
	 RoboClaw Series
	 Brushed DC Motor Controllers
	 RoboClaw 2x5A
	 RoboClaw 2x15A
	 RoboClaw 2x30A
	 RoboClaw 2x60A	
	

	 User Manual
	 Firmware 3.1.3 and Newer
	 Hardware V4 and Newer
	 User Manual Revision 4

(c) 2013 Orion Robotics. All Rights Reserved

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 2

RoboClaw Revision History...5
Precautions..6
Motor Selection..6
Stall Current..6
Running Current...6
Wire Lengths..6
Run Away..7
Power Sources...7
Optical Encoders...7

RoboClaw 2x5A Hardware Overview..8
RoboClaw 2x5A Dimensions...9
RoboClaw 2x15A and 2x30A Hardware Overview.......................................10
RoboClaw 2x15A and 2x30A Dimensions..11
RoboClaw 2x60A and HV 2x60A Dimensions...13

Header Overview..14
Logic Battery (LB IN)..14
BEC Source (LB-MB)...14
Encoder Power (+ -) ..14
Encoder Inputs (EN1 / EN2)...14
Control Inputs (S1 / S2 / S3)...14
Main Battery Screw Terminals...15
Disconnect...15
Motor Screw Terminals..15

Status and Error LEDs...16
RoboClaw Modes...17
Configuring RoboClaw Modes..18
Modes...18
Mode Options...19
Simple and Packet Serial Mode Options..19
Battery Cut Off Settings...19
Battery Options..19
USB RoboClaw Power..21
USB RoboClaw Connection...21
USB Comport and baudrate..21

RC Mode..23
Using RC Mode with feedback for velocity/position control..........................23
RC Mode With Mixing..23
RC Mode Options..23
Servo Pulse Ranges...24
RC Wiring Example...25

Analog Mode..28
Using Analog Mode with feedback for velocity/position control....................28
Analog Mode With Mixing...28
Analog Mode Options..28

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 3

Analog Wiring Example..29
Standard Serial Mode..31
Serial Mode Baud Rates...31
Standard Serial Command Syntax...31
Standard Serial Wiring Example..32

Standard Serial Mode With Slave Select...33
Standard Serial - Arduino Example..34
Packet Serial Mode..36
Address...36
Packet Modes...36
Packet Serial Baud Rate...36
Serial Mode Options..36
Checksum Calculation...36

Commands 0 - 7 Standard Commands...37
0 - Drive Forward M1..37
1 - Drive Backwards M1...37
2 - Set Minimum Main Voltage ...37
3 - Set Maximum Main Voltage...37
4 - Drive Forward M2..37
5 - Drive Backwards M2...38
6 - Drive M1 (7 Bit) ..38
7 - Drive M2 (7 Bit) ..38

Commands 8 - 13 Mix Mode Commands..39
8 - Drive Forward...39
9 - Drive Backwards..39
10 - Turn right..39
11 - Turn left..39
12 - Drive Forward or Backward (7 Bit)..39
13 - Turn Left or Right (7 Bit)...39

Packet Serial Wiring..40
Packet Serial - Arduino Example...41
Version, Status, and Settings Commands...43
21 - Read Firmware Version...43
24 - Read Main Battery Voltage Level..43
25 - Read Logic Battery Voltage Level..44
26 - Set Minimum Logic Voltage Level...44
27 - Set Maximum Logic Voltage Level...44
49 - Read Motor Currents..44
55 - Read Motor 1 P, I, D and QPPS Settings..44
56 - Read Motor 2 P, I, D and QPPS Settings..44
57 - Set Main Battery Voltages...45
58 - Set Logic Battery Voltages...45
59 - Read Main Battery Voltage Settings..45
60 - Read Logic Battery Voltage Settings..45
63 - Read Motor 1 Position P, I, D Constants...45

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 4

64 - Read Motor 2 Position P, I, D Constants...45
82 - Read Temperature..45
90 - Read Error Status..46
91 - Read Encoder Mode..46
92 - Set Motor 1 Encoder Mode..46
93 - Set Motor 2 Encoder Mode..46
94 - Write Settings to EEPROM...46

Encoder Wiring...48
Encoder Commands..49
16 - Read Quadrature Encoder Register M1..49
17 - Read Quadrature Encoder Register M2..50
18 - Read Speed M1..50
19 - Read Speed M2..51
20 - Reset Quadrature Encoder Counters...51

Advanced Motor Control...52
28 - Set PID Constants M1...53
29 - Set PID Constants M2...53
30 - Read Current Speed M1..54
31 - Read Current Speed M2..54
32 - Drive M1 With Signed Duty Cycle...54
33 - Drive M2 With Signed Duty Cycle...54
34 - Drive M1 / M2 With Signed Duty Cycle..55
35 - Drive M1 With Signed Speed..55
36 - Drive M2 With Signed Speed..55
37 - Drive M1 / M2 With Signed Speed..56
38 - Drive M1 With Signed Speed And Acceleration...................................56
39 - Drive M2 With Signed Speed And Acceleration...................................56
40 - Drive M1 / M2 With Signed Speed And Acceleration............................57
41 - Buffered M1 Drive With Signed Speed And Distance............................57
42 - Buffered M2 Drive With Signed Speed And Distance............................57
44 - Buffered M1 Drive With Signed Speed, Accel And Distance...................58
45 - Buffered M2 Drive With Signed Speed, Accel And Distance...................58
46 - Drive M1 / M2 With Signed Speed, Accel And Distance........................59
47 - Read Buffer Length..59
50 - Drive M1 / M2 With Speed And Individual Acceleration........................59
51 - Drive M1 / M2 Speed, Individual Accel And Distance...........................60
52 - Drive M1 With Signed Duty And Acceleration.....................................60
53 - Drive M2 With Signed Duty And Acceleration.....................................60
54 - Drive M1 / M2 With Signed Duty And Acceleration..............................60
61 - Set Motor 1 Position PID Constants...61
62 - Set Motor 2 Position PID Constants...61
65 - Drive M1 with signed Speed, Accel, Deccel and Position.......................61
66 - Drive M2 with signed Speed, Accel, Deccel and Position.......................61
67 - Drive M1 & M2 with signed Speed, Accel, Deccel and Position...............61

Reading Quadrature Encoder - Arduino Example.......................................62
Speed Controlled by Quadrature Encoders - Arduino Example.....................63
RoboClaw Electrical Specifications...65

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 5

RoboClaw Revision History
RoboClaw is an actively maintained product. New firmware features will be available from time
to time. The table below outlines key revisions that could affect the version of RoboClaw you
currently own.

Revision Date Description
3.1.8 July 20th, 2013 1. Added 10ms time out per byte when receiving

commands.

2. Added optional ack byte on write commands.

3. Changed from DMA mode to standard mode for
transmiting data via USB.

3.1.5 May 10th, 2013 1. Added high resolution current filtering.

3.1.3 Jan 20th, 2013 1. Added new read and write configuration commands.

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 6

Precautions
There are several important precautions that should be followed when dealing with RoboClaw or
damage will result. The following list should be observed when dealing with any motion control
systems.

1. Disconnecting the negative power terminal is not the proper way to shut down a motor
controller. If I/O are connected it can easily result in a ground loop. This can cause damaged
to RoboClaw and or any attached devices. To shut down a motor controller the positive power
connections should be removed.

2. A DC brushed motor will work like a generator when spun. As an example a robot being
pushed or turned off with forward momentum can create enough voltage to power RoboClaws
logic in some cases which will create an unsafe state.

3. RoboClaw has minimum power requirements of at least 6V. Under heavy loads, if the logic
battery and main battery are combined, power drops can and will happen. This can cause erratic
behavior from RoboClaw.

Motor Selection
When pairing RoboClaw to a motor several key factors must be considered. All brushed DC
motors will have two amperage ratings which are maximum stall current and running current.
The most important rating is the stall current. This rating can determine what RoboClaw model
should be used.

Stall Current
A motor at rest is in a stall state. Which means during start up the motors stall current will be
reached. The loaded of the motor will determine how long maximum stall current is required.
A motor that is required to start and stop or change directions rapidly but with light load will
still require maximum stall current often. Pairing RoboClaw by using its peak current to handle
these situations is not advised. This will only result in erratic behavior and possible damage to
RoboClaw. In some applications RoboClaw can be paired using its peak current. This should only
be considered in situations where the motor is under very light load and not expect to start, stop
or change directions rapidly.

Running Current
RoboClaw features dual channel quadrature decoding. When paring encoders to motors you must
make ensure the polarity of the motors are correct. If the encoder is backwards to the direction
of the motor a run away state will occur. Referring to the encoder section of this user manual for
proper setup.

Wire Lengths
RoboClaw switches its MOSFET stage at high frequencies. Wire lengths should be keep as short
as possible. Longer wires will create increased inductance which will produce undesirable effects
such as electrical noise. If RoboClaw must be mounted an extended distance from the main
power source use the robots chassis as the ground.

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 7

Run Away
During development of your project caution should be taken to avoid run away conditions. The
wheels of a robot should not be in contact with any surface until all development is complete.
If the motor is embedded, ensure you have a safe and easy method to remove power from
RoboClaw as a fail safe.

Power Sources
A battery or linear power supply is recommended as the main power source for RoboClaw.
Switching power supplies are suitable in some cases. The regenerative nature of RoboClaw will
cause switching power supplies to behave erratically. The regeneration creates power spikes.
These power spikes are interpreted by the switching power supplies internal sensors as an
over voltage. The switching power supply will momentarily reduce voltage and or limit current,
effectively causing brown outs.

Optical Encoders
RoboClaw features dual channel quadrature decoding. When paring encoders to motors you must
make ensure the polarity of the motors are correct. If the encoder is backwards to the direction
of the motor a run away state will occur. Referring to the encoder section of this user manual for
proper setup.

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 8

RoboClaw 2x5A Hardware Overview

A: Power Stabilizer
B: Main Battery Input
C: Motor Channel 1
D: Motor Channel 2
E: Setup Buttons
F: Control Inputs
G: Encoder Inputs
H: Logic Voltage Source Selection Header
I: Status and Error LED Indicators

C21

STAT1
STAT2
ERR

R
ob

oC
la

w
 2

x5
A

M1AM1B+-M2BM2A

S1 S2 S3EN
2

EN
1

++
--

LB
-M

B
LB

 I
N

+
-

C
11

V3

O
rionR

obotics.com
C

28 C
22

C9
U

9 U
8C
7

C19

C
20

U4

C5

CN5

C23

C32

LIPO
SET

M
O

D
E

H

I

FG

A

B CD

E

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 9

RoboClaw 2x5A Dimensions

Board Edge:	 1.7”W X 1.9”L
Hole Pattern: 0.125D, 1.44”W x 1.68”H

1.7”
1.

9”

1.44”

1.
68

”

C21

STAT1
STAT2
ERR

R
ob

oC
la

w
 2

x5
A

M1AM1B+-M2BM2A

S1 S2 S3EN
2

EN
1

++
--

LB
-M

B
LB

 I
N

+
-

C
11

V3

O
rionR

obotics.com

C
28 C
22

C9
U

9 U
8C
7

C19

C
20

U4

C5

CN5

C23

C32

LIPO
SET

M
O

D
E

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 10

H I J

KF

G

S1 S2 S3EN
2

EN
1

++
--

LB
-M

B
LB

 I
N

+
-

C
N

5
R10

D4 R7

ER
R

ST
A

T2

ST
A

T1

LIPOSETMODE

M
1A

M
1B

+ - M
2B

M
2A

RoboClaw

D
3 OrionRobotics.com

V3

AB

CD E

RoboClaw 2x15A and 2x30A Hardware Overview

A: Heat Sink
B: Power Stabilizers
C: Main Battery Input
D: Motor Channel 1
E: Motor Channel 2
F: BEC 3A Circuit
G: Setup Buttons
H: Logic Voltage Source Selection Header
I: Encoder Inputs
J: Controller Inputs
K: USB Connector - MiniB (Optional)

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 11

RoboClaw 2x15A and 2x30A Dimensions

Board Edge:	 2”W X 2.9”L
Hole Pattern: 0.125D, 1.8”W x 2.6”H

2”

2.
9”

1.8”

2.
6”

S1 S2 S3EN
2

EN
1

++
--

LB
-M

B
LB

 I
N

+
-

C
N

5
R10

D4 R7

ER
R

ST
A

T2

ST
A

T1

LIPOSETMODE

M
1A

M
1B

+ - M
2B

M
2A

RoboClaw

D
3 OrionRobotics.com

V3

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 12

RoboClaw 2x60A and HV 2x60A Hardware Overview

A: Heat Sink
B: Power Stabilizers
C: Main Battery Input
D: Motor Channel 1
E: Motor Channel 2
F: BEC 3A Circuit
G: Setup Buttons
H: Encoder Inputs
I: Controller Inputs
J: USB Connector - MiniB (Optional)

ER
R

ST
AT

2

ST
AT

1

LIPOSETMODE

R
ob

oC
la

w
 2

x6
0A

O
rio

nR
ob

ot
ic

s.
co

m

M1AM1B+ -M1B M1A

D3

V4

C4

C3

--

S1 S2 S�E�
2

E�
1

++L�
-M

�
L�

 I
�

+
-

+
-

H IJ

F

G

AB

C DE

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 13

RoboClaw 2x60A and HV 2x60A Dimensions

Board Edge:	 3.4”W X 3.9”L
Hole Pattern: 0.125D, 3.1”W x 3.67”H

ER
R

ST
AT

2

ST
AT

1

LIPOSETMODE

R
ob

oC
la

w
 2

x6
0A

O
rio

nR
ob

ot
ic

s.
co

m

M1AM1B+ -M1B M1A

D3

V4

C4

C3

--

S1 S2 S�E�
2

E�
1

++L�
-M

�
L�

 I
�

+
-

+
-

3.4”
3.

9”

3.1”

3.
67

”

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 14

Header Overview
They same header layout is shared for each of the RoboClaws covered in this user manual. The
main control I/O are arranged for easy connectivity to control devices such as RC controllers.
The headers are also arranged to provide easy access to ground and power for supplying power
to external controllers.

Logic Battery (LB IN)
The logic side of RoboClaw can be powered from a secondary battery wired to LB IN. The
positive (+) terminal is located at the board edge and ground (-) is the inside pin closes to the
heatsink. Remove the LB-MB jumper if a secondary battery for logic will be used.

BEC Source (LB-MB)
RoboClaw logic requires 5VDC which is provided from the on board BEC circuit. The BEC source
input is set with the LB-MB jumper. Install a jumper on the 2 pins labeled LB-MB to use the main
battery as the BEC power source. Remove this jumper if using a separate logic battery.

Encoder Power (+ -)
The pins labeled + and - are the source power pins for encoders. The positive (+) is located at
the board edge and supplies +5VDC. The ground (-) pin is near the heatsink.

Encoder Inputs (EN1 / EN2)
EN1 and EN2 are the inputs from the encoders. Channel A of both EN1 and EN2 are located at
the board edge. Channel B pins are located near the heatsink. When connecting the encoder
make sure the leading channel for the direction of rotation is connected to A. If one encoder is
backwards to the other you will have one internal counter counting up and the other counting
down. Which can affect how RoboClaw operates. Refer to the data sheet of the encoder you are
using for channel direction.

Control Inputs (S1 / S2 / S3)
S1, S2 and S3 are setup for standard servo style headers I/O, +5V and GND. S1 and S2 are the
control inputs for serial, analog and RC modes. S3 can be used as a flip switch input when in
RC or Analog modes. In serial mode S3 becomes an emergency stop. S3 is active when pulled
low. It is internally pull up so it will not accidentally trip when left floating. The pins closest to
the board edge are the I/0s, center pin is the +5V and the inside pins are ground. Some RC
receivers have their own supply and will conflict with the RoboClaw’s logic supply. It may be
necessary to remove the +5V pin from the RC receivers cable in those cases.

-
-

S1
S2
S3

EN2
EN1
+
+

LB-MB
LB IN

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 15

Main Battery Screw Terminals
The main power input can be from 6VDC to 34VDC on a standard RoboClaw and 13VDC to
48VDC for the HV (High Voltage) RoboClaw. The connections are marked + and - on the main
screw terminal. + is the positive terminal and - is the negative terminal. The main battery wires
should be short as possible.

Disconnect
The main battery should have a disconnect in case of a run away situation and power needs to
be cut. The switch must be rated to handle the maximum current and voltage from the battery.
This will vary depending on the type of motors and or power source you are using. A typically
solution would be an inexpensive contactor which can be source from sites like Ebay.

Motor Screw Terminals
The motor screw terminals are marked with M1A / M1B for channel 1 and M2A / M2B for channel
2. There is no specific polarities for the motors. For both motors to turn in the same direction
the wiring of one motor should be reversed from the other. The motor wires should be short
as possible. Long wires can increase the inductance and therefore increase potential harmful
voltage spikes.

Motor 1

Motor 2

M1A

M1B

M2B

M2A

Negative -

Positive +

+-

Battery

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 16

Status and Error LEDs
The RoboClaw has three LEDs. Two status LEDs marked STAT1 and STAT2. An error LED marked
ERR. When RoboClaw is first powered up all 3 LEDs should blink briefly to indicate all 3 LEDs
are functional. LEDs will behave differently depending on the mode RoboClaw is set to. During
normal operation status 1 LED will remain lite continuously or blink when data is received in RC
Mode or Serial Modes. Status 2 LED will light when the drive stage is active.

Error Description
Over Current Error LED on solid. Status 1 or 2 indicates which motor.
Over Heat Error LED blinking once with a long pause. Status 1 & 2 off
Driver Error Error LED blinking once with a long pause. Status 1 or 2 on
Main Batt Low Error LED blinking twice with a long pause.
Main Batt High Error LED on/flicker until condition is cleared.
Logic Batt Low Error LED blinking three times with a long pause.
Logic Batt High Error LED blinking four times with a long pause.

ER
R

ST
A

T2

ST
A

T1

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 17

RoboClaw Modes
There are 4 main modes with variations totaling 14 or 15 modes in all. Each mode enables
RoboClaw to be controlled in a very specific way. The following list explains each mode and the
ideal application.

1. RC Mode 1 & 2 - With RC mode RoboClaw can be controlled from any hobby RC radio
system. RC input mode also allows low powered microcontroller such as a Basic Stamp or Nano
to control RoboClaw. RoboClaw expects servo pulse inputs to control the direction and speed.
Very similar to how a regular servo is controlled. RC mode can not use encoders.

2. Analog Mode 3 & 4 - Analog mode uses an analog signal from 0V to 5V to control the
speed and direction of each motor. RoboClaw can be controlled using a potentiometer or filtered
PWM from a microcontroller. Analog mode is ideal for interfacing RoboClaw joystick positioning
systems or other non microcontroller interfacing hardware. Analog mode can not use encoders.

3. Simple Serial Mode 5 & 6 - In simple serial mode RoboClaw expects TTL level RS-232
serial data to control direction and speed of each motor. Simple serial is typically used to control
RoboClaw from a microcontroller or PC. If using a PC a MAX232 type circuit must be used since
RoboClaw only works with TTL level input. Simple serial includes a slave select mode which
allows multiple RoboClaws to be controlled from a signal RS-232 port (PC or microcontroller).
Simple serial is a one way format, RoboClaw only receives data.

4. Packet Serial Mode 7 through 14 - In packet serial mode RoboClaw expects TTL level
RS-232 serial data to control direction and speed of each motor. Packet serial is typically used
to control RoboClaw from a microcontroller or PC. If using a PC a MAX232 type circuit must be
used since RoboClaw only works with TTL level input. In packet serial mode each RoboClaw is
assigned an address using the dip switches. There are 8 addresses available. This means up
to 8 RoboClaws can be on the same serial port. When using the quadrature decoding feature
of RoboClaw packet serial is required since it is a two way communications format. This allows
RoboClaw to transmit information about the encoders position and speed.

5. USB Mode 15 (USB RoboClaw only) - In USB mode the RoboClaw’s USB port acts as a CDC
Virtual Comport in Packet Serial mode with packet address 128. Packet serial mode functionality
is available in USB mode as well as baud rates up to 1mbit. There are two ways to activate the
USB mode. Power up a USB RoboClaw while it is attached to an active USB cable, or set it to
mode 15. If a PC is used to drive RoboClaw mode 15 should be set.

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 18

Configuring RoboClaw Modes
The 3 buttons on RoboClaw are used to set the different configuration options. The MODE button
sets the interface method such as Serial or RC modes. The SET button is used to configure the
options for the mode. The LIPO button doubles as a save button and configuring the low battery
voltage cut out function of RoboClaw. To set the desired mode follow the steps below:

1. Press and release the MODE button to enter mode setup. The STAT2 LED will begin to blink
out the current mode. Each blink is a half second with a long pause at the end of the count. Five
blinks with a long pause equals mode 5 and so on.

2. Press SET to increment to the next mode. Press MODE to decrement to the previous mode.

3. Press and release the LIPO button to save this mode to memory.

 Modes
Mode Description
1 RC mode
2 RC mode with mixing
3 Analog mode
4 Analog mode with mixing
5 Simple Serial
6 Simple Serial with slave pin
7 Packet Serial Mode - Address 0x80
8 Packet Serial Mode - Address 0x81
9 Packet Serial Mode - Address 0x82
10 Packet Serial Mode - Address 0x83
11 Packet Serial Mode - Address 0x84
12 Packet Serial Mode - Address 0x85
13 Packet Serial Mode - Address 0x86
14 Packet Serial Mode - Address 0x87
15 USB Mode Packet Serial - Address 0x80

LIPOSETMODE

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 19

Mode Options
After the desired mode is set and saved press and release the SET button for options setup. The
STAT2 LED will begin to blink out the current option. Press SET to increment to the next option.
Press MODE to decrement to the previous option. Once the desired option is selected press and
release the LIPO button to save the option to memory.

RC and Analog Mode Options
Option Description
1 TTL Flip Switch
2 TTL Flip and Exponential Enabled
3 TTL Flip and MCU Enabled
4 TTL Flip and Exp and MCU Enabled
5 RC Flip Switch
6 RC Flip and Exponential Enabled
7 RC Flip and MCU Enabled
8 RC Flip and Exponential and MCU Enabled

 Simple and Packet Serial Mode Options
Option Description
1 2400bps
2 9600bps
3 19200bps
4 38400bps

Battery Cut Off Settings
The battery settings can be set by pressing and releasing the LIPO button. The STAT2 LED will
begin to blink out the current setting. Press SET to increment to the next setting. Press MODE
to decrement to the previous setting. Once the desired setting is selected press and release the
LIPO button to save this setting to memory.

 Battery Options
Option Description
1 Normal
2 Lead Acid - Auto
3 2 Cell(6v Cutoff)
4 3 Cell(9v Cutoff)
5 4 Cell(12v Cutoff)
6 5 Cell(15v Cutoff)
7 6 Cell(18v Cutoff)
8 7 Cell(21v Cutoff)

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 20

USB CONTROL

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 21

USB RoboClaw Power
The USB RoboClaw is self powered. Which means it is not powered from the USB cable. The USB
RoboClaw must be externally powered to function correctly.

USB RoboClaw Connection
The USB RoboClaw should have its USB cable connected before powering it up unless USB mode
is specifically set (mode 15). If the master controller (the PC) is powered up the USB RoboClaw
will automatically detect it is connected to a powered USB master and will enter USB mode. In
some cases it may be necessairy to set USB mode manually by setting RoboClaw to mode 15.

USB Comport and baudrate
The USB RoboClaw will be detected as a CDC Virtual Comport. When connected to a Windows
PC a driver must be installed. The driver is available for download. On Linux or OSX the
RoboClaw will be automatically detected as a virtual comport and an appropriate driver will
automatically be loaded.

Unlike a real Comport the USB CDC Virtual Comport does not need a baud rate to be set. It
will always communicate at the fastest speed the master and slave device can reach. This will
typically be 1mbit/s.

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 22

RC MODE

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 23

RC Mode
RC mode is typically used when controlling RoboClaw from a hobby RC radio. This mode can also
be used to simplify driving RoboClaw from a microcontroller using servo pulses. In this mode S1
controls the direction and speed of motor 1 and S2 controls the speed and direction of motor 2.
This drive method is similar to how a tank is controlled.

Using RC Mode with feedback for velocity/position control
RC Mode can be used with encoders. Packet Serial commands must be used to enable this
option. Velocity and/or Position PID constants must be calibrated for proper operation using
Packet Serial commands. Once calibrated values have been set and saved into Roboclaws
eeprom, encoder support using velocity or position PID control can be enabled using commands
92 for motor 1 or 93 for motor 2. See the Packet Serial section for more details.

RC Mode With Mixing
This mode is the same as RC mode with the exception of how S1 and S2 control the attached
motors. S1 controls speed and direction of both motors 1 and 2. S2 controls steering by slowing
one of the motors. This drive method is similar to how a car would be controlled.

 RC Mode Options
Option Function Description
1 TTL Flip Switch Flip switch triggered by low signal.
2 TTL Flip and Exponential

Enabled
Softens the center control position. This
mode is ideal with tank style robots. Mak-
ing it easier to control from an RC radio. Flip
switch triggered by low signal.

3 TTL Flip and MCU
Enabled

Continues to execute last pulse received until
new pulse received. Disables Signal loss fail
safe and auto calibration. Flip switch trig-
gered by low signal.

4 TTL Flip and Exponential
and MCU Enabled

Enables both options. Flip switch
triggered by low signal.

5 RC Flip Switch Enabled Same as mode 1 with flip switch
triggered by RC signal.

6 RC Flip and Exponential
Enabled

Same as mode 2 with flip switch
triggered by RC signal.

7 RC Flip and MCU Enabled Same as mode 3 with flip switch
triggered by RC signal.

8 RC Flip and Exponential
and MCU Enabled

Same as mode 4 with flip switch
triggered by RC signal.

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 24

Servo Pulse Ranges
The RoboClaw expects RC servo pulses on S1 and S2 to drive the motors when the mode is set
to RC mode. The center points are calibrated at start up. 1000us is the default for full reverse
and 2000us is the default for full forward. The RoboClaw will auto calibrate these ranges on the
fly unless auto-calibration is disabled. If a pulse smaller than 1000us or larger than 2000us is
detected the new pulses will be set as the new ranges.

Pulse Function
1000us Full Reverse
2000us Full Forward

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 25

RC Wiring Example
Connect the RoboClaw as shown below. Set mode 1 with option 1. The configuration below uses
a separate logic battery so remove the MB-LB jumper. Before powering up, center the control
sticks on the radio transmitter, turn the radio on first, then the receiver, then RoboClaw. It will
take RoboClaw about 1 second to calibrate the neutral position.

M1A

M1B

M2B

M2A

Negative -

Positive +

+-

Battery

S1 Signal

S2 Signal

5VDC

Channel 1

Channel 2

GROUND
5VDC

GROUND

Receiver

RoboClaw

Motor 1

Motor 2

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 26

RC Control - Arduino Example
The example will drive a 2 motor 4 wheel robot in reverse, stop, forward, left turn and then
right turn. The program was written and tested with a Arduino Uno and P5 connected to S1, P6
connected to S2. Set mode 2 with option 4.

//Basic Micro RoboClaw RC Mode. Control RoboClaw
//with servo pulses from a microcontroller.
//Mode settings: Mode 2 with Option 4.

#include <Servo.h>

Servo myservo1; // create servo object to control a RoboClaw channel
Servo myservo2; // create servo object to control a RoboClaw channel

int pos = 0; // variable to store the servo position

void setup()
{
 myservo1.attach(5); // attaches the RC signal on pin 5 to the servo object
 myservo2.attach(6); // attaches the RC signal on pin 6 to the servo object
}

void loop()
{
 myservo1.writeMicroseconds(1500); //Stop
 myservo2.writeMicroseconds(1500); //Stop
 delay(2000);

 myservo1.writeMicroseconds(1250); //full forward
 delay(1000);

 myservo1.writeMicroseconds(1500); //stop
 delay(2000);

 myservo1.writeMicroseconds(1750); //full reverse
 delay(1000);

 myservo1.writeMicroseconds(1500); //Stop
 delay(2000);

 myservo2.writeMicroseconds(1250); //full forward
 delay(1000);

 myservo2.writeMicroseconds(1500); //Stop
 delay(2000);

 myservo2.writeMicroseconds(1750); //full reverse
 delay(1000);
}

myservo1.attach
myservo2.attach
myservo1.writeMicroseconds
myservo2.writeMicroseconds
myservo1.writeMicroseconds
myservo1.writeMicroseconds
myservo1.writeMicroseconds
myservo1.writeMicroseconds
myservo2.writeMicroseconds
myservo2.writeMicroseconds
myservo2.writeMicroseconds

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 27

ANALOG MODE

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 28

Analog Mode
Analog mode is used when controlling RoboClaw from a potentiometer or a filtered PWM signal.
In this mode S1 and S2 are set as analog inputs. Voltage range is 0V = Full reverse, 1V = Stop
and 2V = Full forward.

Using Analog Mode with feedback for velocity/position control
Analog Mode can be used with encoders. Packet Serial commands must be used to enable
this option. Velocity and/or Position PID constants must be calibrated for proper operation
using Packet Serial commands. Once calibrated values have been set and saved into Roboclaws
eeprom, encoder support using velocity or position PID control can be enabled using commands
92 for motor 1 or 93 for motor 2. See the Packet Serial section for more details.

Analog Mode With Mixing
This mode is the same as Analog mode with the exception of how S1 and S2 control the attached
motors. S1 controls speed and direction of both motors 1 and 2. S2 controls steering by slowing
one of the motors. This drive method is similar to how a car would be controlled.

 Analog Mode Options
Option Function Description
1 TTL Flip Switch Flip switch triggered by low signal.
2 TTL Flip and Exponential

Enabled
Softens the center control position. This
mode is ideal with tank style robots. Mak-
ing it easier to control from an RC radio. Flip
switch triggered by low signal.

3 TTL FLip and MCU
Enabled

Continues to execute last pulse received until
new pulse received. Disables Signal loss fail
safe and auto calibration. Flip switch trig-
gered by low signal.

4 TTL FLip and Exponential
and MCU Enabled

Enables both options. Flip switch
triggered by low signal.

5 RC Flip Switch Enabled Same as mode 1 with flip switch
triggered by RC signal.

6 RC Flip and Exponential
Enabled

Same as mode 2 with flip switch
triggered by RC signal.

7 RC Flip and MCU Enabled Same as mode 3 with flip switch
triggered by RC signal.

8 RC Flip and Exponential
and MCU Enabled

Same as mode 4 with flip switch
triggered by RC signal.

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 29

Analog Wiring Example
RoboClaw use a high speed 12 bit analog converter. Its range is 0 to 2V. The analog pins are
protect and 5V can be applied without damage. The potentiometer range will be limited if 5V is
utilized as the reference voltage. A simple resistor divider circuit can be used to reduce the on
board 5V to 2V. See the below schematic. R1 = 3.3K and R2 = 2.2K. One resistor divider circuit
can be shared between two potentiometers.

Set mode 3 with option 1. Center the potentiometers before applying power or the attached
motors will start moving. S1 potentiometer will control motor 1 direction and speed. S2
potentiometer will control motor 2 direction and speed.

M1A

M1B

M2B

M2A

Negative -

Positive +

+-

Battery

RoboClaw

Motor 1

Motor 2

S1 Signal
5VDC

GROUND
Pot 1

S2 Signal
5VDC

GROUND
Pot 2

R2

R2
R1

R1

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 30

STANDARD SERIAL

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 31

Standard Serial Mode
In this mode S1 accepts TTL level byte commands. Standard serial mode is one way serial data.
RoboClaw can receive only. A standard 8N1 format is used. Which is 8 bits, no parity bits and
1 stop bit. If you are using a microcontroller you can interface directly to RoboClaw. If you are
using a PC a level shifting circuit (See Max232) is required. The baud rate can be changed using
the SET button once a serial mode has been selected.

Serial Mode Baud Rates
Option Description
1 2400
2 9600
3 19200
4 38400

Standard Serial Command Syntax
The RoboClaw standard serial is setup to control both motors with one byte sized command
character. Since a byte can be anything from 0 to 255 the control of each motor is split. 1 to 127
controls channel 1 and 128 to 255 controls channel 2. Command character 0 will shut down both
channels. Any other values will control speed and direction of the specific channel.
									
Character Function
0 Shuts Down Channel 1 and 2
1 Channel 1 - Full Reverse
64 Channel 1 - Stop
127 Channel 1 - Full Forward
128 Channel 2 - Full Reverse
192 Channel 2 - Stop
255 Channel 2 - Full Forward

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 32

Standard Serial Wiring Example
In standard serial mode the RoboClaw can only receive serial data. The below wiring diagram
illustrates a basic setup of RoboClaw for us with standard serial. In this setup only one power
source is used in which the LB-MB jumper will need to be installed.

M1A

M1B

M2B

M2A

Negative -

Positive +

+-

Battery

S1 Signal

5VDC

UART TX

GROUND
5VDC

GROUND

MCU

RoboClaw

Motor 1

Motor 2

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 33

Standard Serial Mode With Slave Select
Slave select is used when more than one RoboClaw is on the same serial bus. When slave select
is set to ON the S2 pin becomes the select pin. Set S2 high (5V) and RoboClaw will execute the
next set of commands sent to S1 pin. Set S2 low (0V) and RoboClaw will ignore all received
commands.

All RoboClaw’s on the buss must share a common signal ground (GND) shown by the black
wire. The S1 pin of RoboClaw is the serial receive pin and should be connected to the transmit
pin of the MCU. All RoboClaw’s S1 pins will be connected to the same MCU transmit pin. Each
RoboClaw S2 pin should be connected to a unique I/O pin on the MCU. S2 is used as the control
pin to activate the attached RoboClaw. To enable a RoboClaw hold its S2 pin high otherwise any
commands sent are ignored.

M1A

M1B

M2B

M2A

Negative -

Positive +

+-

Battery

S1 Signal

S2 Signal

5VDC

UART TX

OUT 1

GROUND
5VDC

GROUND

MCU

RoboClaw

Motor 1

Motor 2

OUT 2

Connect to S2 of
next RoboClaw

Connect to S1 of
next RoboClaw

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 34

Standard Serial - Arduino Example
The following example will start both channels in reverse, then full speed forward. The program
was written and tested with a Arduino Uno and Pin 5 connected to S1. Set mode 5 and option 3.

//Basic Micro RoboClaw Standard Serial Test
//Switch settings: SW2=ON and SW5=ON
//Make sure Arduino and Robo Claw share common GND!

#include “BMSerial.h”

BMSerial mySerial(5,6);

void setup() {
 mySerial.begin(19200);
}

void loop() {
 mySerial.write(1);
 mySerial.write(-1);
 delay(2000);
 mySerial.write(127);
 mySerial.write(-127);
 delay(2000);
}

mySerial.begin
mySerial.write
mySerial.write
mySerial.write
mySerial.write

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 35

PACKET SERIAL

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 36

Packet Serial Mode
Packet serial is a buffered bidirectional serial mode. More sophisticated instructions can be sent
to RoboClaw. The basic command structures consists of an address byte, command byte, data
bytes and a checksum. The amount of data each command will send or receive can vary.

Address
Packet serial requires a unique address. With up to 8 addresses available you can have up to 8
RoboClaws bussed on the same RS232 port. There are 8 packet modes 7 to 14. Each mode has
a unique address. The address is selected by setting the desired packet mode using the MODE
button.

 Packet Modes

Mode Description
7 Packet Serial Mode - Address 0x80 (128)
8 Packet Serial Mode - Address 0x81 (129)
9 Packet Serial Mode - Address 0x82 (130)
10 Packet Serial Mode - Address 0x83 (131)
11 Packet Serial Mode - Address 0x84 (132)
12 Packet Serial Mode - Address 0x85 (133)
13 Packet Serial Mode - Address 0x86 (134)
14 Packet Serial Mode - Address 0x87 (135)

Packet Serial Baud Rate
When in serial mode or packet serial mode the baud rate can be changed to one of four different
settings in the table below. These are set using the SET button as covered in Mode Options.

 Serial Mode Options
Option Description
1 2400
2 9600
3 19200
4 38400

Checksum Calculation
All packet serial commands use a 7 bit checksum to prevent corrupt commands from being
executed. Since the RoboClaw expects a 7bit value the 8th bit is masked. The checksum is
calculated as follows:

	 Checksum = (Address + Command + Data bytes) & 0x7F

When calculating the checksum all data bytes sent or received must be added together. The
hexadecimal value 0X7F is used to mask the 8th bit.

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 37

Commands 0 - 7 Standard Commands
The following commands are the standard set of commands used with packet mode. The
command syntax is the same for commands 0 to 7:

	 Address, Command, ByteValue, Checksum

0 - Drive Forward M1
Drive motor 1 forward. Valid data range is 0 - 127. A value of 127 = full speed forward, 64 =
about half speed forward and 0 = full stop. Example with RoboClaw address set to 128:

	 Send: 128, 0, 127, ((128+0+127) & 0X7F)

1 - Drive Backwards M1	
Drive motor 1 backwards. Valid data range is 0 - 127. A value of 127 full speed backwards, 64 =
about half speed backward and 0 = full stop. Example with RoboClaw address set to 128:

	 Send: 128, 1, 127, ((128+0+127) & 0X7F)

2 - Set Minimum Main Voltage
Sets main battery (B- / B+) minimum voltage level. If the battery voltages drops below the set
voltage level RoboClaw will shut down. The value is cleared at start up and must set after each
power up. The voltage is set in .2 volt increments. A value of 0 sets the minimum value allowed
which is 6V. The valid data range is 0 - 120 (6V - 30V). The formula for calculating the voltage
is: (Desired Volts - 6) x 5 = Value. Examples of valid values are 6V = 0, 8V = 10 and 11V = 25.
Example with RoboClaw address set to 128:

	 Send: 128, 2, 25, ((128+2+25) & 0X7F)

3 - Set Maximum Main Voltage
Sets main battery (B- / B+) maximum voltage level. The valid data range is 0 - 154 (0V - 30V).
If you are using a battery of any type you can ignore this setting. During regenerative breaking a
back voltage is applied to charge the battery. When using an ATX type power supply if it senses
anything over 16V it will shut down. By setting the maximum voltage level, RoboClaw before
exceeding it will go into hard breaking mode until the voltage drops below the maximum value
set. The formula for calculating the voltage is: Desired Volts x 5.12 = Value. Examples of valid
values are 12V = 62, 16V = 82 and 24V = 123. Example with RoboClaw address set to 128:

	 Send: 128, 3, 82, ((128+3+82) & 0X7F)

4 - Drive Forward M2
Drive motor 2 forward. Valid data range is 0 - 127. A value of 127 full speed forward, 64 = about
half speed forward and 0 = full stop. Example with RoboClaw address set to 128:

	 Send: 128, 4, 127, ((128+4+127) & 0X7F)]

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 38

5 - Drive Backwards M2	
Drive motor 2 backwards. Valid data range is 0 - 127. A value of 127 full speed backwards, 64 =
about half speed backward and 0 = full stop. Example with RoboClaw address set to 128:

	 Send: 128, 5, 127, ((128+5+127) & 0X7F)

6 - Drive M1 (7 Bit)
Drive motor 1 forward and reverse. Valid data range is 0 - 127. A value of 0 = full speed
reverse, 64 = stop and 127 = full speed forward. Example with RoboClaw address set to 128:

	 Send: 128, 6, 96, ((128+6+96) & 0X7F)

7 - Drive M2 (7 Bit)
Drive motor 2 forward and reverse. Valid data range is 0 - 127. A value of 0 = full speed
reverse, 64 = stop and 127 = full speed forward. Example with RoboClaw address set to 128:

	 Send: 128, 7, 32, ((128+7+32) & 0X7F)

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 39

Commands 8 - 13 Mix Mode Commands
The following commands are mix mode commands and used to control speed and turn. Before
a command is executed valid drive and turn data is required. You only need to send both data
packets once. After receiving both valid drive and turn data RoboClaw will begin to operate. At
this point you only need to update turn or drive data.

8 - Drive Forward
Drive forward in mix mode. Valid data range is 0 - 127. A value of 0 = full stop and 127 = full
forward. Example with RoboClaw address set to 128:

	 Send: 128, 8, 127, ((128+8+127) & 0x7F)

9 - Drive Backwards
Drive backwards in mix mode. Valid data range is 0 - 127. A value of 0 = full stop and 127 = full
reverse. Example with RoboClaw address set to 128:

	 Send: 128, 9, 127, ((128+9+127) & 0x7F)

10 - Turn right
Turn right in mix mode. Valid data range is 0 - 127. A value of 0 = stop turn and 127 = full
speed turn. Example with RoboClaw address set to 128:

	 Send: 128, 10, 127, ((128+10+127) & 0x7F1)

11 - Turn left
Turn left in mix mode. Valid data range is 0 - 127. A value of 0 = stop turn and 127 = full speed
turn. Example with RoboClaw address set to 128:

	 Send: 128, 11, 127, ((128+11+127) & 0x7F)

12 - Drive Forward or Backward (7 Bit)
Drive forward or backwards. Valid data range is 0 - 127. A value of 0 = full backward, 64 = stop
and 127 = full forward. Example with RoboClaw address set to 128:

	 Send: 128, 12, 96, ((128+12=96) & 0x7F)

13 - Turn Left or Right (7 Bit)
Turn left or right. Valid data range is 0 - 127. A value of 0 = full left, 0 = stop turn and 127 = full
right. Example with RoboClaw address set to 128:

	 Send: 128, 13, 0, ((128+13=0) & 0x7F)

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 40

Packet Serial Wiring
In packet mode the RoboClaw can transmit and receive serial data. A microcontroller with a
UART is recommended. The UART will buffer the data received from RoboClaw. When a request
for data is made to RoboClaw the return data will always have at least a 1ms delay after
the command is received. This will allow slower processors and processors without UARTs to
communicate with RoboClaw.

M1A

M1B

M2B

M2A

Negative -

Positive +

+-

Battery

S1 Signal

S2 Signal

5VDC

UART TX

UART RX

GROUND
5VDC

GROUND

MCU

RoboClaw

Motor 1

Motor 2

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 41

Packet Serial - Arduino Example
The example will start the motor channels independently. Then start turns with mix mode
commands. The program was written and tested with a Arduno Uno and P5 connected to S1. Set
mode 7 and option 3.

//Basic Micro RoboClaw Packet Serial Test Commands 0 to 13.
//Switch settings: SW3=ON and SW5=ON.

#include “BMSerial.h”
#include “RoboClaw.h”

#define address 0x80

RoboClaw roboclaw(5,6);

void setup() {
 roboclaw.begin(19200);
}

void loop() {
 roboclaw.ForwardM1(address,64);	 //Cmd 0		
 roboclaw.BackwardM2(address,64);	//Cmd 5
 delay(2000);
 roboclaw.BackwardM1(address,64);	//Cmd 1
 roboclaw.ForwardM2(address,64);	 //Cmd 6
 delay(2000);
 roboclaw.ForwardBackwardM1(address,96);	 //Cmd 6
 roboclaw.ForwardBackwardM2(address,32);	 //Cmd 7
 delay(2000);
 roboclaw.ForwardBackwardM1(address,32);	 //Cmd 6
 roboclaw.ForwardBackwardM2(address,96);	 //Cmd 7
 delay(2000);

 //stop motors
 roboclaw.ForwardBackwardM1(address,0);
 roboclaw.ForwardBackwardM2(address,0);

 delay(10000);

 roboclaw.ForwardMixed(address, 64);	 //Cmd 8
 delay(2000);
 roboclaw.BackwardMixed(address, 64);	 //Cmd 9
 delay(2000);
 roboclaw.TurnRightMixed(address, 64);	 //Cmd 10
 delay(2000);
 roboclaw.TurnLeftMixed(address, 64);		 //Cmd 11
 delay(2000);
 roboclaw.ForwardBackwardMixed(address, 32);	 //Cmd 12
 delay(2000);
 roboclaw.ForwardBackwardMixed(address, 96);	 //Cmd 12
 delay(2000);
 roboclaw.LeftRightMixed(address, 32);	 //Cmd 13
 delay(2000);
 roboclaw.LeftRightMixed(address, 96);	 //Cmd 13
 delay(2000);

 //stop motors
 roboclaw.ForwardMixed(address, 0);

 delay(10000);
}

roboclaw.begin
roboclaw.ForwardM
roboclaw.BackwardM
roboclaw.BackwardM
roboclaw.ForwardM
roboclaw.ForwardBackwardM
roboclaw.ForwardBackwardM
roboclaw.ForwardBackwardM
roboclaw.ForwardBackwardM
roboclaw.ForwardBackwardM
roboclaw.ForwardBackwardM
roboclaw.ForwardMixed
roboclaw.BackwardMixed
roboclaw.TurnRightMixed
roboclaw.TurnLeftMixed
roboclaw.ForwardBackwardMixed
roboclaw.ForwardBackwardMixed
roboclaw.LeftRightMixed
roboclaw.LeftRightMixed
roboclaw.ForwardMixed

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 42

ADVANCED
PACKET SERIAL

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 43

Version, Status, and Settings Commands
The following commands are used to read board status, version information and set
configuration values.

 				

21 - Read Firmware Version
Read RoboClaw firmware version. Returns up to 32 bytes and is terminated by a null character.
Command syntax:

	 Send: [Address, 21]
	 Receive: [“RoboClaw 10.2A v1.3.9, Checksum]

The command will return up to 32 bytes. The return string includes the product name and
firmware version. The return string is terminated with a null (0) character.

24 - Read Main Battery Voltage Level
Read the main battery voltage level connected to B+ and B- terminals. The voltage is returned in
10ths of a volt. Command syntax:

	 Send: [Address, 24]
	 Receive: [Value.Byte1, Value.Byte0, Checksum]

The command will return 3 bytes. Byte 1 and 2 make up a word variable which is received MSB
first and is 10th of a volt. A returned value of 300 would equal 30V. Byte 3 is the checksum. It is
calculated the same way as sending a command and can be used to validate the data.

Command Description
21 Read Firmware Version
24 Read Main Battery Voltage
25 Read Logic Battery Voltage
26 Set Minimum Logic Voltage Level
27 Set Maximum Logic Voltage Level
49 Read Motor Currents
55 Read Motor 1 Velocity PID Constants
56 Read Motor 2 Velocity PID Constants
57 Set Main Battery Voltages
58 Set Logic Battery Voltages
59 Read Main Battery Voltage Settings
60 Read Logic Battery Voltage Settings
63 Read Motor 1 Position PID Constants
64 Read Motor 2 Position PID Constants
82 Read Temperature
90 Read Error Status
91 Read Encoder Mode
92 Set Motor 1 Encoder Mode
93 Set Motor 1 Encoder Mode
94 Write Settings to EEPROM

Value.Byte
Value.Byte

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 44

25 - Read Logic Battery Voltage Level
Read a logic battery voltage level connected to LB+ and LB- terminals. The voltage is returned
in 10ths of a volt. Command syntax:

	 Send: [Address, 25]
	 Receive: [Value.Byte1, Value.Byte0, Checksum]

The command will return 3 bytes. Byte 1 and 2 make up a word variable which is received MSB
first and is 10th of a volt. A returned value of 50 would equal 5V. Byte 3 is the checksum. It is
calculated the same way as sending a command and can be used to validate the data.

26 - Set Minimum Logic Voltage Level
Sets logic input (LB- / LB+) minimum voltage level. If the battery voltages drops below the set
voltage level RoboClaw will shut down. The value is cleared at start up and must set after each
power up. The voltage is set in .2 volt increments. A value of 0 sets the minimum value allowed
which is 3V. The valid data range is 0 - 120 (6V - 28V). The formula for calculating the voltage
is: (Desired Volts - 6) x 5 = Value. Examples of valid values are 3V = 0, 8V = 10 and 11V = 25.

	 Send: [128, 26, 0, (154 & 0X7F)]

27 - Set Maximum Logic Voltage Level
Sets logic input (LB- / LB+) maximum voltage level. The valid data range is 0 - 144 (0V - 28V).
By setting the maximum voltage level RoboClaw will go into shut down and requires a hard reset
to recovers. The formula for calculating the voltage is: Desired Volts x 5.12 = Value. Examples
of valid values are 12V = 62, 16V = 82 and 24V = 123.

	 Send: [128, 27, 82, (213 & 0X7F)]

49 - Read Motor Currents
Read the current draw from each motor in 10ma increments. Command syntax:

	 Send: [Address, 49]
	 Receive: [M1Cur.Byte1, M1Cur.Byte0, M2Cur.Byte1, M2Cur.Byte0, Checksum]

The command will return 5 bytes. Bytes 1 and 2 combine to represent the current in 10ma
increments of motor1. Bytes 3 and 4 combine to represent the current in 10ma increments of
motor2 . Byte 5 is the checksum.

55 - Read Motor 1 P, I, D and QPPS Settings
Read the PID and QPPS Settings. Command syntax:

	 Send: [Address, 55]
	 Receive: [P(4 bytes), I(4 bytes), D(4 bytes), QPPS(4 byte), Checksum]

56 - Read Motor 2 P, I, D and QPPS Settings
Read the PID and QPPS Settings. Command syntax:

	 Send: [Address, 56]
	 Receive: [P(4 bytes), I(4 bytes), D(4 bytes), QPPS(4 byte), Checksum]

Value.Byte
Value.Byte
M1Cur.Byte
M1Cur.Byte
M2Cur.Byte
M2Cur.Byte

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 45

57 - Set Main Battery Voltages
Set the Main Battery Voltages cutoffs, Min and Max. Command syntax:

	 Send: [Address, 57, Min(2 bytes), Max(2bytes, Checksum]

58 - Set Logic Battery Voltages
Set the Logic Battery Voltages cutoffs, Min and Max. Command syntax:

	 Send: [Address, 58, Min(2 bytes), Max(2bytes, Checksum]

59 - Read Main Battery Voltage Settings
Read the Main Battery Voltage Settings. Command syntax:

	 Send: [Address, 59]
	 Receive: [Min(2 bytes), Max(2 bytes), Checksum]

60 - Read Logic Battery Voltage Settings
Read the Main Battery Voltage Settings. Command syntax:

	 Send: [Address, 60]
	 Receive: [Min(2 bytes), Max(2 bytes), Checksum]

63 - Read Motor 1 Position P, I, D Constants
Read the Position PID Settings. Command syntax:

	 Send: [Address, 63]
	 Receive: [P(4 bytes), I(4 bytes), D(4 bytes), MaxI(4 byte), Deadzone(4 byte),
	 	 MinPos(4 byte), MaxPos(4 byte), Checksum]

64 - Read Motor 2 Position P, I, D Constants
Read the Position PID Settings. Command syntax:

	 Send: [Address, 64]
	 Receive: [P(4 bytes), I(4 bytes), D(4 bytes), MaxI(4 byte), Deadzone(4 byte),
	 	 MinPos(4 byte), MaxPos(4 byte), Checksum]

82 - Read Temperature
Read the board temperature. Value returned is in 0.1 degree increments. Command syntax:

	 Send: [Address, 82]
	 Receive: [Temperature(2 bytes), Checksum]

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 46

90 - Read Error Status
Read the current error status. Command syntax:

	 Send: [Address, 90]
	 Receive: [Error, Checksum]

	 Error Mask
	 Normal		 0x00
	 M1 OverCurrent	 0x01
	 M2 OverCurrent	 0x02
	 E-Stop			 0x04
	 Temperature		 0x08
	 Main Battery High	 0x10
	 Main Battery Low	 0x20
	 Logic Battery High	 0x40
	 Logic Battery Low	 0x80

91 - Read Encoder Mode
Read the encoder mode for both motors. Command syntax:

	 Send: [Address, 91]
	 Receive: [Mode1, Mode2, Checksum]

92 - Set Motor 1 Encoder Mode
Set the Encoder Mode for motor 1. Command syntax:

	 Send: [Address, 92, Mode, Checksum]

93 - Set Motor 2 Encoder Mode
Set the Encoder Mode for motor 1. Command syntax:

	 Send: [Address, 93, Mode, Checksum]

	 Encoder Mode bits
	 Bit 7 		 Enable RC/Analog Encoder support
	 Bit 6-1		 N/A
	 Bit 0	 	 Quadrature(0)/Absolute(1)

94 - Write Settings to EEPROM
Writes all settings to non-volatile memory. Command syntax:

	 Send: [Address, 94]
	 Receive: [Checksum]

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 47

ENCODERS

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 48

Encoder Wiring
RoboClaw is capable of reading two quadrature encoders one for each motor channel. The main
RoboClaw header provides two +5VDC connections with dual A and B input signals.

In a robot with two motors configuration one motor will spin clock wise (CW) while the other
motor will spin counter clock wise (CCW). The A and B inputs for one of the encoders must be
reversed as shown. If both encoder are connected with leading edge pulse to channel A one will
count up and the other down. This will cause commands like mix drive forward to not work as
expected.

M1A

M1B

M2B

M2A

Negative -

Positive +

+-

Battery

S1 Signal

S2 Signal

5VDC

UART TX

UART RX

GROUND
5VDC

GROUND

MCU

RoboClaw

Motor 1

Motor 2

Encoder 1

A
B

GND
+5V

EN1 A
EN1 B

5VDC
GROUND

Encoder 2

A
B

GND
+5V

EN2 B
EN2 A

5VDC
GROUND

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 49

Encoder Commands
The following commands are used in dealing with the quadrature decoding counter registers. The
quadrature decoder is a simple counter that counts the incoming pulses, tracks the direction and
speed of each pulse. There are two registers one each for M1 and M2. (Note: A microcontroller
with a hardware UART is recommended for use with packet serial modes).

Command Description
16 Read Quadrature Encoder Register for M1.
17 Read Quadrature Encoder Register for M2.
18 Read M1 Speed in Pulses Per Second.
19 Read M2 Speed in Pulses Per Second.
20 Resets Quadrature Encoder Registers for M1 and M2.

16 - Read Quadrature Encoder Register M1
Read decoder M1 counter. Since CMD 16 is a read command it does not require a checksum.
However a checksum value will be returned from RoboClaw and can be used to validate the data.
Command syntax:

	 Send: [Address, CMD]
	 Receive: [Value1.Byte3, Value1.Byte2, Value1.Byte1, Value1.Byte0, Value2, 		
	 Checksum]

The command will return 6 bytes. Byte 1,2,3 and 4 make up a long variable which is received
MSB first and represents the current count which can be any value from 0 - 4,294,967,295. Each
pulse from the quadrature encoder will increment or decrement the counter depending on the
direction of rotation.

Byte 5 is the status byte for M1 decoder. It tracks counter underflow, direction, overflow and if
the encoder is operational. The byte value represents:

	 Bit0 - Counter Underflow (1= Underflow Occurred, Clear After Reading)
	 Bit1 - Direction (0 = Forward, 1 = Backwards)
	 Bit2 - Counter Overflow (1= Underflow Occurred, Clear After Reading)
	 Bit3 - Reserved
	 Bit4 - Reserved
	 Bit5 - Reserved
	 Bit6 - Reserved
	 Bit7 - Reserved

Byte 6 is the checksum. It is calculated the same way as sending a command, Sum all the
values sent and received except the checksum and mask the 8th bit.

Value1.Byte
Value1.Byte
Value1.Byte
Value1.Byte

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 50

17 - Read Quadrature Encoder Register M2
Read decoder M2 counter. Since CMD 16 is a read command it does not require a checksum.
However a checksum value will be returned from RoboClaw and can be used to validate the data.
Command syntax:

	 Send: [Address, CMD]
	 Receive: [Value1.Byte3, Value1.Byte2, Value1.Byte1, Value1.Byte0, Value2, Checksum]

The command will return 6 bytes. Byte 1,2,3 and 4 make up a long variable which is received
MSB first and represents the current count which can be any value from 0 - 4,294,967,295. Each
pulse from the quadrature encoder will increment or decrement the counter depending on the
direction of rotation.

Byte 5 is the status byte for M1 decoder. It tracks counter underflow, direction, overflow and if
the encoder is operational. The byte value represents:

	 Bit0 - Counter Underflow (1= Underflow Occurred, Clear After Reading)
	 Bit1 - Direction (0 = Forward, 1 = Backwards)
	 Bit2 - Counter Overflow (1= Underflow Occurred, Clear After Reading)
	 Bit3 - Reserved
	 Bit4 - Reserved
	 Bit5 - Reserved
	 Bit6 - Reserved
	 Bit7 - Reserved

Byte 6 is the checksum.

18 - Read Speed M1
Read M1 counter speed. Returned value is in pulses per second. RoboClaw keeps track of how
many pulses received per second for both decoder channels. Since CMD 18 is a read command
it does not require a checksum to be sent. However a checksum value will be returned from
RoboClaw and can be used to validate the data. Command syntax:

	 Send: [Address, CMD]
	 Receive: [Value1.Byte3, Value1.Byte2, Value1.Byte1, Value1.Byte0, Value2, Checksum]

The command will return 6 bytes. Byte 1,2,3 and 4 make up a long variable which is received
MSB first and is the current ticks per second which can be any value from 0 - 4,294,967,295.
Byte 5 is the direction (0 – forward, 1 - backward). Byte 6 is the checksum.

Value1.Byte
Value1.Byte
Value1.Byte
Value1.Byte
Value1.Byte
Value1.Byte
Value1.Byte
Value1.Byte

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 51

19 - Read Speed M2
Read M2 counter speed. Returned value is in pulses per second. RoboClaw keeps track of how
many pulses received per second for both decoder channels. Since CMD 19 is a read command
it does not require a checksum to be sent. However a checksum value will be returned from
RoboClaw and can be used to validate the data. Command syntax:

	 Send: [Address, CMD]
	 Receive: [Value1.Byte3, Value1.Byte2, Value1.Byte1, Value1.Byte0, Value2, Checksum]

The command will return 6 bytes. Byte 1,2,3 and 4 make up a long variable which is received
MSB first and is the current ticks per second which can be any value from 0 - 4,294,967,295.
Byte 5 is the direction (0 – forward, 1 - backward). Byte 6 is the checksum.

20 - Reset Quadrature Encoder Counters
Will reset both quadrature decoder counters to zero.

	 Send: [128, 20, ((128+20) & 0x7F)]

Value1.Byte
Value1.Byte
Value1.Byte
Value1.Byte

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 52

Advanced Motor Control
The following commands are used to control motor speeds, acceleration and distance using the
quadrature encoders. All speeds are given in quad pulses per second (QPPS) unless otherwise
stated. Quadrature encoders of different types and manufactures can be used. However many
have different resolutions and maximum speeds at which they operate. So each quadrature
encoder will produce a different range of pulses per second.

Command Description
28 Set PID Constants for M1.
29 Set PID Constants for M2.
30 Read Current M1 Speed Resolution 125th of a Second.
31 Read Current M2 Speed Resolution 125th of a Second.
32 Drive M1 With Signed Duty Cycle. (Encoders not required)
33 Drive M2 With Signed Duty Cycle. (Encoders not required)
34 Mix Mode Drive M1 / M2 With Signed Duty Cycle. (Encoders not required)
35 Drive M1 With Signed Speed.
36 Drive M2 With Signed Speed.
37 Mix Mode Drive M1 / M2 With Signed Speed.
38 Drive M1 With Signed Speed And Acceleration.
39 Drive M2 With Signed Speed And Acceleration.
40 Mix Mode Drive M1 / M2 With Speed And Acceleration.
41 Drive M1 With Signed Speed And Distance. Buffered.
42 Drive M2 With Signed Speed And Distance. Buffered.
43 Mix Mode Drive M1 / M2 With Speed And Distance. Buffered.
44 Drive M1 With Signed Speed, Acceleration and Distance. Buffered.
45 Drive M2 With Signed Speed, Acceleration and Distance. Buffered.
46 Mix Mode Drive M1 / M2 With Speed, Acceleration And Distance. Buffered.
47 Read Buffer Length.
50 Mix Drive M1 / M2 With Individual Speed and Acceleration
51 Mix Drive M1 / M2 With Individual Speed, Accel and Distance
52 Drive M1 With Duty and Accel. (Encoders not required)
53 Drive M2 With Duty and Accel. (Encoders not required)
54 Mix Drive M1 / M2 With Duty and Accel. (Encoders not required)
61 Set Position PID Constants for M1.
62 Set Position PID Constants for M2
65 Drive M1 with signed Speed, Accel, Deccel and Position
66 Drive M2 with signed Speed, Accel, Deccel and Position
67 Drive M1 & M2 with signed Speed, Accel, Deccel and Position

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 53

28 - Set PID Constants M1
Several motor and quadrature combinations can be used with RoboClaw. In some cases the
default PID values will need to be tuned for the systems being driven. This gives greater
flexibility in what motor and encoder combinations can be used. The RoboClaw PID system
consist of four constants starting with QPPS, P = Proportional, I= Integral and D= Derivative.
The defaults values are:

	 QPPS = 44000
	 P = 0x00010000
	 I = 0x00008000
	 D = 0x00004000

QPPS is the speed of the encoder when the motor is at 100% power. P, I, D are the default
values used after a reset. Command syntax:

	 Send: [Address, 28, D(4 bytes), P(4 bytes), I(4 bytes), QPPS(4 byte), Checksum]

Each value is made up of 4 bytes for a long. To write the registers a checksum value is used.
This prevents an accidental write.

29 - Set PID Constants M2
Several motor and quadrature combinations can be used with RoboClaw. In some cases the
default PID values will need to be tuned for the systems being driven. This gives greater
flexibility in what motor and encoder combinations can be used. The RoboClaw PID system
consist of four constants starting with QPPS, P = Proportional, I= Integral and D= Derivative.
The defaults values are:

	 QPPS = 44000
	 P = 0x00010000
	 I = 0x00008000
	 D = 0x00004000

QPPS is the speed of the encoder when the motor is at 100% power. P, I, D are the default
values used after a reset. Command syntax:

	 Send: [Address, 29, D(4 bytes), P(4 bytes), I(4 bytes), QPPS(4 byte), Checksum]

Each value is made up of 4 bytes for a long. To write the registers a checksum value is used.
This prevents an accidental write.

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 54

30 - Read Current Speed M1
Read the current pulse per 125th of a second. This is a high resolution version of command
18 and 19. Command 30 can be used to make a independent PID routine. The resolution of
the command is required to create a PID routine using any microcontroller or PC used to drive
RoboClaw. The command syntax:

	 Send: [Address, CMD]
	 Receive: [Value1.Byte3, Value1.Byte2, Value1.Byte1, Value1.Byte0, Value2, Checksum]

The command will return 5 bytes, MSB sent first for a long. The first 4 bytes are a 32 byte value
(long) that repersent the speed. The 5th byte (Value2) is direction (0 – forward, 1 - backward).
is A checksum is returned in order to validate the data returned.

31 - Read Current Speed M2
Read the current pulse per 125th of a second. This is a high resolution version of command
18 and 19. Command 31 can be used to make a independent PID routine. The resolution of
the command is required to create a PID routine using any microcontroller or PC used to drive
RoboClaw. The command syntax:

	 Send: [Address, CMD]
	 Receive: [Value1.Byte3, Value1.Byte2, Value1.Byte1, Value1.Byte0, Value2, Checksum]

The command will return 5 bytes, MSB sent first for a long. The first 4 bytes are a 32 byte value
(long) that repersent the speed. The 5th byte (Value2) is direction (0 – forward, 1 - backward).
is A checksum is returned in order to validate the data returned.

32 - Drive M1 With Signed Duty Cycle
Drive M1 using a duty cycle value. The duty cycle is used to control the speed of the motor
without a quadrature encoder. The command syntax:

Send: [Address, CMD, Duty(2 Bytes), Checksum]

The duty value is signed and the range is +-1500.

33 - Drive M2 With Signed Duty Cycle
Drive M2 using a duty cycle value. The duty cycle is used to control the speed of the motor
without a quadrature encoder. The command syntax:

Send: [Address, CMD, Duty(2 Bytes), Checksum]

The duty value is signed and the range is +-1500.

Value1.Byte
Value1.Byte
Value1.Byte
Value1.Byte
Value1.Byte
Value1.Byte
Value1.Byte
Value1.Byte

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 55

34 - Drive M1 / M2 With Signed Duty Cycle
Drive both M1 and M2 using a duty cycle value. The duty cycle is used to control the speed of
the motor without a quadrature encoder. The command syntax:

Send: [Address, CMD, DutyM1(2 Bytes), DutyM2(2 Bytes), Checksum]

The duty value is signed and the range is +-1500.

35 - Drive M1 With Signed Speed
Drive M1 using a speed value. The sign indicates which direction the motor will turn. This
command is used to drive the motor by quad pulses per second. Different quadrature encoders
will have different rates at which they generate the incoming pulses. The values used will differ
from one encoder to another. Once a value is sent the motor will begin to accelerate as fast as
possible until the defined rate is reached. The command syntax:

Send: [Address, CMD, Qspeed(4 Bytes), Checksum]

4 Bytes (long) are used to express the pulses per second. Quadrature encoders send 4 pulses
per tick. So 1000 ticks would be counted as 4000 pulses.

36 - Drive M2 With Signed Speed
Drive M2 with a speed value. The sign indicates which direction the motor will turn. This
command is used to drive the motor by quad pulses per second. Different quadrature encoders
will have different rates at which they generate the incoming pulses. The values used will differ
from one encoder to another. Once a value is sent, the motor will begin to accelerate as fast as
possible until the rate defined is reached. The command syntax:

Send: [Address, CMD, Qspeed(4 Bytes), Checksum]

4 Bytes (long) are used to expressed the pulses per second. Quadrature encoders send 4 pulses
per tick. So 1000 ticks would be counted as 4000 pulses.

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 56

37 - Drive M1 / M2 With Signed Speed
Drive M1 and M2 in the same command using a signed speed value. The sign indicates which
direction the motor will turn. This command is used to drive both motors by quad pulses per
second. Different quadrature encoders will have different rates at which they generate the
incoming pulses. The values used will differ from one encoder to another. Once a value is sent
the motor will begin to accelerate as fast as possible until the rate defined is reached. The
command syntax:

Send: [Address, CMD, QspeedM1(4 Bytes), QspeedM2(4 Bytes), Checksum]

4 Bytes (long) are used to express the pulses per second. Quadrature encoders send 4 pulses
per tick. So 1000 ticks would be counted as 4000 pulses.

38 - Drive M1 With Signed Speed And Acceleration
Drive M1 with a signed speed and acceleration value. The sign indicates which direction the
motor will run. The acceleration values are not signed. This command is used to drive the motor
by quad pulses per second and using an acceleration value for ramping. Different quadrature
encoders will have different rates at which they generate the incoming pulses. The values used
will differ from one encoder to another. Once a value is sent the motor will begin to accelerate
incrementally until the rate defined is reached. The command syntax:

Send: [Address, CMD, Accel(4 Bytes), Qspeed(4 Bytes), Checksum]

4 Bytes (long) are used to express the pulses per second. Quadrature encoders send 4 pulses
per tick. So 1000 ticks would be counted as 4000 pulses. The acceleration is measured
in speed per second. An acceleration value of 12,000 QPPS with a speed of 12,000 QPPS
would accelerate a motor from 0 to 12,000 QPPS in 1 second. Another example would be an
acceleration value of 24,000 QPPS and a speed value of 12,000 QPPS would accelerate the motor
to 12,000 QPPS in 0.5 seconds.

39 - Drive M2 With Signed Speed And Acceleration
Drive M2 with a signed speed and acceleration value. The sign indicates which direction the
motor will run. The acceleration value is not signed. This command is used to drive the motor
by quad pulses per second and using an acceleration value for ramping. Different quadrature
encoders will have different rates at which they generate the incoming pulses. The values used
will differ from one encoder to another. Once a value is sent the motor will begin to accelerate
incrementally until the rate defined is reached. The command syntax:

Send: [Address, CMD, Accel(4 Bytes), Qspeed(4 Bytes), Checksum]

4 Bytes (long) are used to express the pulses per second. Quadrature encoders send 4 pulses
per tick. So 1000 ticks would be counted as 4000 pulses. The acceleration is measured
in speed per second. An acceleration value of 12,000 QPPS with a speed of 12,000 QPPS
would accelerate a motor from 0 to 12,000 QPPS in 1 second. Another example would be an
acceleration value of 24,000 QPPS and a speed value of 12,000 QPPS would accelerate the motor
to 12,000 QPPS in 0.5 seconds.

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 57

40 - Drive M1 / M2 With Signed Speed And Acceleration
Drive M1 and M2 in the same command using one value for acceleration and two signed speed
values for each motor. The sign indicates which direction the motor will run. The acceleration
value is not signed. The motors are sync during acceleration. This command is used to drive
the motor by quad pulses per second and using an acceleration value for ramping. Different
quadrature encoders will have different rates at which they generate the incoming pulses. The
values used will differ from one encoder to another. Once a value is sent the motor will begin to
accelerate incrementally until the rate defined is reached. The command syntax:

Send: [Address, CMD, Accel(4 Bytes), QspeedM1(4 Bytes), QspeedM2(4 Bytes), Checksum]

4 Bytes (long) are used to express the pulses per second. Quadrature encoders send 4 pulses
per tick. So 1000 ticks would be counted as 4000 pulses. The acceleration is measured
in speed per second. An acceleration value of 12,000 QPPS with a speed of 12,000 QPPS
would accelerate a motor from 0 to 12,000 QPPS in 1 second. Another example would be an
acceleration value of 24,000 QPPS and a speed value of 12,000 QPPS would accelerate the motor
to 12,000 QPPS in 0.5 seconds.

41 - Buffered M1 Drive With Signed Speed And Distance
Drive M1 with a signed speed and distance value. The sign indicates which direction the motor
will run. The distance value is not signed. This command is buffered. This command is used to
control the top speed and total distance traveled by the motor. Each motor channel M1 and M2
have separate buffers. This command will execute immediately if no other command for that
channel is executing, otherwise the command will be buffered in the order it was sent. Any
buffered or executing command can be stopped when a new command is issued by setting the
Buffer argument. All values used are in quad pulses per second. The command syntax:

Send: [Address, CMD, QSpeed(4 Bytes), Distance(4 Bytes), Buffer(1 Byte), Checksum]

4 Bytes(long) are used to express the pulses per second. The Buffer argument can be set to a
1 or 0. If a value of 0 is used the command will be buffered and executed in the order sent. If
a value of 1 is used the current running command is stopped, any other commands in the buffer
are deleted and the new command is executed.

42 - Buffered M2 Drive With Signed Speed And Distance
Drive M2 with a speed and distance value. The sign indicates which direction the motor will run.
The distance value is not signed. This command is buffered. Each motor channel M1 and M2
have separate buffers. This command will execute immediately if no other command for that
channel is executing, otherwise the command will be buffered in the order it was sent. Any
buffered or executing command can be stopped when a new command is issued by setting the
Buffer argument. All values used are in quad pulses per second. The command syntax:

Send: [Address, CMD, QSpeed(4 Bytes), Distance(4 Bytes), Buffer(1 Byte), Checksum]

4 Bytes(long) are used to express the pulses per second. The Buffer argument can be set to a
1 or 0. If a value of 0 is used the command will be buffered and executed in the order sent. If
a value of 1 is used the current running command is stopped, any other commands in the buffer
are deleted and the new command is executed.

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 58

43 - Buffered Drive M1 / M2 With Signed Speed And Distance
Drive M1 and M2 with a speed and distance value. The sign indicates which direction the motor
will run. The distance value is not signed. This command is buffered. Each motor channel M1
and M2 have separate buffers. This command will execute immediately if no other command for
that channel is executing, otherwise the command will be buffered in the order it was sent. Any
buffered or executing command can be stopped when a new command is issued by setting the
Buffer argument. All values used are in quad pulses per second. The command syntax:

Send: [Address, CMD, QSpeedM1(4 Bytes), DistanceM1(4 Bytes),
		 QSpeedM2(4 Bytes), DistanceM2(4 Bytes), Buffer(1 Byte), Checksum]

4 Bytes(long) are used to express the pulses per second. The Buffer argument can be set to a
1 or 0. If a value of 0 is used the command will be buffered and executed in the order sent. If
a value of 1 is used the current running command is stopped, any other commands in the buffer
are deleted and the new command is executed.

44 - Buffered M1 Drive With Signed Speed, Accel And Distance
Drive M1 with a speed, acceleration and distance value. The sign indicates which direction the
motor will run. The acceleration and distance values are not signed. This command is used to
control the motors top speed, total distanced traveled and at what incremental acceleration
value to use until the top speed is reached. Each motor channel M1 and M2 have separate
buffers. This command will execute immediately if no other command for that channel is
executing, otherwise the command will be buffered in the order it was sent. Any buffered
or executing command can be stopped when a new command is issued by setting the Buffer
argument. All values used are in quad pulses per second. The command syntax:

Send: [Address, CMD, Accel(4 bytes), QSpeed(4 Bytes), Distance(4 Bytes),
		 Buffer(1 Byte), Checksum]

4 Bytes(long) are used to express the pulses per second. The Buffer argument can be set to a
1 or 0. If a value of 0 is used the command will be buffered and executed in the order sent. If
a value of 1 is used the current running command is stopped, any other commands in the buffer
are deleted and the new command is executed.

45 - Buffered M2 Drive With Signed Speed, Accel And Distance
Drive M2 with a speed, acceleration and distance value. The sign indicates which direction the
motor will run. The acceleration and distance values are not signed. This command is used to
control the motors top speed, total distanced traveled and at what incremental acceleration
value to use until the top speed is reached. Each motor channel M1 and M2 have separate
buffers. This command will execute immediately if no other command for that channel is
executing, otherwise the command will be buffered in the order it was sent. Any buffered
or executing command can be stopped when a new command is issued by setting the Buffer
argument. All values used are in quad pulses per second. The command syntax:

Send: [Address, CMD, Accel(4 bytes), QSpeed(4 Bytes), Distance(4 Bytes),
		 Buffer(1 Byte), Checksum]

4 Bytes(long) are used to express the pulses per second. The Buffer argument can be set to a
1 or 0. If a value of 0 is used the command will be buffered and executed in the order sent. If
a value of 1 is used the current running command is stopped, any other commands in the buffer
are deleted and the new command is executed.

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 59

46 - Drive M1 / M2 With Signed Speed, Accel And Distance
Drive M1 and M2 with a speed, acceleration and distance value. The sign indicates which
direction the motor will run. The acceleration and distance values are not signed. This command
is used to control both motors top speed, total distanced traveled and at what incremental
acceleration value to use until the top speed is reached. Each motor channel M1 and M2 have
separate buffers. This command will execute immediately if no other command for that channel
is executing, otherwise the command will be buffered in the order it was sent. Any buffered
or executing command can be stopped when a new command is issued by setting the Buffer
argument. All values used are in quad pulses per second. The command syntax:

Send: [Address, CMD, Accel(4 Bytes), QSpeedM1(4 Bytes), DistanceM1(4 Bytes),
QSpeedM2(4 bytes), DistanceM2(4 Bytes), Buffer(1 Byte), Checksum]

4 Bytes(long) are used to express the pulses per second. The Buffer argument can be set to a
1 or 0. If a value of 0 is used the command will be buffered and executed in the order sent. If
a value of 1 is used the current running command is stopped, any other commands in the buffer
are deleted and the new command is executed.

47 - Read Buffer Length
Read both motor M1 and M2 buffer lengths. This command can be used to determine how many
commands are waiting to execute.

Send: [Address, CMD]
Receive: [BufferM1(1 Bytes), BufferM2(1 Bytes), Checksum]

The return values represent how many commands per buffer are waiting to be executed. The
maximum buffer size per motor is 31 commands. A return value of 0x80(128) indicates the
buffer is empty. A return value of 0 indiciates the last command sent is executing. A value of
0x80 indicates the last command buffered has finished.

50 - Drive M1 / M2 With Speed And Individual Acceleration
Drive M1 and M2 in the same command using one value for acceleration and two signed speed
values for each motor. The sign indicates which direction the motor will run. The acceleration
value is not signed. The motors are sync during acceleration. This command is used to drive
the motor by quad pulses per second and using an acceleration value for ramping. Different
quadrature encoders will have different rates at which they generate the incoming pulses. The
values used will differ from one encoder to another. Once a value is sent the motor will begin to
accelerate incrementally until the rate defined is reached. The command syntax:

Send: [Address, CMD, AccelM1(4 Bytes), QspeedM1(4 Bytes), AccelM2(4 Bytes), QspeedM2(4
Bytes), Checksum]

4 Bytes (long) are used to express the pulses per second. Quadrature encoders send 4 pulses
per tick. So 1000 ticks would be counted as 4000 pulses. The acceleration is measured
in speed per second. An acceleration value of 12,000 QPPS with a speed of 12,000 QPPS
would accelerate a motor from 0 to 12,000 QPPS in 1 second. Another example would be an
acceleration value of 24,000 QPPS and a speed value of 12,000 QPPS would accelerate the motor
to 12,000 QPPS in 0.5 seconds.

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 60

51 - Drive M1 / M2 Speed, Individual Accel And Distance
Drive M1 and M2 with a speed, acceleration and distance value. The sign indicates which
direction the motor will run. The acceleration and distance values are not signed. This command
is used to control both motors top speed, total distanced traveled and at what incremental
acceleration value to use until the top speed is reached. Each motor channel M1 and M2 have
separate buffers. This command will execute immediately if no other command for that channel
is executing, otherwise the command will be buffered in the order it was sent. Any buffered
or executing command can be stopped when a new command is issued by setting the Buffer
argument. All values used are in quad pulses per second. The command syntax:

Send: [Address, CMD, AccelM1(4 Bytes), QSpeedM1(4 Bytes), DistanceM1(4 Bytes), Ac-
celM2(4 Bytes), QSpeedM2(4 bytes), DistanceM2(4 Bytes), Buffer(1 Byte), Checksum]

4 Bytes(long) are used to express the pulses per second. The Buffer argument can be set to a
1 or 0. If a value of 0 is used the command will be buffered and executed in the order sent. If
a value of 1 is used the current running command is stopped, any other commands in the buffer
are deleted and the new command is executed.

52 - Drive M1 With Signed Duty And Acceleration
Drive M1 with a signed duty and acceleration value. The sign indicates which direction the motor
will run. The acceleration values are not signed. This command is used to drive the motor by
PWM and using an acceleration value for ramping. Accel is the rate per second at which the duty
changes from the current duty to the specified duty. The command syntax:

Send: [Address, CMD, Duty(2 bytes), Accel(2 Bytes), Checksum]

The duty value is signed and the range is +-1500. The accel value range is 0 to 65535

53 - Drive M2 With Signed Duty And Acceleration
Drive M1 with a signed duty and acceleration value. The sign indicates which direction the motor
will run. The acceleration values are not signed. This command is used to drive the motor by
PWM and using an acceleration value for ramping. Accel is the rate at which the duty changes
from the current duty to the specified dury. The command syntax:

Send: [Address, CMD, Duty(2 bytes), Accel(2 Bytes), Checksum]

The duty value is signed and the range is +-1500. The accel value range is 0 to 65535

54 - Drive M1 / M2 With Signed Duty And Acceleration
Drive M1 and M2 in the same command using acceleration and duty values for each motor.
The sign indicates which direction the motor will run. The acceleration value is not signed. This
command is used to drive the motor by PWM using an acceleration value for ramping. The
command syntax:

Send: [Address, CMD, DutyM1(2 bytes), Accelm1(4 Bytes), DutyM2(2 bytes), AccelM1(4
bytes), Checksum]

The duty value is signed and the range is +-1500. The accel value range is 0 to 65535

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 61

61 - Set Motor 1 Position PID Constants
The RoboClaw Position PID system consist of seven constants starting with P = Proportional, I=
Integral and D= Derivative, MaxI = Maximum Integral windup, Deadzone in encoder counts,
MinPos = Minimum Position and MaxPos = Maximum Position. The defaults values are all zero.

Send: [Address, CMD, P(4 bytes), I(4 bytes), D(4 bytes), MaxI(4 bytes), Deadzone(4
bytes), MinPos(4 bytes), MaxPos(4 bytes)

Position constants are used only with the Position commands, 65,66 and 67 and RC or Analog
mode when in absolute mode with encoders or potentiometers.

62 - Set Motor 2 Position PID Constants
The RoboClaw Position PID system consist of seven constants starting with P = Proportional, I=
Integral and D= Derivative, MaxI = Maximum Integral windup, Deadzone in encoder counts,
MinPos = Minimum Position and MaxPos = Maximum Position. The defaults values are all zero.

Send: [Address, CMD, P(4 bytes), I(4 bytes), D(4 bytes), MaxI(4 bytes), Deadzone(4
bytes), MinPos(4 bytes), MaxPos(4 bytes)

Position constants are used only with the Position commands, 65,66 and 67 and RC or Analog
mode when in absolute mode with encoders or potentiometers.

65 - Drive M1 with signed Speed, Accel, Deccel and Position
Move M1 position from the current position to the specified new position and hold the new
position. Accel sets the acceleration value and deccel the decceleration value. QSpeed sets the
speed in quadrature pulses the motor will run at after acceleration and before decceleration. The
command syntax:

Send: [Address, CMD, Accel(4 bytes), QSpeed(4 Bytes), Deccel(4 bytes), Position(4
Bytes), Buffer(1 Byte), Checksum]

66 - Drive M2 with signed Speed, Accel, Deccel and Position
Move M2 position from the current position to the specified new position and hold the new
position. Accel sets the acceleration value and deccel the decceleration value. QSpeed sets the
speed in quadrature pulses the motor will run at after acceleration and before decceleration. The
command syntax:

Send: [Address, CMD, Accel(4 bytes), QSpeed(4 Bytes), Deccel(4 bytes), Position(4
Bytes), Buffer(1 Byte), Checksum]

67 - Drive M1 & M2 with signed Speed, Accel, Deccel and Position
Move M1 & M2 positions from their current positions to the specified new positions and hold the
new positions. Accel sets the acceleration value and deccel the decceleration value. QSpeed sets
the speed in quadrature pulses the motor will run at after acceleration and before decceleration.
The command syntax:

Send: [Address, CMD, Accel(4 bytes), QSpeed(4 Bytes), Deccel(4 bytes), Position(4
Bytes),Buffer(1 Byte), Checksum]

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 62

Reading Quadrature Encoder - Arduino Example
The example was tested with an Arduino Uno using packet serial wiring and quadrature encoder
wiring diagrams. The example will read the speed, total ticks and direction of each encoder.
Connect to the program using a terminal window set to 38400 baud. The program will display
the values of each encoders current count along with each encoder status bit in binary and the
direction bit. As the encoder is turned it will update the screen.

//Basic Micro RoboClaw Packet Serial Mode.
//Switch settings: SW3=ON, SW4=ON, SW5=ON

#include “BMSerial.h”
#include “RoboClaw.h”

#define address 0x80

#define Kp 0x00010000
#define Ki 0x00008000
#define Kd 0x00004000
#define qpps 44000

BMSerial terminal(0,1);
RoboClaw roboclaw(5,6);

void setup() {
 terminal.begin(38400);
 roboclaw.begin(38400);

 roboclaw.SetM1Constants(address,Kd,Kp,Ki,qpps);
 roboclaw.SetM2Constants(address,Kd,Kp,Ki,qpps);
}

void loop() {
 uint8_t status;
 bool valid;

 uint32_t enc1= roboclaw.ReadEncM1(address, &status, &valid);
 if(valid){
 terminal.print(“Encoder1:”);
 terminal.print(enc1,HEX);
 terminal.print(“ “);
 terminal.print(status,HEX);
 terminal.print(“ “);
 }
 uint32_t enc2 = roboclaw.ReadEncM2(address, &status, &valid);
 if(valid){
 terminal.print(“Encoder2:”);
 terminal.print(enc2,HEX);
 terminal.print(“ “);
 terminal.print(status,HEX);
 terminal.print(“ “);
 }
 uint32_t speed1 = roboclaw.ReadSpeedM1(address, &status, &valid);
 if(valid){
 terminal.print(“Speed1:”);
 terminal.print(speed1,HEX);
 terminal.print(“ “);
 }
 uint32_t speed2 = roboclaw.ReadSpeedM2(address, &status, &valid);
 if(valid){
 terminal.print(“Speed2:”);
 terminal.print(speed2,HEX);
 terminal.print(“ “);
 }
 terminal.println();

 delay(100);
}

terminal.begin
roboclaw.begin
roboclaw.SetM
roboclaw.SetM
roboclaw.ReadEncM
terminal.print
terminal.print
terminal.print
terminal.print
terminal.print
roboclaw.ReadEncM
terminal.print
terminal.print
terminal.print
terminal.print
terminal.print
roboclaw.ReadSpeedM
terminal.print
terminal.print
terminal.print
roboclaw.ReadSpeedM
terminal.print
terminal.print
terminal.print
terminal.println

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 63

Speed Controlled by Quadrature Encoders - Arduino Example
The following example was written using an Arduino UNO using packet serial wiring and
quadrature encoder wiring diagrams. The example will command a 4wheel robot to move
forward, backward, right turn and left turn slowly. You can change the speed by adjusting the
value of Speed and Speed2 variables.

//Basic Micro RoboClaw Packet Serial Mode.
//Switch settings: SW3=ON, SW4=ON, SW5=ON

#include “BMSerial.h”
#include “RoboClaw.h”

#define address 0x80

#define Kp 0x00010000
#define Ki 0x00008000
#define Kd 0x00004000
#define qpps 44000

BMSerial terminal(0,1);
RoboClaw roboclaw(5,6);

void setup() {
 terminal.begin(38400);
 roboclaw.begin(38400);

 roboclaw.SetM1Constants(address,Kd,Kp,Ki,qpps);
 roboclaw.SetM2Constants(address,Kd,Kp,Ki,qpps);
}

void displayspeed(void)
{
 uint8_t status;
 bool valid;

 uint32_t enc1= roboclaw.ReadEncM1(address, &status, &valid);
 if(valid){
 terminal.print(“Encoder1:”);
 terminal.print(enc1,DEC);
 terminal.print(“ “);
 terminal.print(status,HEX);
 terminal.print(“ “);
 }
 uint32_t enc2 = roboclaw.ReadEncM2(address, &status, &valid);
 if(valid){
 terminal.print(“Encoder2:”);
 terminal.print(enc2,DEC);
 terminal.print(“ “);
 terminal.print(status,HEX);
 terminal.print(“ “);
 }

terminal.begin
roboclaw.begin
roboclaw.SetM
roboclaw.SetM
roboclaw.ReadEncM
terminal.print
terminal.print
terminal.print
terminal.print
terminal.print
roboclaw.ReadEncM
terminal.print
terminal.print
terminal.print
terminal.print
terminal.print

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 64

uint32_t speed1 = roboclaw.ReadSpeedM1(address, &status, &valid);
 if(valid){
 terminal.print(“Speed1:”);
 terminal.print(speed1,DEC);
 terminal.print(“ “);
 }
 uint32_t speed2 = roboclaw.ReadSpeedM2(address, &status, &valid);
 if(valid){
 terminal.print(“Speed2:”);
 terminal.print(speed2,DEC);
 terminal.print(“ “);
 }
 terminal.println();
}

void loop() {
 roboclaw.SpeedAccelDistanceM1(address,12000,12000,48000);
 uint8_t depth1,depth2;
 do{
 displayspeed();
 roboclaw.ReadBuffers(address,depth1,depth2);
 }while(depth1);
 roboclaw.SpeedAccelDistanceM1(address,12000,-12000,48000);
 do{
 displayspeed();
 roboclaw.ReadBuffers(address,depth1,depth2);
 }while(depth1);

}

roboclaw.ReadSpeedM
terminal.print
terminal.print
terminal.print
roboclaw.ReadSpeedM
terminal.print
terminal.print
terminal.print
terminal.println
roboclaw.SpeedAccelDistanceM
roboclaw.ReadBuffers
roboclaw.SpeedAccelDistanceM

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 65

RoboClaw Electrical Specifications
Characteristic Model Rating Min Typ Max

Pulse Per Second All PPS 0 8,000,000
Logic Battery All VDC 6 12 34
Main Battery 2x5A VDC 6 34

2x15A VDC 6 34
2x30A VDC 6 34
2x60A VDC 6 34
2x60A HV VDC 13 50

External Current Draw (BEC) 2x5A mA 200
2x15A A 3
2x30A A 3
2x60A A 3
2x60A HV mA 200

Motor Current Per Channel 2x5A A 5 10
2x15A 15 30
2x30A 30 60
2x60A 60 120
2x60A HV 60 120

Logic Circuit All mA 30
I/O Input All VDC 0 5
I/O Output All VDC 0 3.3
Analog Voltage Range All VDC 0 2
Tempature Range All C -40 +125

RoboClaw Series
Brushed DC Motor Controllers

RoboClaw Series User Manual 66

Warranty
Orion Robotics warranties its products against defects in material and workmanship for a period
of 90 days. If a defect is discovered, Orion Robotics will, at our discretion, repair, replace, or
refund the purchase price of the product in question. Contact us at support@orionrobotics.com.
No returns will be accepted without the proper authorization.

Copyrights and Trademarks
Copyright© 2013 by Orion Robotics, Inc. All rights reserved. RoboClaw and USB RoboClaw
are registered trademarks of Basic Micro Inc. Other trademarks mentioned are registered
trademarks of their respective holders.

Disclaimer
Orion Robotics cannot be held responsible for any incidental, or consequential damages resulting
from use of products manufactured or sold by Orion Robotics or its distributors. No products
from Orion Robotics should be used in any medical devices and/or medical situations. No product
should be used in a life support situation.

Contacts

	 Email: sales@orionrobotics.com
	 Tech support: support@orionrobotics.com
	 Web: http://www.orionrobotics.com

Discussion List
A web based discussion board is maintained at http://forums.orionrobotics.com.

Technical Support
Technical support is made available by sending an email to support@orionrobotics.com. All email
will be answered within 48 hours. All general syntax and programming questions, unless deemed
to be a software issue, will be referred to the on-line discussion forums.

mailto:support@orionrobotics.com
mailto:sales@orionrobotics.com
mailto:support@orionrobotics.com
http://www.orionrobotics.com
http://forums.orionrobotics.com
mailto:support@orionrobotics.com

	Dimensions
	Header Overview
	Main Battery Screw Terminals
	Status and Error LEDs
	RC Wiring Example
	Analog Wiring Example
	Simple Serial Example
	Simple Serial Wiring Example
	Packet Serial Wiring
	Quadrature Decoding
	Quadrature Encoder Wiring

	RoboClaw Revision History
	Precautions
	Motor Selection
	Stall Current
	Running Current
	Wire Lengths
	Run Away
	Power Sources
	Optical Encoders
	RoboClaw 2x5A Hardware Overview
	RoboClaw 2x5A Dimensions
	RoboClaw 2x15A and 2x30A Hardware Overview
	RoboClaw 2x15A and 2x30A Dimensions
	RoboClaw 2x60A and HV 2x60A Dimensions
	Header Overview
	Logic Battery (LB IN)
	BEC Source (LB-MB)
	Encoder Power (+ -)
	Encoder Inputs (EN1 / EN2)
	Control Inputs (S1 / S2 / S3)
	Main Battery Screw Terminals
	Disconnect
	Motor Screw Terminals
	Status and Error LEDs
	RoboClaw Modes
	Configuring RoboClaw Modes
	 Modes
	Mode Options
	 Simple and Packet Serial Mode Options
	Battery Cut Off Settings
	 Battery Options
	USB RoboClaw Power
	USB RoboClaw Connection
	USB Comport and baudrate
	RC Mode
	Using RC Mode with feedback for velocity/position control
	RC Mode With Mixing
	 RC Mode Options
	Servo Pulse Ranges
	RC Wiring Example
	Analog Mode
	Using Analog Mode with feedback for velocity/position control
	Analog Mode With Mixing
	 Analog Mode Options
	Analog Wiring Example
	Standard Serial Mode
	Serial Mode Baud Rates
	Standard Serial Command Syntax
	Standard Serial Wiring Example
	Standard Serial Mode With Slave Select
	Standard Serial - Arduino Example
	Packet Serial Mode
	Address
	 Packet Modes
	Packet Serial Baud Rate
	 Serial Mode Options
	Checksum Calculation
	Commands 0 - 7 Standard Commands
	0 - Drive Forward M1
	1 - Drive Backwards M1	
	2 - Set Minimum Main Voltage
	3 - Set Maximum Main Voltage
	4 - Drive Forward M2
	5 - Drive Backwards M2	
	6 - Drive M1 (7 Bit)
	7 - Drive M2 (7 Bit)
	Commands 8 - 13 Mix Mode Commands
	8 - Drive Forward
	9 - Drive Backwards
	10 - Turn right
	11 - Turn left
	12 - Drive Forward or Backward (7 Bit)
	13 - Turn Left or Right (7 Bit)
	Packet Serial Wiring
	Packet Serial - Arduino Example
	Version, Status, and Settings Commands
	21 - Read Firmware Version
	24 - Read Main Battery Voltage Level
	25 - Read Logic Battery Voltage Level
	26 - Set Minimum Logic Voltage Level
	27 - Set Maximum Logic Voltage Level
	49 - Read Motor Currents
	55 - Read Motor 1 P, I, D and QPPS Settings
	56 - Read Motor 2 P, I, D and QPPS Settings
	57 - Set Main Battery Voltages
	58 - Set Logic Battery Voltages
	59 - Read Main Battery Voltage Settings
	60 - Read Logic Battery Voltage Settings
	63 - Read Motor 1 Position P, I, D Constants
	64 - Read Motor 2 Position P, I, D Constants
	82 - Read Temperature
	90 - Read Error Status
	91 - Read Encoder Mode
	92 - Set Motor 1 Encoder Mode
	93 - Set Motor 2 Encoder Mode
	94 - Write Settings to EEPROM
	Encoder Wiring
	Encoder Commands
	16 - Read Quadrature Encoder Register M1
	17 - Read Quadrature Encoder Register M2
	18 - Read Speed M1
	19 - Read Speed M2
	20 - Reset Quadrature Encoder Counters
	Advanced Motor Control
	28 - Set PID Constants M1
	29 - Set PID Constants M2
	30 - Read Current Speed M1
	31 - Read Current Speed M2
	32 - Drive M1 With Signed Duty Cycle
	33 - Drive M2 With Signed Duty Cycle
	34 - Drive M1 / M2 With Signed Duty Cycle
	35 - Drive M1 With Signed Speed
	36 - Drive M2 With Signed Speed
	37 - Drive M1 / M2 With Signed Speed
	38 - Drive M1 With Signed Speed And Acceleration
	39 - Drive M2 With Signed Speed And Acceleration
	40 - Drive M1 / M2 With Signed Speed And Acceleration
	41 - Buffered M1 Drive With Signed Speed And Distance
	42 - Buffered M2 Drive With Signed Speed And Distance
	44 - Buffered M1 Drive With Signed Speed, Accel And Distance
	45 - Buffered M2 Drive With Signed Speed, Accel And Distance
	46 - Drive M1 / M2 With Signed Speed, Accel And Distance
	47 - Read Buffer Length
	50 - Drive M1 / M2 With Speed And Individual Acceleration
	51 - Drive M1 / M2 Speed, Individual Accel And Distance
	52 - Drive M1 With Signed Duty And Acceleration
	53 - Drive M2 With Signed Duty And Acceleration
	54 - Drive M1 / M2 With Signed Duty And Acceleration
	61 - Set Motor 1 Position PID Constants
	62 - Set Motor 2 Position PID Constants
	65 - Drive M1 with signed Speed, Accel, Deccel and Position
	66 - Drive M2 with signed Speed, Accel, Deccel and Position
	67 - Drive M1 & M2 with signed Speed, Accel, Deccel and Position
	Reading Quadrature Encoder - Arduino Example
	Speed Controlled by Quadrature Encoders - Arduino Example
	RoboClaw Electrical Specifications

