints .. 51
6.3.2 The ICE registers .. 52
6.4 Flash programming ... 53
6.4.1 How does flash programming via J-Link work ? ... 53
6.4.2 Data download to RAM... 53
6.4.3 Data download via DCC.. 53
6.4.4 Available options for flash programming ... 53
6.5 J-Link firmware... 55
6.5.1 Firmware update ... 55
6.5.2 Invalidating the firmware ... 56

7 FAQs..57

7.1 FAQs ... 58

8 Support ..59

8.1 Troubleshooting .. 60
8.1.1 General procedure... 60
8.1.2 Typical problem scenarios .. 60
8.2 Signal analysis.. 61
8.2.1 Start sequence ... 61
8.2.2 ID sequence ... 62
8.2.3 Troubleshooting .. 62
8.3 Contacting support .. 62

9 Glossary...63
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

5

Chapter 1

Introduction
This chapter describes the purpose of this manual and then gives a short overview
about J-Link ARM.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

6 CHAPTER 1 Introduction
1.1 About this document
This document describes J-Link ARM. It provides an overview over the major features
of J-Link, gives you some background information about JTAG and ARM in general
and describes J-Link ARM related software packages available from Segger. Finally,
the chapter �Support� on page 59 helps to troubleshoot common problems.
For simplicity, we will refer to J-Link ARM as J-Link in this manual.

1.2 Overview
J-Link ARM is a JTAG emulator designed for ARM cores. It connects via USB to a PC
running Microsoft Windows 2000 or XP. J-Link ARM has a built-in 20-pin JTAG connec-
tor, which is compatible with the standard 20-pin connector defined by ARM.

1.2.1 Features of J-Link ARM
� Any ARM7/ARM9 core supported, including thumb mode
� Download speed up to 650 kb/s*
� Seamless integration into the IAR workbench
� No power supply required, powered through USB
� Max. JTAG speed 12 MHz
� Auto speed recognition
� Support for adaptive clocking
� All JTAG signals can be monitored, target voltage can be measured
� Support for multiple devices
� Fully plug and play compatible
� Standard 20-pin JTAG connector
� Optional 14-pin JTAG adapter available
� Wide target voltage range: 1.2V - 3.3V
� Optional adapter for 5V targets available
� USB and 20-pin ribbon cable included
� Live memory viewer (J-Mem) included
� J-Link TCP/IP server included, which allows using J-Link via TCP/IP networks
� RDI server available, which allows using J-Link with RDI compliant software
� Flash programming software (J-Flash) available
� Flash DLL available, which allows using flash functionality in custom applications
� J-Link ARM Developer Pack available

* = Measured with J-Link ARM Rev.5 with DCC mode.

1.2.2 J-Link ARM download speed
The following table lists J-Link ARM performance values (kByte/s) for writing to
memory (RAM):

Please note that the actual speed depends on various factors, such as JTAG, clock
speed, host CPU core etc.

Revision
Via DCC

10Mhz JTAG clock

ARM7
Memory download
8MHz JTAG speed

ARM9
Memory download
4Mhz JTAG speed

Rev 1 � Rev 4 186.2 142.9 72

Rev 5 655.3 162.7 65.2
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

7

1.2.3 Specifications

1.3 Requirements
Host System
In order to use J-Link ARM you need a host system running Windows 2000 or Win-
dows XP with Segger�s custom USB driver.

Target System
An ARM7 or ARM9 target system is required. The system should have a 20-pin con-
nector as defined by ARM Ltd. The individual pins are described in section �JTAG Con-
nector� on page 10. Please note that Segger offers an optional adapter to use J-Link
ARM with targets using 14 pin 0.1" mating JTAG connectors.

Power Supply USB powered <50mA

USB Interface USB 2.0, full speed

Target Interface JTAG 20-pin (14-pin adapter available)

Serial Transfer Rate between J-Link ARM and Target up to 12 MHz

Supported Target Voltage 1.2 - 3.3 V (5V adapter available)

Operating Temperature +5°C ... +60°C

Storage Temperature -20°C ... +65 °C

Relative Humidity (non-condensing) <90% rH

Size (without cables) 100mm x 53mm x 27mm

Weight (without cables) 70g

Electromagnetic Compatibility (EMC) EN 55022, EN 55024

Supported OS Microsoft Windows 2000/XP
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

8 CHAPTER 1 Introduction
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

9

Chapter 2

Hardware
This chapter gives an overview about J-Link ARM specific hardware details, such as
the pinouts and available adapters.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

10 CHAPTER 2 Hardware
2.1 JTAG Connector
J-Link ARM has a JTAG connector compatible to ARM�s Multi-ICE. The JTAG connector
is a 20 way Insulation Displacement Connector (IDC) keyed box header (2.54mm
male) that mates with IDC sockets mounted on a ribbon cable.

2.1.1 Pinout
The following table lists the J-Link ARM JTAG pinout.

PIN SIGNAL TYPE Description

 1 VTref Input

This is the target reference voltage.
It is used to check if the target has power, to create the logic-level reference
for the input comparators and controls the output logic levels to the target. It
is normally fed from Vdd on the target board and must not have a series resis-
tor.

 2 Vsupply NC
This pin is not connected in J-Link.
It is reserved for compatibility with other equipment.
Connect to Vdd or leave open in target system.

 3 nTRST Output
JTAG Reset. Output from J-Link to the Reset signal on the target JTAG port.
Typically connected to nTRST on the target CPU. This pin is normally pulled
HIGH on the target to avoid unintentional resets when there is no connection.

 4 GND - Common ground

 5 TDI Output
JTAG data input of target CPU.
It is recommended that this pin is pulled to a defined state on the target
board. Typically connected to TDI on target CPU.

 6 GND - Common ground

 7 TMS Output
JTAG mode set input of target CPU.
This pin should be pulled up on the target.
Typically connected to TMS on target CPU.

 8 GND - Common ground

 9 TCK Output
JTAG clock signal to target CPU.
It is recommended that this pin is pulled to a defined state on the target
board. Typically connected to TCK on target CPU.

10 GND - Common ground

11 RTCK Input

Return test clock signal from the target.
Some targets must synchronize the JTAG inputs to internal clocks. To assist in
meeting this requirement, you can use a returned, and retimed, TCK to
dynamically control the TCK rate. J-Link ARM supports adaptive clocking,
which waits for TCK changes to be echoed correctly before making further
changes. Connect to RTCK if available, otherwise to GND.

12 GND - Common ground

13 TDO Input
JTAG data output from target CPU.
Typically connected to TDO on target CPU.

14 GND - Common ground

15 RESET I/O Target CPU reset signal

16 GND - Common ground

17 DBGRQ NC

This pin is not connected in J-Link.
It is reserved for compatibility with other equipment to be used as a debug
request signal to the target system. Typically connected to DBGRQ if available,
otherwise left open.

1 2

3 4
5 6

7 8
9 10

11 12

13 14
15 16

17 18
19 20

VTref

nTRST
TDI

TMS
TCK

RTCK

TDO
nSRST

DBGRQ
DBGACK

Vsupply

GND

GND
GND

GND

GND
GND

GND
GND

GND
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

11
18 GND - Common ground

19 DBGACK NC
This pin is not connected in J-Link.
It is reserved for compatibility with other equipment to be used as debug
acknowledge signal from the target system. Typically left open.

20 GND - Common ground

PIN SIGNAL TYPE Description
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

12 CHAPTER 2 Hardware
2.2 Supported ARM Cores
J-Link ARM has been tested with the following cores, but should work with any ARM7/
ARM9 core. If you experience problems with a particular core, do not hesitate to con-
tact Segger if you need support.

� ARM7TDMI (Rev 1)
� ARM7TDMI (Rev 3)
� ARM7TDMI-S (Rev 4)
� ARM720T
� ARM920T
� ARM922T
� ARM926EJ-S
� ARM946E-S
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

13
2.3 Hardware versions
J-Link hardware has been continually improved. Several different versions in differ-
ent housings are on the market.

2.3.1 How to determine the hardware version
In order to to determine the hardware version of your J-Link, the first step should be
to look at the label at the bottom side of the unit. Newer J-Links have the hardware
version printed on the back label.
If this is not the case with your J-Link, please start J-Link.exe. As part of the
initial message it displays the hardware version.

2.3.2 Differences between different versions

2.3.2.1 Versions 1-4
These J-Links use a 16 bit CISC CPU. Maximum download speed is app. 150 kB / sec.

JTAG speed
Maximum JTAG frequency is 8 MHz; possible JTAG speeds are:
8 MHz / n, where n is 1,2, ..., resutling in speeds of:

8.000 MHz (n = 1)
4.000 MHz (n = 2)
2.666 MHz (n = 3)
2.000 MHz (n = 4)
1.600 MHz (n = 5)
1.333 MHz (n = 6)
1.142 MHz (n = 7)
1.000 MHz (n = 8)

Adaptive clocking is not supported.

2.3.2.2 Version 5.0
Uses a 32 bit RISC CPU. Maximum download speed (using DCC) is over 650 kB / sec.

JTAG speed.
Maximum JTAG frequency is 12 MHz; possible JTAG speeds are:
48 MHz / n, where n is 4,5, ..., resutling in speeds of:

12.000 MHz (n = 4)
9.600 MHz (n = 5)
8.000 MHz (n = 6)
6.857 MHz (n = 7)
6.000 MHz (n = 8)
5.333 MHz (n = 9)
4.800 MHz (n = 10)
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

14 CHAPTER 2 Hardware
Target Interface
nTRST is push-pull type
RESET is push-pull type

2.3.2.3 Version 5.2
Uses a 32 bit RISC CPU. Maximum download speed (using DCC) is over 650 kB / sec.

JTAG speed.
Possible JTAG speeds are identical to these of version 5.0.

Target Interface
nTRST is push-pull type
RESET is open drain

2.4 RESET, nTRST
The TAP controller and ICE logic is reset independently from the ARM core with
nTRST (DBGnTRST on synthesizable cores). For the ARM core to operate correctly, it
is essential that both signals are asserted after power-up.
The advantage of having separate connection to the two reset signals is that it allows
the person doing software debug to set up breakpoints which are retained by the ICE
logic even when the core is reset. (For example, at address 0, to allow the code to be
single-stepped as soon as it comes out of reset). This can be particularly useful when
first trying to bring up a board with a new ASIC.
You may tie (DBG)nTRST to the core reset, but this removes some of the flexibility
and usefulness of the debug tools. What some designers facing similar pin con-
straints have done is to implement some kind of reset circuit within their device. This
typically will assert both nTRST and the core reset for the initial power-on reset, but
subsequent 'warm' resets, where the power to the device is maintained, will cause
only the core reset to go low.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

15
2.5 Multiple devices in the scan chain
J-Link ARM can handle multiple devices in the scan chain. This applies to hardware
where multiple chips are connected to the same JTAG connector. As can be seen in
the drawing below, the TCK and TMS lines of all JTAG device are connected, while the
TDI and TDO lines form a bus.

Currently, up to 8 devices in the scan chain are supported. One or more of these
devices can be ARM cores; the other devices can be of any other type but need to
comply with the JTAG standard.

2.5.1 Configuration
The configuration of the scan chain depends on the application used. Please read
�Scan chain configuration� on page 24 for further instructions and configuration
examples.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

16 CHAPTER 2 Hardware
2.6 Adapters

2.6.1 JTAG 14 pin adapter
An adapter is available to use J-Link ARM with targets using this 14 pin 0.1" mating
JTAG connector.

The table below shows the mapping between the 14 pin adapter and the standard 20
pin JTAG interface.

2.6.2 5 Volt adapter
The 5V adapter extends the voltage range of J-Link ARM (and other, pin-compatible
JTAG probes) to 5V. Most targets have JTAG signals at voltage levels between 1.2V
and 3.3V. These targets can be used with J-Link ARM without a 5V adapter. Higher
voltages are common primarily in the automotive sector.

PIN Signal Pin no. on 20 pin JTAG
1 VTref 1

2 GND GND

3 nTRST 3

4 GND GND

5 TDI 5

6 GND GND

7 TMS 7

8 GND GND

9 TCK 9

10 GND GND

11 TDO 13

12 RESET 15

13 VTref 1

14 GND GND
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

17
2.6.2.1 Technical data
� 20 pin connector, female (plugs into J-Link ARM)
� 20 pin connector male, for target ribbon cable
� LED shows power status
� Adapter is powered by target
� Power consumption <20 mA Target supply voltage: 3.3V - 5V
� Max. JTAG-frequency: 10 MHz

2.6.2.2 Compatibility note
The J-Link ARM 5V adapter is compatible to J-Link ARM revisions 4 or newer. Using an
older revision of J-Link ARM together with a 5V adapter will not output a reset signal
to your target, because older J-Link ARM versions were not able to drive high level on
Reset and TRST to target. To actually determine if your J-Link ARM is compatible to
the 5V adapter, you may check whether J-Link ARM outputs a reset signal (active
high) to your target CPU.

2.6.2.3 Usage
The 5 volt adapter should be plugged directly into J-Link ARM with the 20 pin female
connector. The target ribbon cable is then attached to the 20 pin male connector of
the adapter. The picture below shows a J-Link ARM with a connected 5 volt adapter.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

18 CHAPTER 2 Hardware
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

19
Chapter 3

Setup
This chapter describes the setup procedure required in order to work with J-Link
ARM. This includes primarily the installation of a kernel mode USB driver in your host
system.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

20 CHAPTER 3 Setup
3.1 Installing the USB driver
When your J-Link ARM is plugged into your computer's USB port, or when the com-
puter is first powered on after connecting J-Link ARM, Windows will detect the new
hardware.

The wizard starts the installation of the driver. First select the "Search for a suit-
able driver for my device (recommended)" option, then click on the "Next >"
button.

In the next step, you need to select the "Specify a location" option, and click on
the "Next >" button.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

21
The wizard will ask you to specify the location of the correct driver files for the new
device. Use the directory navigator to select "D:\armjlink_v108\" (or your chosen
location) and confirm with a click on the "Next >" button.

The wizard confirms your choice and starts to copy, when you click on the "Next >"
button.

At this point, the installation is complete. Click on the "Finish" button to dismiss the
installation.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

22 CHAPTER 3 Setup
3.1.1 Verifying correct driver installation
To verify the correct installation of the driver, disconnect and reconnect J-Link ARM to
the USB port. During the enumeration process which takes about 2 seconds, the LED
on J-Link ARM is flashing. After successful enumeration, the LED stays on perma-
nently.
Start the provided sample application JLink.exe. JLink.exe should display the com-
pilation time of the J-Link ARM firmware, the serial number, a target voltage of
0.000V if a target is not connected to J-Link ARM and the speed selection. The
screenshot below should give you an idea.

In addition to this you may verify the driver installation by consulting the Windows
device manager. If the driver is installed and your J-Link ARM is connected to your
computer, the device manager should list the J-Link ARM driver as a node below "Uni-
versal Serial Bus controllers" as show in the following screenshot:

A right-click on the driver will open a context menu which contains the item "Proper-
ties". If you select this item, a new dialog is opened and should report: "This device
is working properly".

If you experience problems, please have a look at chapter �Support� on page 59 for
help.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

23
3.2 Connecting the target system

3.2.1 Power-on Sequence
In general J-Link ARM should be powered on before connecting it with the target
device. That means you should first connect J-Link with the host system via USB and
then connect J-Link ARM with the target device via JTAG. Power-on the device after
you connected J-Link ARM to it.

3.2.2 Verifying target device connection
If the USB driver is working properly and your J-Link ARM is connected with the host
system, you may connect J-Link ARM to your target hardware. Then start JLink.exe
again which should now display the same J-Link ARM related information as above
but in addition to that it should report that it found a JTAG target and the target�s
core ID. The screenshot below shows the output of JLink.exe. As can be seen, it
reports a J-Link ARM with one JTAG device connected.

3.2.3 Problems
If you experience problems with any of the steps described above, it is recommended
you read the chapter �Support� on page 59 for troubleshooting tips. If you still do not
find appropriate help there and your J-Link ARM is an original Segger J-Link ARM (not
an OEM version), you may contact Segger support via e-mail. Provide the necessary
information about your target processor, board etc. and we will try to solve your
problem. A checklist of the required information together with the contact informa-
tion can be found in chapter �Support� on page 59 as well.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

24 CHAPTER 3 Setup
3.3 Scan chain configuration
By default, only one ARM device is assumed to be in the JTAG scan chain. If you have
multiple devices in the scan chain, you must properly configure it. To do so, one has to
specify the exact position of the ARM device that should be addressed. Configuration of
the scan is done by the target application. A target application can be a debugger
such as IAR�s Embedded Workbench, ARM�s AXD using RDI, a flash programming
application such as SEGGER�s J-Flash, or any other application using J-Link ARM. It�s
the applications responsibility to supply a way to configure the scan chain. Most
applications offer a dialog box for this purpose.

3.3.1 Sample configuration dialogs
As explained before, it is responsibility of the application to allow the user to config-
ure the scan chain. This is typically done in a dialog; some sample dialogs are shown
below.

SEGGER J-Flash configuration dialog
This dialog can be found under "Options|Project settings"
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

25
SEGGER J-Link RDI configuration dialog
This dialog can be found under "RDI|Configure" for example in IAR�s Embedded
Workbench.

IAR J-Link configuration dialog
This dialog can be found under "Project|Options".

3.3.2 Determining values for scan chain configuration
When do I need to configure the scan chain?
If only one device is connected to the scan chain, the default configuration can be
used. In other cases, J-Link ARM may succeed in automatically recognizing the
devices on the scan chain, but whether this is possible depends on the devices
present on the scan chain.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

26 CHAPTER 3 Setup
How do I configure the scan chain ?
2 values need to be known:
The position of the target device in the scan chain and the total number of bits in the
instruction registers of the devices before the target device (IR len).
The position can usually be seen in the schematic; the IR len can be found in the
manual supplied by the manufacturers of the others devices.
ARM7/ARM9 have an IR len of four.

Sample configurations
The diagram below shows a scan chain configuration sample with 2 devices con-
nected to the JTAG port.

Examples
The following table shows a few sample configurations with 1,2 and 3 devices in dif-
ferent configurations.

The target device is marked in blue.

Device 0
Chip(IR len)

Device 1
Chip(IR len)

Device 2
Chip(IR len)

Position IR len

ARM(4) - - 0 0

ARM(4) Xilinx(8) - 0 0

Xilinx(8) ARM(4) - 1 8

Xilinx(8) Xilinx(8) ARM(4) 2 16

ARM(4) Xilinx(8) ARM(4) 0 0

ARM(4) Xilinx(8) ARM(4) 2 12

Xilinx(8) ARM(4) Xilinx(8) 1 8
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

27
3.4 JTAG Speed
There are basically three types of speed settings:

� Fixed JTAG speed
� Automatic JTAG speed
� Adaptive clocking

These are explained below.

3.4.1 Fixed JTAG speed
The target is clocked at a fixed clock speed. The maximum JTAG speed the target can
handle depends on the target itself. In general ARM cores without JTAG synchroniza-
tion logic (such as ARM7-TDMI) can handle JTAG speeds up to the CPU speed, ARM
cores with JTAG synchronization logic (such as ARM7-TDMI-S, ARM946E-S,
ARM966EJ-S) can handle JTAG speeds up to 1/6 of the CPU speed.
JTAG speeds of more than 10 MHz are not recommended.

3.4.2 Automatic JTAG speed
Selects the maximum JTAG speed handled by the TAP controller.

NOTE:
On ARM cores without synchronization logic, this may not work reliably, since the
CPU core may be clocked slower than the maximum JTAG speed.

3.4.3 Adaptive clocking
If the target provides the RTCK signal, select the adaptive clocking function to syn-
chronize the clock to the processor clock outside the core. This ensures there are no
synchronization problems over the JTAG interface.

NOTE:
If you use the adaptive clocking feature, transmission delays, gate delays, and
synchronization requirements result in a lower maximum clock frequency than with
non-adaptive clocking. Do not use adaptive clocking unless it is required by the
hardware design.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

28 CHAPTER 3 Setup
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

29
Chapter 4

J-Link related software
This chapter describes Segger�s J-Link related software portfolio. The table below
lists the available software packages.

Software Description

JLink.exe Free Command line tool with basic functionality for target analysis.

J-Link TCP/IP Server Free utility which provides the possibility to use J-Link remotely via TCP/IP.

J-Mem memory viewer
Free target memory viewer. Shows the memory content of a running target
and allows editing as well.

J-Flash Stand-alone flash programming application.

J-Link ARM Developer
Pack

The J-Link ARM Developer Pack is needed if you want to write your own pro-
gram with J-Link.

J-Link ARM Flash DLL
An enhanced version of the JLinkARM.DLL, which contains additional API func-
tions for flash programming.

RDI support with Flash
download and Flash
breakpoints.

Provides Remote Debug Interface (RDI) support. Flash breakpoints provide the
ability to set an unlimited number of software breakpoints in flash memory
areas. Flash download allows an arbitrary debugger to write into flash memory.

JTAGLoad
Command line tool that opens a svf file and sends the data in it via J-Link to
the target.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

30 CHAPTER 4 J-Link related software
4.1 Free software
This kind of J-Link related software is shipped together with J-Link ARM and may also
be downloaded from www.segger.com. No additional license is required to use this
software.

4.1.1 JLink.exe (Command line tool)
JLink.exe is a tool, that can be used to verify proper installation of the USB driver
and to verify the connection to the ARM chip, as well as for simple analysis of the tar-
get system. It permits some simple commands, such as memory dump, halt, step, go
and ID-check, as well as some more in-depths analysis of the the state of the ARM
core and the ICE breaker module.

4.1.2 J-Link TCP/IP Server (Remote J-Link use)
The J-Link TCP/IP server allows using J-Link ARM remotely via TCP/IP. This enables
you to connect to and fully use a J-Link ARM from another computer. Performance is
just slightly (about 10%) lower than with direct USB connection.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

31
4.1.3 J-Mem Memory Viewer
J-Mem displays memory contents of ARM-systems and allows modifications of RAM
and sfrs (Special function registers) while the target is running. This makes it possi-
ble to look into the memory of an ARM chip at run time; RAM can be modified and
sfrs can be written. The type of acces for both read and write access can be selected
to be 8/16/32 bit. It works nicely when modifying sfrs, especially because it writes
the sfr only after the complete value has been entered.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

32 CHAPTER 4 J-Link related software
4.2 Additional software
The software described in this section requires separate licenses from Segger. You
can however download the software from www.segger.com. Evaluation licenses are
offered as well. For further information go to our website or contact us directly.

4.2.1 J-Flash ARM (Program flash memory via JTAG)
J-Flash ARM is a PC software running on Windows 2000/XP systems and enables you
to program your Flash EEPROM devices via the JTAG connector on your target sys-
tem. J-Flash ARM works with any ARM7/9 system and supports all common external
flashes, as well as the programming of internal flash of ARM microcontrollers. It
allows you to ERASE, FILL, Program, BLANK CHECK, CHECKSUM, UPLOAD flash con-
tent, and VIEW MEMORY functions of the software with your flash devices. Even with-
out a license key you can still use J-Flash ARM to open project files, read from
connected devices, blank check target memory, verify data files and so on. However
to actually program devices via J-Flash ARM and J-Link ARM you are required to
obtain a license key from us.

Features
� Works with any ARM7/ARM9 chip.
� ARM microcontrollers (internal flash) supported.
� Most external flash chips can be programmed.
� High speed programming: up to 200 kByte/sec (dep. on flash device).
� Very high speed blank check: App. 16 Mybte /sec (depends on target).
� Smart read-back: Only non blank-portions of flash transferred and saved.
� Easy to use, comes with projects for standard eval boards.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

33
4.2.2 J-Link ARM Developer Pack
The J-Link ARM Developer Pack is needed if you want to write your own program with
J-Link ARM. The J-Link DLL is a standard Windows DLL typically used from C pro-
grams (Visual Basic or Delphi projects are also possible). It makes the entire func-
tionality of J-Link ARM available through its exported functions. The functionality
includes things such as halting/stepping the ARM core, reading/writing CPU and ICE
registers and reading/writing memory. Therefore it can be used in any kind of appli-
cation accessing an ARM core. The standard DLL does not have API functions for flash
programming. However, the functionality offered can be used to program flash. In
this case a flash loader is required. The table below lists some of the included files
and their respective purpose.

Files Contents
GLOBAL.h
JLinkARMDLL.h

Header files that must be included to use the DLL functions. These files contain the
defines, typedefs and function declarations.

JLinkARM.lib Library contains the exports of the JLinkDLL.

JLinkARM.dll The DLL itself.

Main.c Sample application, which calls some JLinkARM DLL functions.

JLink.dsp
JLink.dsw

Project files of the sample application. Double click "JLink.dsw" to open the project.

JLinkARMDLL.pdf Extensive documentation (API, Sample projects etc.)
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

34 CHAPTER 4 J-Link related software
4.2.3 J-Link ARM Flash DLL
This is an enhanced version of the JLinkARM.DLL which contains additional API func-
tions for flash programming. The add. API functions (Prefixed JLINKARM_FLASH_)
allow erasing and programming of flash memory. This DLL comes with a sample exe-
cutable, as well as with source code of this executable and a project file. It can be an
interesting option if you want to write your own programs for production purposes.

4.2.4 RDI Support
The J-Link RDI software is an RDI interface for J-Link ARM. It makes it possible to
use J-Link ARM with any RDI compliant debugger. The main part of the software is an
RDI-compliant DLL, which needs to be selected in the debugger. There are two addi-
tional features available which build on the RDI software foundation. Each additional
features requires a RDI license in addition to its own license.

4.2.4.1 Flash download
The RDI software contains a flash loader. On top of that, the Flash download software
lets flash memory appear as RAM to a debugger. This enables you to use any arbi-
trary debugger which normally only allows downloads into RAM to work with flash
memory as well. If a debugger splits the download image into several pieces, the
Flash download software will collect the individual parts and perform the actual flash
programming right before program execution. This avoids repeated flash program-
ming.

The advantage you gain is the possibility to transparently use your toolchain of
choice�that may not contain a flash loader�with flash memory that can be pro-
grammed as if it where RAM.

4.2.4.2 Flash breakpoints
The J-Link RDI software contains an add. feature, called Flash break points (short
FlashBPs). This feature requires an add. license. It adds the ability to set an unlim-
ited number of software breakpoints in flash memory areas, rather than just the 2
hardware breakpoints permitted by the ICE. Setting the breakpoints in flash is exe-
cuted very fast using a RAMcode specially designed for this purpose; on chips with
fast flash the difference between breakpoints in RAM and Flash is unnoticeable.

How do breakpoints work?
ARM7 and ARM 9 cores have 2 breakpoint units (called "watchpoint units" in ARM's
documentation), allowing 2 hardware breakpoints to be set. Hardware breakpoints do
not require modification of the program code. Software breakpoints are different:
The debugger modifies the program and replaces the breakpointed instruction with a
special value. Add. soft BPs do not require add. hardware units in the processor,
since simply more instructions are replaced. This is a standard procedure that most
debuggers are capable of, however, it requires the program to be located in RAM.

What is special about software breakpoints in flash?
FlashBPs allows you to set an unlimited number of breakpoints even if your applica-
tion program is not located in RAM, but in Flash memory.This is a scenario which was
very rare before ARM-microcontrollers hit the market. This new technology makes
very powerful, yet inexpensive ARM microcontrollers available for systems, which
required external RAM before. The downside of this new technology is that it is not
possible to debug larger programs on these Micros in RAM, since the RAM is not big
enough to hold program and data (typically, these chips contain about 4 times as
much flash as RAM), and therefore with standard debuggers, only 2 breakpoints can
be set. The 2 breakpoint limit makes debugging very tough; a lot of times the debug-
ger requires 2 breakpoints to simply step over a line of code. With software break-
points in Flash, this limitation is gone.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

35
How does this work?
Basically its very simple:The J-Link RDI software reprograms a sector of the flash to
set or clear a breakpoint.

What performance can I expect?
A RAM code, specially designed for this purpose, sets and clears flash breakpoints
extremely fast; on micros with fast flash the difference between breakpoints in RAM
and Flash is hardly noticeable.

How is this performance achieved?
We have put a lot of effort in making FlashBPs really usable and convenient. Flash
sectors are programmed only when necessary; this is usually the moment execution
of the target program is started. A lot of times, more then one breakpoint is located
in the same flash sector, which allows programming multiple breakpoints by pro-
gramming just a single sector. The contents of program memory are cached, avoiding
time consuming reading of the flash sectors. A smart combination of software and
hardware breakpoints allows us to use hardware breakpoints a lot of times, especially
when the debugger is source level-stepping, avoiding reprogramming of the flash in
these situations. A built-in instruction set simulator further reduces the number of
flash operations which need to be performed. This minimizes delays for the user,
maximizing the life time of the flash. All resources of the ARM micro are available to
the application program, no memory is lost for debugging. All of the optimizations
described above can be disabled.

4.2.5 JTAGLoad (Command line tool)
JTAGLoad is a tool, that can be used to open a svf (Serial vector format) file. The
data in the file will be sent to the target via J-Link.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

36 CHAPTER 4 J-Link related software
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

37
Chapter 5

Working with J-Link
This chapter describes the features of J-Link.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

38 CHAPTER 5 Working with J-Link
5.1 Reset strategies
J-Link ARM supports different reset strategies. This is necessary because there is no
single way of resetting and halting an ARM core before it starts to execute instruc-
tions.

What is the problem if the core executes some instructions after RESET?
The instructions executed can cause various problems. Some cores can be completely
"confused", which means they can not be switched into debug mode (CPU can not be
halted). In other cases, the CPU may already have initialized some hardware compo-
nents, causing unexpected interrupts or worse, the hardware may have been initial-
ized with illegal values. In some of these cases, such as illegal PLL settings, the CPU
may be operated beyond specification, possibly locking the CPU.

5.1.1 Reset strategies in detail

5.1.1.1 Hardware, halt after reset (normal)
The hardware reset pin is used to reset the CPU. After reset release, J-Link ARM con-
tinuously tries to halt the CPU. This typically halts the CPU shortly after reset
release; the CPU can in most systems execute some instructions before it is halted.
The number of instructions executed depends primarily on the JTAG speed: the
higher the JTAG speed, the faster the CPU can be halted.
Some CPUs can actually be halted before executing any instruction, because the start
of the CPU is delayed after reset release. If a pause has been specified, J-Link waits
for the specified time before trying to halt the CPU. This can be useful if a bootloader
which resides in flash or ROM needs to be started after reset.

5.1.1.2 Hardware, halt with BP@0
The hardware reset pin is used to reset the CPU. Before doing so, the ICE breaker is
programmed to halt program execution at address 0; effectively a breakpoint is set
at address 0. If this strategy works, the CPU is actually halted before executing a sin-
gle instruction.
This reset strategy does not work on all systems for two reasons:
� If nRESET and nTRST are coupled, either on the board or the CPU itself, reset

clears the breakpoint, which means the CPU is not stopped after reset.
� Some MCUs contain a bootloader program (sometimes called kernel), which

needs to be executed to enable JTAG access.

5.1.1.3 Software, for Analog Devices ADuC7xxx MCUs
The following sequence is executed:
� The CPU is halted
� A software reset sequence is downloaded to RAM
� A breakpoint at address 0 is set
� The software reset sequence is executed
This sequence performs a reset of CPU and peripherals and halts the CPU before exe-
cuting instructions of the user program. It is recommended reset sequence for Ana-
log Devices ADuC7xxx MCUs and works with these chips only.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

39
5.2 Cache handling
Most ARM systems with external memory have at least one cache. Typically, ARM 7
systems with external memory come with a unified cache, wich is used for both code
and data. Most ARM 9 systems with external memory come with separate caches for
the instruction bus (I-Cache) and data bus (D-Cache) due to the hardware architec-
ture.

5.2.1 Cache coherency
When debugging or otherwise working with a system with processor with cache, it is
important to maintain the cache(s) and main memory coherent. This is easy in sys-
tems with a unified cache and becomes increasingly difficult in systems with hard-
ware architecture. A write buffer and a D-Cache configured in write back-mode can
further complicate the problem.
ARM 9 chips have no hardware to keep the caches coherent, so that this is the
responsibility of the software.

5.2.2 Cache clean area
J-Link ARM handles cache cleaning directly thru JTAG commands. Unlike other emula-
tors, it does not have to download code to the target system. This makes setting up
J-Link ARM easier. Therefore, a cache clean area is not required.

5.2.3 Cache handling of ARM 7 cores
Since ARM 7 cores have a unified cache, there is no need to handle the caches during
debug.

5.2.4 Cache handling of ARM 9 cores
ARM 9 cores with cache require J-Link ARM to handle the caches during debug. If the
processor enters debug state with caches enabled, J-Link does the following:

When entering debug state
J-Link ARM does the following:
� it stores the current write behavior for the D-Cache.
� it selects write-through behavior for the D-Cache.

When leaving debug state
J-Link ARM does the following:
� it restores the stored write behavior for the D-Cache.
� it invalidates the D-Cache.

Note that the implementation of the cache handling is different for different cores.
However, the cache is handled correctly for all supported ARM 9 cores.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

40 CHAPTER 5 Working with J-Link
5.3 Connecting multiple J-Links to your PC
You can connect up to 4 J-Links to your PC. In this case all J-Links must have differ-
ent USB-Addresses. The default USB-Address is "0".
In order to do this, 3 J-Links must be configured as described below. Every J-Link
need its own USB-Driver which can be downloaded from www.segger.com.
This feature is supported by J-Link Rev. 5.0 and up.

5.3.1 How does it work?
USB devices are identified by the OS by their product id, vendor id and serial number.
The serial number reported by J-Links is always the same. The product id depends on
the configured USB-Address.
The vendor id (VID) representing SEGGER is always 1366.
The product id (PID) for J-Link #1 is 101.
The product id (PID) for J-Link #2 is 102 and so on.
A different PID means that J-Link is identified as a different device, requiring a new
driver.

5.3.2 Configuring multiple J-Links
1. Start "JLink.exe" to view your hardware version. Your J-Link needs to be V5.0 or

up to continue.
2. Type "usbaddr = 1" to set the J-Link #1.

3. Unplug J-Link and then plug it back in.
4. The system will recognize a new J-Link and will prompt for a driver.

5. Press "OK" and browse to the J-Link driver for your new J-Link. For your second
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

41
J-Link this would be "JLink1.sys", for your third J-Link this would be "JLink2.sys".

5.3.3 Connecting to a J-Link with non default USB-Address
Restart "JLink.exe" and type "usb 1" to connect to J-Link #1.

You may connect other J-Links to your PC and connect to them as well.
To connect to an unconfigured J-Link (with default address "0"), restart "JLink.exe"
or type "usb 0".
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

42 CHAPTER 5 Working with J-Link
5.4 Multi core debugging
J-Link is able to debug multiple cores on one target system connected to the same
scan chain. Configuring and using this feature is described below.

5.4.1 How multi core debugging works
Multi core debugging requires multiple debuggers or multiple instances of the same
debugger. Two or more debuggers can use the same J-Link simultaneously. Configur-
ing a debugger to work with a core in a multi core environment does not require spe-
cial settings. All that is required is proper setup of the scan chain for each debugger.
This enables J-Link to debug more than one core on a target at the same time. The
core to debug is selected thru the JTAG-settings as described below.

5.4.2 Using multi core debugging in detail
1. Connect your target to J-Link.
2. Start your debugger, for example IAR�s Embedded Workbench for ARM.
3. From the menu choose "Project | Options" and configure your scan chain. The

picture below shows the configuration for the first ARM core on your target.

4. Start debugging the first core.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

43
5. Start another debugger, for example another instance of IAR�s Embedded Work-
bench for ARM.

6. From the menu choose "Project | Options" and configure your second scan chain.
The picture below shows the configuration for the second ARM core on your tar-
get.

7. Start debugging your second core.

Example:

Cores to debug are marked in blue.

5.4.3 Things you should be aware of
Multi core debugging is more difficult than single core debugging. You should be
aware of the following pitfalls:

5.4.3.1 JTAG speed
Each core has its own maximum JTAG speed. The maximum JTAG speed of all cores
in the same chain is the minimum of the maximum JTAG speeds.
Example:

Core #1: 2MHz maximum JTAG speed
Core #2: 4MHz maximum JTAG speed

Core #1 Core #2 Core #3
TAP number
debugger #1

TAP number
debugger #2

ARM7TDMI ARM7TDMI-S ARM7TDMI 0 1

ARM7TDMI ARM7TDMI ARM7TDMI 0 2

ARM7TDMI-S ARM7TDMI-S ARM7TDMI-S 1 2
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

44 CHAPTER 5 Working with J-Link
Scan chain: 2MHz maximum JTAG speed

5.4.3.2 Resetting the target
All cores share the same RESET line. You should be aware that resetting one core
through the RESET line means resetting all cores which have their RESET pins con-
nected to the RESET line on the target.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

45
Chapter 6

Background information
This chapter provides background information about JTAG and ARM. The ARM7 and
ARM9 architecture is based on Reduced Instruction Set Computer (RISC) principles.
The instruction set and related decode mechanism are greatly simplified compared
with microprogrammed Complex Instruction Set Computer (CISC).
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

46 CHAPTER 6 Background information
6.1 JTAG
JTAG is the acronym for Joint Test Action Group. In the scope of this document,
"the JTAG standard" means compliance with IEEE Standard 1149.1-2001.

6.1.1 Test access port (TAP)
JTAG defines a TAP (Test access port). The TAP is a general-purpose port that can
provide access to many test support functions built into a component. It is composed
as a minimum of the three input connections (TDI, TCK, TMS) and one output con-
nection (TDO). An optional fourth input connection (nTRST) provides for asynchro-
nous initialization of the test logic.

6.1.2 Data registers
JTAG requires at least two data registers to be present: the bypass and the bound-
ary-scan register. Other registers are allowed but are not obligatory.

Bypass data register
A single-bit register that passes information from TDI to TDO.

Boundary-scan data register
A test data register which allows the testing of board interconnections, access to
input and output of components when testing their system logic and so on.

6.1.3 Instruction register
The instruction register holds the current instruction and its content is used by the
TAP controller to decide which test to perform or which data register to access. It
consist of at least two shift-register cells.

6.1.4 The TAP controller
The TAP controller is a synchronous finite state machine that responds to changes at
the TMS and TCK signals of the TAP and controls the sequence of operations of the
circuitry.

PIN Type Explanation

TCK Input The test clock input (TCK) provides the clock for the test logic.

TDI Input
Serial test instructions and data are received by the test logic at test
data input (TDI).

TMS Input
The signal received at test mode select (TMS) is decoded by the TAP
controller to control test operations.

TDO Output
Test data output (TDO) is the serial output for test instructions and
data from the test logic.

TRST
Input
(optional)

The optional test reset (TRST) input provides for asynchronous initial-
ization of the TAP controller.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

47
6.1.4.1 State descriptions
Reset
The test logic is disabled so that normal operation of the chip logic can continue
unhindered. No matter in which state the TAP controller currently is, it can change
into Reset state if TMS is high for at least 5 clock cycles. As long as TMS is high, the
TAP controller remains in Reset state.

Idle
Idle is a TAP controller state between scan (DR or IR) operations. Once entered, this
state remains active as long as TMS is low.

DR-Scan
Temporary controller state. If TMS remains low, a scan sequence for the selected
data registers is initiated.

IR-Scan
Temporary controller state. If TMS remains low, a scan sequence for the instruction
register is initiated.

Capture-DR
Data may be loaded in parallel to the selected test data registers.

Shift-DR
The test data register connected between TDI and TDO shifts data one stage towards
the serial output with each clock.

Exit1-DR
Temporary controller state.

Pause-DR
The shifting of the test data register between TDI and TDO is temporarily halted.

Capture-DR

Reset

Update-DR

Exit2-DR

Pause-DR

Exit1-DR

Shift-DR

DR-ScanIdle

Update-IR

Exit2-IR

Pause-IR

Exit1-IR

Shift-IR

Capture-IR

IR-Scan

tms=1

tms=0

tms=1

tms=0

tms=1 tms=1

tms=0 tms=0

tms=0 tms=0

tms=1 tms=1

tms=0 tms=0tms=1 tms=1

tms=0 tms=0
tms=1 tms=1

tms=0 tms=0tms=1 tms=1

tms=1 tms=1

tms=0 tms=0

tms=1 tms=1tms=0 tms=0
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

48 CHAPTER 6 Background information
Exit2-DR
Temporary controller state. Allows to either go back into Shift-DR state or go on to
Update-DR.

Update-DR
Data contained in the currently selected data register is loaded into a latched parallel
output (for registers that have such a latch). The parallel latch prevents changes at
the parallel output of these registers from occurring during the shifting process.

Capture-IR
Instructions may be loaded in parallel into the instruction register.

Shift-IR
The instruction register shifts the values in the instruction register towards TDO with
each clock.

Exit1-IR
Temporary controller state.

Pause-IR
Wait state that temporarily halts the instruction shifting.

Exit2-IR
Temporary controller state. Allows to either go back into Shift-IR state or go on to
Update-IR.

Update-IR
The values contained in the instruction register are loaded into a latched parallel out-
put from the shift-register path. Once latched, this new instruction becomes the cur-
rent one. The parallel latch prevents changes at the parallel output of the instruction
register from occurring during the shifting process.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

49
6.2 The ARM core
The ARM7 family is a range of low-power 32-bit RISC microprocessor cores. Offering
up to 130MIPs (Dhrystone2.1), the ARM7 family incorporates the Thumb 16-bit
instruction set. The family consists of the ARM7TDMI, ARM7TDMI-S and ARM7EJ-S
processor cores and the ARM720T cached processor macrocell.

The ARM9 family is built around the ARM9TDMI processor core and incorporates the
16-bit Thumb instruction set. The ARM9 Thumb family includes the ARM920T and
ARM922T cached processor macrocells.

6.2.1 Processor modes
The ARM architecture supports seven processor modes.

6.2.2 Registers of the CPU core
The CPU core has the following registers:

The ARM core has a total of 37 registers:
� 31 general-purpose registers, including a program counter. These registers are

32 bits wide.
� 6 status registers. These are also 32-bits wide, but only 12-bits are allocated or

need to be implemented.
Registers are arranged in partially overlapping banks, with a different register bank
for each processor mode. At any time, 15 general-purpose registers (R0 to R14), one
or two status registers and the program counter are visible.

Processor mode Description
User usr Normal program execution mode

System sys Runs privileged operating system tasks

Supervisor svc A protected mode for the operating system

Abort abt Implements virtual memory and/or memory protection

Undefined und Supports software emulation of hardware coprocessors

Interrupt irq Used for general-purpose interrupt handling

Fast interrupt fiq Supports a high-speed data transfer or channel process

User/
System

Supervisor Abort Undefined Interrupt
Fast

interrupt
R0

R1

R2

R3

R4

R5

R6

R7

R8 R8_fiq

R9 R9_fiq

R10 R10_fiq

R11 R11_fiq

R12 R12_fiq

R13 R13_svc R13_abt R13_und R13_irq R13_fiq

R14 R14_svc R14_abt R14_und R14_irq R14_fiq

PC

CPSR

SPSR_svc SPSR_abt SPSR_und SPSR_irq SPSR_fiq

 = indicates that the normal register used by User or System mode has been replaced by an
 alternative register specific to the exception mode.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

50 CHAPTER 6 Background information
6.2.3 ARM /Thumb instruction set
An ARM core starts execution in ARM mode after reset or any type of exception. Most
(but not all) ARM cores come with a secondary instruction set, called the Thumb
instruction set. The core is said to be in Thumb mode if it is using the thumb instruc-
tion set. The thumb instruction set consists of 16-bit instructions, where the ARM
instruction set consists of 32-bit instructions. Thumb mode improves code density by
approx. 35%, but reduces execution speed on systems with high memory bandwidth
(because more instructions are required). On systems with low memory bandwidth,
Thumb mode can actually be as fast or faster than ARM mode. Mixing ARM and
Thumb code (interworking) is possible.
J-Link fully supports debugging of both modes without limitation.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

51
6.3 EmbeddedICE
EmbeddedICE is a set of registers and comparators used to generate debug excep-
tions (such as breakpoints).
EmbeddedICE is programmed in a serial fashion using the ARM core controller. It
consists of two real-time watchpoint units, together with a control and status regis-
ter. You can program one or both watchpoint units to halt the execution of instruc-
tions by ARM core. Two independent registers, debug control and debug status,
provide overall control of EmbeddedICE operation.
Execution is halted when a match occurs between the values programmed into
EmbeddedICE and the values currently appearing on the address bus, data bus, and
various control signals. Any bit can be masked so that its value does not affect the
comparison.
Either of the two real-time watchpoint units can be configured to be a watchpoint
(monitoring data accesses) or a breakpoint (monitoring instruction fetches). You can
make watchpoints and breakpoints data-dependent.

EmbeddedICE is additional debug hardware within the core, therefore the Embed-
dedICE debug architecture requires almost no target resources (for example, mem-
ory, access to exception vectors, and time).

6.3.1 Breakpoints and watchpoints
Breakpoints
A "breakpoint" stops the core when a selected instruction is executed. It is then pos-
sible to examine the contents of both memory (and variables).

Watchpoints
A "watchpoint" stops the core if a selected memory location is accessed. For a watch-
point (WP), the following properties can be specified:
� Address (including address mask)
� Type of access (R, R/W, W)
� Data (including data mask)

Software / hardware breakpoints
Hardware breakpoints are "real" breakpoints, using one of the 2 available watchpoint
units to breakpoint the instruction at any given address. Hardware breakpoints can
be set in any type of memory (RAM, ROM, Flash) and also work with self-modifying
code. Unfortunately, there is only a limited number of these available (2 in the
EmbeddedICE). When debugging a program located in RAM, another option is to use
software breakpoints. With software breakpoints, the instruction in memory is modi-
fied. This does not work when debugging programs located in ROM or Flash, but has
one huge advantage: The number of software breakpoints is not limited.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

52 CHAPTER 6 Background information
6.3.2 The ICE registers
The two watchpoint units are known as watchpoint 0 and watchpoint 1. Each contains
three pairs of registers:
� address value and address mask
� data value and data mask
� control value and control mask

The following table shows the function and mapping of EmbeddedICE registers.

For more information about EmbeddedICE see the technical reference manual of your
ARM CPU. (www.arm.com)

Register Width Function

0x00 3 Debug control

0x01 5 Debug status

0x04 6 Debug comms control register

0x05 32 Debug comms data register

0x08 32 Watchpoint 0 address value

0x09 32 Watchpoint 0 address mask

0x0A 32 Watchpoint 0 data value

0x0B 32 Watchpoint 0 data mask

0x0C 9 Watchpoint 0 control value

0x0D 8 Watchpoint 0 control mask

0x10 32 Watchpoint 1 address value

0x11 32 Watchpoint 1 address mask

0x12 32 Watchpoint 1 data value

0x13 32 Watchpoint 1 data mask

0x14 9 Watchpoint 1 control value

0x15 8 Watchpoint 1 control mask
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

53
6.4 Flash programming
J-Link comes with a DLL, which allows - amongst other functionalities - reading and
writing RAM, CPU registers, starting and stopping the CPU and setting breakpoints.
The standard DLL does not have API functions for flash programming. However, the
functionality offered can be used to program the flash. In that case a flashloader is
required.

6.4.1 How does flash programming via J-Link work ?
This requires extra code. This extra code typically downloads a program into the RAM
of the target system, which is able to erase and program the flash. This program is
called Ram code and "knows" how to program the flash; it contains an implementa-
tion of the flash programming algorithm for the particular flash. Different flash chips
have different programming algorithms; the programming algorithm also depends on
other things such as endianess of the target system and organization of the flash
memory (e.g. 1*8 bits, 1 * 16 bits, 2*16 bits or 32 bits) The Ram code requires data
to be programmed into the flash memory. There are 2 ways of supplying this data:
Data download to RAM or data download via DCC.

6.4.2 Data download to RAM
The data (or part of it) is downloaded to an other part of the RAM of the target sys-
tem. The Instruction pointer (R15) of the CPU is then set to the start address of the
Ram code, the CPU is started, executing the RAM code. The RAM code, which con-
tains the programming algorithm for the flash chip, copies the data into the flash
chip. The CPU is stopped after this. This process may have to be repeated until the
entire data is programmed into the flash.

6.4.3 Data download via DCC
In this case, the RAM code is started as described above before downloading any
data. The RAM code then communicates with the PC (via DCC, JTAG and J-Link),
transferring data to the target. The RAM code then programs the data into flash and
waits for new data from the host. The WriteMemory functions of J-Link are used to
transfer the RAM code only, but not to transfer the data. The CPU is started and
stopped only once. Using DCC for communication is typically faster than using Write-
Memory for RAM download since the overhead is lower.

6.4.4 Available options for flash programming
There are different solutions available to program internal or external flashes con-
nected to ARM cores using J-Link. The different solutions have different fields of
application, but of course also some overlap.

6.4.4.1 J-Flash - Complete flash programming solution.
J-Flash is a stand-alone Windows application, which can read / write data files and
program the flash in almost any ARM-system. J-Flash requires an extra license from
SEGGER.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

54 CHAPTER 6 Background information
6.4.4.2 JLinkArmFlash.dll - A DLL with flash programming capabilities.
An enhanced version of the JLinkARM.DLL, which has add. API functions. The add.
API functions allow loading and programming a data file. This DLL comes with a sam-
ple executable, as well as the source code of this executable and a project file.
This can be an interesting option if you want to write your own programs for produc-
tion purposes.

This DLL also requires an extra license from SEGGER; please contact us for more
information.

Output of Sample program:

SEGGER JLinkARMFlash for ST STR710FR2T6 V1.00.00
Compiled 11:16:22 on May 4 2005.

This program and the DLL are (c) Copyright 2005 SEGGER, www.segger.com

Connecting to J-Link
Resetting target
Loading data file... 1060 bytes loaded.
Erasing required sectors... O.K. - Completed after 0.703 sec
Programming... O.K. - Completed after 0.031 sec
Verifying... O.K. - Completed after 0.031 sec

6.4.4.3 RDI flash loader: Allows Flash download from any
RDI-compliant tool chain.

RDI, (Remote debug interface) is a standard for "debug transfer agents" such as J-
Link. It allows using J-Link from any RDI compliant debugger. RDI by itself does not
include download to flash. In order to debug in Flash, you need to somehow program
your application program (debuggee) into the flash. You can use J-Flash for this pur-
pose, use the flash loader supplied by the debugger company (if they supply a
matching flash loader) or use the flash loader integrated in the J-Link RDI software.
The RDI software as well as the RDI flash loader require licenses from SEGGER.

6.4.4.4 Flash loader of compiler / debugger vendor such as IAR.
A lot of debuggers (some of them integrated into a workbench / IDE) come with their
own flash loaders. The flash loaders can of course be used if they match your flash
configuration, which is something that needs to be checked with the vendor of the
debugger.

6.4.4.5 Write your own flash loader
Implement your own flash loader using the functionality of the JLinkARM.dll as
described above. This can be a time consuming process and requires in-depth knowl-
edge of the flash programming algorithm used as well as the target system.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

55
6.5 J-Link firmware
The heart of J-Link is a microcontroller. The firmware is the software executed by the
microcontroller inside of the J-Link. The J-Link firmware sometimes needs to be
updated. This firmware update is performed automatically as necessary by the
JLinkARM.dll.

6.5.1 Firmware update
Every time you connect to J-Link, JLinkARM.dll checks if its embedded firmware is
newer than the one used in the J-Link. It will then update the firmware automatically.
This process takes less than 3 seconds and does not require reboot.

It is recommended that you always use the latest version of JLinkARM.dll.

The red box identifies the new firmware.
The green box identifies the old firmware which has been replaced.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

56 CHAPTER 6 Background information
6.5.2 Invalidating the firmware
Downdating J-Link is not done automatically thru an old "JLinkARM.dll". J-Link will
continue using its current, newer firmware when using older versions of the
"JLinkARM.dll".

Downdating J-Link is not recommended, you do it at your own risk!
Note that the firmware embedded in older versions of "JLinkARM.dll" may not run
properly with newer hardware versions.

To downdate J-Link, you need to invalidate the current J-Link firmware, using the
command "exec InvalidateFW".

The red box contains information about the formerly used J-Link ARM firmware ver-
sion.

Use an application (for example JLink.exe) which uses the desired version of
JLinkARM.dll. This automatically replaces the invalidated firmware with its embed-
ded firmware.

The red box identifies the new firmware.
The green box identifies the old firmware which has been replaced.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

57
Chapter 7

FAQs
You can find in this chapter a collection of frequently asked questions (FAQs)
together with answers.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

58 CHAPTER 7 FAQs
7.1 FAQs
Q: Which CPUs are supported?
A: J-Link should work with any ARM7 / ARM9 core. For a list of supported cores see

section �Supported ARM Cores� on page 12.

Q: What is the maximum JTAG speed supported by J-Link?
A: J-Links maximum supported JTAG speed is 8MHz.

Q: What is the maximum download speed?
A: The maximum download speed is currently about 150 kByte/sec when download-

ing into RAM; Communication with a RAM-image via DCC can be a lot faster. How-
ever the actual speed depends on various factors, such as JTAG, clock speed, host
CPU core etc.

Q: Can I access individual ICE registers via J-Link?
A: Yes, you can access all individual ICE registers via J-Link.

Q: I want to write my own application and use J-Link. Is this possible?
A: Yes. We offer a dedicated devloper pack. See section �J-Link ARM Developer Pack�

on page 33 for further information.

Q: Can I use J-Link to communicate with a running target via DCC?
A: Yes. The DLL includes functions to communicate via DCC. However, you can also

program DCC communication yourself by accessing the relevant ICE registers
through J-Link.

Q: Can J-Link read back the status of the JTAG pins?
A: Yes, the status of all pins can be read. This includes the outputs of J-Link as well

as the supply voltage and can be useful to detect hardware problems on the target
system.

Q: J-Link is quite inexpensive. What is the advantage of some more expensive JTAG
probes?

A: Some of the more expensive JTAG probes offered by other manufacturers support
higher download speeds or an ethernet interface. The functionality is similar, there
is no real advantage of using more expensive probes. J-Link is a suitable solution
for the majority of development tasks as well as for production purposes. Some
features that are available for J-Link, such as a DLL, exposing the full functionality
of the emulator, flash download and flash breakpoints are not available for most of
these emulators.

Q: Does J-Link support the embedded trace macro (ETM)?
A: No. ETM requires another connection to the ARM chip and a CPU with built-in ETM.

Most current ARM7 / ARM9 chips do not have ETM built-in.

Q: Why does J-Link - in contrast to most other JTAG emulators for ARM cores - not
require the user to specify a cache clean area?

A: J-Link handles cache cleaning directly thru JTAG commands. Unlike other emula-
tors, it does not have to download code to the target system. This makes setting
up J-Link easier. Therefore, a cache clean area is not required.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

59
Chapter 8

Support
This chapter contains troubleshooting tips together with solutions for common prob-
lems which might occur when using J-Link. There are several steps you can take
before contacting support. Performing these steps can solve many problems and
often eliminates the need for assistance.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

60 CHAPTER 8 Support
8.1 Troubleshooting

8.1.1 General procedure
If you experience problems with a J-Link, you should follow the steps below to solve
these problems:

1. Close all running applications on your host system.
2. Disconnect the J-Link device from USB.
3. Power-off target.
4. Re-connect J-Link with host system (attach USB cable).
5. Power-on target.
6. Try your target application again. If the problem vanished, you are done; other-

wise continue.
7. Close all running applications on your host system again.
8. Disconnect the J-Link device from USB.
9. Power-off target.
10. Re-connect J-Link with host system (attach USB cable).
11. Power-on target.
12. Start JLink.exe.
13. If JLink.exe reports the J-Link serial number and the target processor�s core ID,

the J-Link is working properly and cannot be the cause of your problem.
14. If JLink.exe is unable to read the target processor�s core ID you should analyze

the communication between your target and J-Link with a logic analyzer or oscil-
loscope. Follow the instructions in section 8.2.

15. If your problem persists and you own an original Segger J-Link (not an OEM ver-
sion), see section �Contacting support� on page 62.

8.1.2 Typical problem scenarios
J-Link LED is off
Meaning:
The USB connection does not work.
Remedy:
Check the USB connection. Try to re-initialize J-Link by disconnecting and reconnect-
ing it. Make sure that the connectors are firmly attached. Check the cable connec-
tions on your J-Link and the computer. If this does not solve the problem, please
check if your cable is defective. If the USB cable is ok, try a different PC.

J-Link LED is flashing at a high frequency
Meaning:
J-Link could not be enumerated by the USB controller.
Most likely reasons:
a.) Another program is already using J-Link.
b.) The J-Link USB driver does not work correctly.
Remedy:
a.) Close all running applications and try to reinitialize J-Link by disconnecting and
reconnecting it.
b.) If the LED blinks permanently, check the correct installation of the J-Link USB
driver. Deinstall and reinstall the driver as shown in chapter �Setup� on page 19.

J-Link does not get any connection to the target
Most likely reasons:
a.) The JTAG cable is defective
b.) The target hardware is defective
Remedy:
Please follow the steps described in section 8.1.1.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

61
8.2 Signal analysis
The following screenshots show the data flow of the startup and ID communication
between J-Link and the target device.

8.2.1 Start sequence

This is the signal sequence output by J-Link at start of JLink.exe. It should be used as
reference when tracing potential J-Link related hardware problems.
The sequence consists of the following sections:

� 5 clocks: TDI low, TMS high. Brings TAP controller into RESET state.
� 1 clock: TDI low, TMS low: Brings TAP controller into IDLE state.
� 2 clocks: TDI low, TMS high: Brings TAP controller into IR-SCAN state.
� 2 clocks: TDI low, TMS low: Brings TAP controller into SHIFT-IR state.
� 32 clocks: TMS low, TDI: 0x05253000 (lsb first): J-Link Signature as IR data
� 240 clocks: TMS low, last clock high, TDI high: Bypass command
� 1 clock: TDI low, TMS high: Brings TAP controller into UPDATE-IR state.

J-Link checks the output of the device (output on TDO) for the signature to measure
the IR length. For ARM7 / ARM9 chips, the IR length is 4, which means TDO shifts out
the data shifted in on TDI with 4 clock cycles delay. If you compare the screenshot
with your own measurements, the signals of TCK, TMS, TDI and TDO should be iden-
tical.

Zoom-in
The next screenshot shows the first 6 clock cycles of the screenshot above. For the
first 5 clock cycles TMS is high (Resulting in a TAP reset). TMS changes to low with
the falling edge of TCK. At this time the TDI signal is low. Your signals should be
identical. Signal rise and fall times should be shorter than 100ns.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

62 CHAPTER 8 Support
8.2.2 ID sequence

This screenshot shows the signal sequence when issuing an identify command in
JLink.exe. The sequence consists of the following sections:

� 5 clocks: TMS high. Brings TAP controller into RESET state.
� 1 clock: TMS low: Brings TAP controller into IDLE state.
� 1 clock: TMS high: Brings TAP controller into DR-SCAN state.
� 2 clock: TMS low: Brings TAP controller into DR-SHIFT state.
� 31 clocks: TMS low:Capture DR: Read the core ID.
� 2 clocks: TMS high: Brings TAP controller into UPDATE-DR state.

Please note that the actual core ID reported via TDO depends on the particular core
used.

8.2.3 Troubleshooting
If your measurements of TCK, TMS and TDI (the signals output by J-Link) differ from
the results shown, disconnect your target hardware and test the output of TCK, TMS
and TDI without a connection to a target, just supplying voltage to J-Link�s JTAG con-
nector: VCC at pin 1; GND at pin 4.

8.3 Contacting support
Before contacting support, make sure you tried to solve your problem by following
the steps outlined in section �General procedure� on page 60. You may also try your
J-Link with another PC and if possible with another target system to see if it works
there. If the device functions correctly, the USB setup on the original machine or
your target hardware is the source of the problem, not J-Link.

If you need to contact support, please send the following information to
support@segger.com:

� A detailed description of the problem.
� J-Link serial number.
� Output of JLink.exe if available.
� Your findings of the signal analysis.
� Information about your target hardware (processor, board etc.).

J-Link is sold directly by SEGGER or as OEM-product by other vendors. We can sup-
port only official SEGGER products.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

63
Chapter 9

Glossary
This chapter explains important terms used throughout this manual.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

64 CHAPTER 9 Glossary
Adaptive clocking
A technique in which a clock signal is sent out by J-Link and it waits for the returned
clock before generating the next clock pulse. The technique allows the J-Link inter-
face unit to adapt to differing signal drive capabilities and differing cable lengths.

Application Program Interface
A specification of a set of procedures, functions, data structures, and constants that
are used to interface two or more software components together.

Big-endian
Memory organization where the least significant byte of a word is at a higher address
than the most significant byte. See Little-endian.

Cache cleaning
The process of writing dirty data in a cache to main memory.

Coprocessor
An additional processor that is used for certain operations, for example, for floating-
point math calculations, signal processing, or memory management.

Dirty data
When referring to a processor data cache, data that has been written to the cache
but has not been written to main memory. Only write-back caches can have dirty
data, because a write-through cache writes data to the cache and to main memory
simultaneously. The process of writing dirty data to main memory is called cache
cleaning.

Dynamic Linked Library (DLL)
A collection of programs, any of which can be called when needed by an executing
program. A small program that helps a larger program communicate with a device
such as a printer or keyboard is often packaged as a DLL.

EmbeddedICE
The additional hardware provided by debuggable ARM processors to aid debugging.

Halfword
A 16-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.

Host
A computer which provides data and other services to another computer. Especially, a
computer providing debugging services to a target being debugged.

ICache
Instruction cache.

ICE Extension Unit
A hardware extension to the EmbeddedICE logic that provides more breakpoint units.

ID
Identifier.

IEEE 1149.1
The IEEE Standard which defines TAP. Commonly (but incorrectly) referred to as
JTAG.

Image
An executable file that has been loaded onto a processor for execution.

In-Circuit Emulator (ICE)
A device enabling access to and modification of the signals of a circuit while that cir-
cuit is operating.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

65
Instruction Register
When referring to a TAP controller, a register that controls the operation of the TAP.

IR
See Instruction Register.

Joint Test Action Group (JTAG)
The name of the standards group which created the IEEE 1149.1 specification.

Little-endian
Memory organization where the least significant byte of a word is at a lower address
than the most significant byte. See also Big-endian.

Memory coherency
A memory is coherent if the value read by a data read or instruction fetch is the
value that was most recently written to that location. Memory coherency is made dif-
ficult when there are multiple possible physical locations that are involved, such as a
system that has main memory, a write buffer and a cache.

Memory management unit (MMU)
Hardware that controls caches and access permissions to blocks of memory, and
translates virtual to physical addresses.

Memory Protection Unit (MPU)
Hardware that controls access permissions to blocks of memory. Unlike an MMU, an
MPU does not translate virtual addresses to physical addresses.

Multi-ICE
Multi-processor EmbeddedICE interface. ARM registered trademark.

nSRST
Abbreviation of System Reset. The electronic signal which causes the target system
other than the TAP controller to be reset. This signal is known as nSYSRST in some
other manuals. See also nTRST.

nTRST
Abbreviation of TAP Reset. The electronic signal that causes the target system TAP
controller to be reset. This signal is known as nICERST in some other manuals. See
also nSRST.

Open collector
A signal that may be actively driven LOW by one or more drivers, and is otherwise
passively pulled HIGH. Also known as a "wired AND" signal.

Processor Core
The part of a microprocessor that reads instructions from memory and executes
them, including the instruction fetch unit, arithmetic and logic unit and the register
bank. It excludes optional coprocessors, caches, and the memory management unit.

Program Status Register (PSR)
Contains some information about the current program and some information about
the current processor. Often, therefore, also referred to as Processor Status Register.
Is also referred to as Current PSR (CPSR), to emphasize the distinction between it
and the Saved PSR (SPSR). The SPSR holds the value the PSR had when the current
function was called, and which will be restored when control is returned.

Remapping
Changing the address of physical memory or devices after the application has started
executing. This is typically done to allow RAM to replace ROM once the initialization
has been done.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

66 CHAPTER 9 Glossary
Remote Debug Interface (RDI)
RDI is an open ARM standard procedural interface between a debugger and the
debug agent. The widest possible adoption of this standard is encouraged.

RTCK
Returned TCK. The signal which enables Adaptive Clocking.

RTOS
Real Time Operating System.

Scan Chain
A group of one or more registers from one or more TAP controllers connected
between TDI and TDO, through which test data is shifted.

Semihosting
A mechanism whereby the target communicates I/O requests made in the application
code to the host system, rather than attempting to support the I/O itself.

SWI
Software Interrupt. An instruction that causes the processor to call a programer-
specified subroutine. Used by ARM to handle semihosting.

TAP Controller
Logic on a device which allows access to some or all of that device for test purposes.
The circuit functionality is defined in IEEE1149.1.

Target
The actual processor (real silicon or simulated) on which the application program
isrunning.

TCK
The electronic clock signal which times data on the TAP data lines TMS, TDI, and
TDO.

TDI
The electronic signal input to a TAP controller from the data source (upstream). Usu-
ally this is seen connecting the J-Link Interface Unit to the first TAP controller.

TDO
The electronic signal output from a TAP controller to the data sink (downstream).
Usually this is seen connecting the last TAP controller to the J-Link Interface Unit.

Test Access Port (TAP)
The port used to access a device's TAP Controller. Comprises TCK, TMS, TDI, TDO and
nTRST (optional).

Transistor-transistor logic (TTL)
A type of logic design in which two bipolar transistors drive the logic output to one or
zero. LSI and VLSI logic often used TTL with HIGH logic level approaching +5V and
LOW approaching 0V.

Watchpoint
A location within the image that will be monitored and that will cause execution to
stop when it changes.

Word
A 32-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

67
Index
Numerics
5 volt adapter16

A
Adaptive clocking64
Application Program Interface64
ARM

Processor modes49
Registers ..49
Thumb instruction set50

B
Big-endian ..64

C
Cache cleaning64
Coprocessor ..64

D
Dirty data ...64
Dynamic Linked Library (DLL)64

E
EmbeddedICE 51, 64

F
Flash breakpoints34

H
Halfword ...64
Host ...64

I
ICache ...64
ICE Extension Unit64
ID ...64
IEEE 1149.1 ..64
Image ..64
In-Circuit Emulator64
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

68 Index
Instruction Register 65
IR ... 65

J
J-Flash ... 32
J-Link

Adapters .. 16
Developer Pack DLL 33
FAQs ... 58
Features ..6
Specifications 7
Supported chips12, 14

J-Link ARM Flash DLL 34
J-Link Server 30
Joint Test Action Group (JTAG) 65
JTAG .. 46

PINs .. 10
TAP controller 46

JTAG 14 pin adapter 16

L
Little-endian 65

M
Memory coherency 65
Memory management unit (MMU) 65
Memory Protection Unit (MPU) 65
Multi-ICE .. 65

N
nSRST ... 65
nTRST ..10, 65

O
Open collector 65

P
Processor Core 65
Program Status Register (PSR) 65

R
RDI Support 34
Remapping ... 65
Remote Debug Interface (RDI) 66
RTCK ... 66
RTOS ... 66

S
Scan Chain ... 66
Semihosting 66
Support 57, 59, 63
SWI ... 66

T
TAP Controller 66
Target .. 66
TCK ..10, 66
TDI ..10, 66
TDO ...10, 66
Test Access Port (TAP) 66
Transistor-transistor logic (TTL) 66

W
Watchpoint 51, 66
Word ...66
J-Link ARM User’s Guide © 2004 - 2005 SEGGER Microcontroller Systeme GmbH

	Table of Contents
	Introduction
	1.1 About this document
	1.2 Overview
	1.2.1 Features of J-Link ARM
	1.2.2 J-Link ARM download speed
	1.2.3 Specifications

	1.3 Requirements

	Hardware
	2.1 JTAG Connector
	2.1.1 Pinout

	2.2 Supported ARM Cores
	2.3 Hardware versions
	2.3.1 How to determine the hardware version
	2.3.2 Differences between different versions

	2.4 RESET, nTRST
	2.5 Multiple devices in the scan chain
	2.5.1 Configuration

	2.6 Adapters
	2.6.1 JTAG 14 pin adapter
	2.6.2 5 Volt adapter

	Setup
	3.1 Installing the USB driver
	3.1.1 Verifying correct driver installation

	3.2 Connecting the target system
	3.2.1 Power-on Sequence
	3.2.2 Verifying target device connection
	3.2.3 Problems

	3.3 Scan chain configuration
	3.3.1 Sample configuration dialogs
	3.3.2 Determining values for scan chain configuration

	3.4 JTAG Speed
	3.4.1 Fixed JTAG speed
	3.4.2 Automatic JTAG speed
	3.4.3 Adaptive clocking

	J-Link related software
	4.1 Free software
	4.1.1 JLink.exe (Command line tool)
	4.1.2 J-Link TCP/IP Server (Remote J-Link use)
	4.1.3 J-Mem Memory Viewer

	4.2 Additional software
	4.2.1 J-Flash ARM (Program flash memory via JTAG)
	4.2.2 J-Link ARM Developer Pack
	4.2.3 J-Link ARM Flash DLL
	4.2.4 RDI Support
	4.2.5 JTAGLoad (Command line tool)

	Working with J-Link
	5.1 Reset strategies
	5.1.1 Reset strategies in detail

	5.2 Cache handling
	5.2.1 Cache coherency
	5.2.2 Cache clean area
	5.2.3 Cache handling of ARM 7 cores
	5.2.4 Cache handling of ARM 9 cores

	5.3 Connecting multiple J-Links to your PC
	5.3.1 How does it work?
	5.3.2 Configuring multiple J-Links
	5.3.3 Connecting to a J-Link with non default USB-Address

	5.4 Multi core debugging
	5.4.1 How multi core debugging works
	5.4.2 Using multi core debugging in detail
	5.4.3 Things you should be aware of

	Background information
	6.1 JTAG
	6.1.1 Test access port (TAP)
	6.1.2 Data registers
	6.1.3 Instruction register
	6.1.4 The TAP controller

	6.2 The ARM core
	6.2.1 Processor modes
	6.2.2 Registers of the CPU core
	6.2.3 ARM /Thumb instruction set

	6.3 EmbeddedICE
	6.3.1 Breakpoints and watchpoints
	6.3.2 The ICE registers

	6.4 Flash programming
	6.4.1 How does flash programming via J-Link work ?
	6.4.2 Data download to RAM
	6.4.3 Data download via DCC
	6.4.4 Available options for flash programming

	6.5 J-Link firmware
	6.5.1 Firmware update
	6.5.2 Invalidating the firmware

	FAQs
	7.1 FAQs

	Support
	8.1 Troubleshooting
	8.1.1 General procedure
	8.1.2 Typical problem scenarios

	8.2 Signal analysis
	8.2.1 Start sequence
	8.2.2 ID sequence
	8.2.3 Troubleshooting

	8.3 Contacting support

	Glossary
	Index

