

Current Transducer LTS 15-NP

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Preliminary

Ele	ectrical data			
I _{PN}	Primary nominal r.m.s. current		15	At
I _P	Primary current, measuring range		0 ± 45	At
V _{OUT}	Analog output voltage	$I_{p} = 0$	2.5 1)	V
00.		± I _{PN}	2.5 ± 0.625	V
N_s	Number of secondary turns (± 0.1 %)		2000	
R,	Load resistance		≥ 2	kΩ
\mathbf{R}_{IM}^{T}	Internal measuring resistance (± 0.5 %)		83.33	Ω
TCR	Thermal drift of R _{IM}		< 50	ppm/K
V _C	Supply voltage (± 5 %)		5	V
I _C	Current consumption @ $V_c = 5 \text{ V}$	Тур	20 + I _s	mΑ
V _d	R.m.s. voltage for AC isolation test, 50/60 Hz,	1 mn	2.5	kV
V _b	R.m.s. rated voltage		525 ²⁾	V

Ac	ccuracy - Dynamic perform	ance data			
X	Accuracy @ I _{PN} , T _A = 25°C		± 0.	2	%
	Accuracy with $\mathbf{R}_{IM} @ \mathbf{I}_{PN}$, $\mathbf{T}_{A} = 25^{\circ}\mathrm{C}$;	± 0.	7	%
$\mathbf{e}_{\scriptscriptstyle\! \scriptscriptstyle L}$	Linearity		< 0.1		%
			Тур	Max	
TCV	Thermal drift of $\mathbf{V}_{OUT} @ \mathbf{I}_{P} = 0$	- 10°C + 85°C	75	150	ppm/K
TC e	Thermal drift of the gain	- 10°C + 85°C		50 ³⁾	ppm/K
V _{OM}	Residual voltage @ $I_p = 0$, after an	overload of 3 x I _{PN}		± 0.5	mV
		5 x I _{PN}		± 2.0	mV
		10 x I _{PN}		± 2.0	mV
t _{ra}	Reaction time @ 10 % of I _{P max}		< 50)	ns
t,	Response time @ 90 % of I _{P max}		< 20	00	ns
di/dt	di/dt accurately followed		> 10	00	A/µs
f	Frequency bandwidth (0 0.5 dB)	DC	100	kHz
	(- 0.5 1 dB)	DC	200	kHz

G	General data					
T _A	Ambient operating temperature	- 10 + 85	°C			
T _s	Ambient storage temperature	- 25 + 100	°C			
m	Mass	10	g			
	Standards	EN 50178				

$I_{PN} = 5 - 7.5 - 15 A$

Features

- Closed loop (compensated) multirange current transducer using the Hall effect
- Unipolar voltage supply
- Compact design for PCB mounting
- Insulated plastic case recognized according to UL 94-V0
- Incorporated measuring resistance
- Extended measuring range.

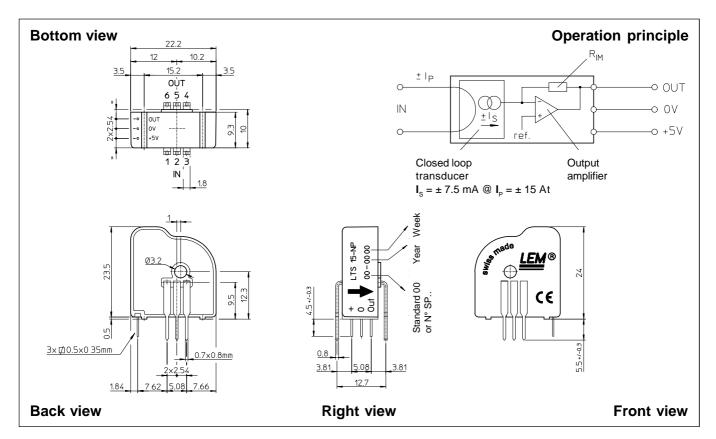
Advantages

- Excellent accuracy
- Very good linearity
- Very low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- · Power supplies for welding applications.

Notes : $^{1)}$ Absolute value @ \mathbf{T}_{A} = 25°C, 2.4750 < \mathbf{V}_{OUT} < 2.5250 $^{2)}$ Pollution class 2, category III


- 3) Only due to TCR ___

Copyright protected.

981222/1

Dimensions LTS 15-NP (in mm. 1 mm = 0.0394 inch)

Number of primary turns	Primary nominal r.m.s. current I _{PN} [A]	Nominal output voltage \mathbf{V}_{OUT} [V]	Primary resistance \mathbf{R}_{P} [$\mathrm{m}\Omega$]	Primary insertion inductance L _P [µH]	Recommended connections
1	± 15	2.5 ± 0.625	0.18	0.013	6 5 4 OUT O O O O O O O O O O O O O O O O O O O
2	± 7.5	2.5 ± 0.625	0.81	0.05	6 5 4 OUT O 0 1 1 2 3
3	± 5	2.5 ± 0.625	1.62	0.12	6 5 4 OUT 0 0 IN 1 2 3

Mechanical characteristics

General tolerance

 Fastening & connection of primary Recommended PCB hole

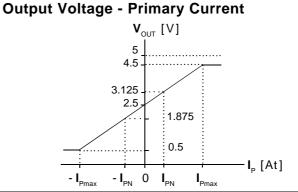
• Fastening & connection of secondary Recommended PCB hole

• Additional primary through-hole

± 0.2 mm

6 pins 0.7 x 0.8 mm

1.3 mm


3 pins 0.5 x 0.35 mm

0.8 mm

Ø 3.2 mm

Remark

• \mathbf{V}_{OUT} is positive when \mathbf{I}_{P} flows from terminals 1, 2, 3 to terminals 6, 5, 4.

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.