- Operates From 1.65 V to 3.6 V - Inputs Accept Voltages to 5.5 V - Max t_{pd} of 6.3 ns at 3.3 V - Typical V_{OLP} (Output Ground Bounce) <0.8 V at $V_{CC} = 3.3 \text{ V}, T_{\Delta} = 25^{\circ}\text{C}$ - Typical V_{OHV} (Output V_{OH} Undershoot) >2 V at $V_{CC} = 3.3$ V, $T_A = 25$ °C - Ioff Supports Partial-Power-Down Mode Operation - **Supports Mixed-Mode Signal Operation on** All Ports (5-V Input/Output Voltage With 3.3-V V_{CC}) - Latch-Up Performance Exceeds 250 mA Per JESD 17 - **ESD Protection Exceeds JESD 22** - 2000-V Human-Body Model (A114-A) - 1000-V Charged-Device Model (C101) # description/ordering information This octal bus transceiver is designed for 1.65-V to 3.6-V V_{CC} operation. The SN74LVC245A is designed for asynchronous communication between data buses. The device transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so the buses are effectively isolated. #### DB, DGV, DW, N, NS, OR PW PACKAGE (TOP VIEW) #### **RGY PACKAGE** (TOP VIEW) #### ORDERING INFORMATION | TA | PACKAGE [†] | | ORDERABLE
PART NUMBER | TOP-SIDE
MARKING | |---------------|------------------------------------|--------------|--------------------------|---------------------| | | PDIP – N | Tube of 20 | SN74LVC245AN | SN74LVC245AN | | | QFN – RGY | Reel of 1000 | SN74LVC245ARGYR | LC245A | | | colo DW | Tube of 25 | SN74LVC245ADW | 11/00/15/ | | | SOIC – DW | Reel of 2000 | SN74LVC245ADWR | LVC245A | | | SOP - NS | Reel of 2000 | SN74LVC245ANSR | LVC245A | | -40°C to 85°C | SSOP – DB | Reel of 2000 | SN74LVC245ADBR | LC245A | | -40 C to 65 C | | Tube of 70 | SN74LVC245APW | | | | TSSOP - PW | Reel of 2000 | SN74LVC245APWR | LC245A | | | | Reel of 250 | SN74LVC245APWT | | | | TVSOP - DGV | Reel of 2000 | SN74LVC245ADGVR | LC245A | | | VFBGA – GQN | Pool of 1000 | SN74LVC245AGQNR | LC245A | | | VFBGA – ZQN (Pb-Free) Reel of 1000 | | SN74LVC245AZQNR | LU240A | [†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. # description/ordering information (continued) To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of this device as a translator in a mixed 3.3-V/5-V system environment. This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. #### **GQN OR ZQN PACKAGE** (TOP VIEW) # terminal assignments | | 1 | 2 | 3 | 4 | |---|-----|-----|-----|----| | Α | A1 | DIR | Vcc | ŌĒ | | В | А3 | B2 | A2 | B1 | | С | A5 | A4 | B4 | В3 | | D | A7 | B6 | A6 | B5 | | Е | GND | A8 | B8 | B7 | #### **FUNCTION TABLE** | INP | UTS | ODEDATION | | | | |-----|-----|-----------------|--|--|--| | OE | DIR | OPERATION | | | | | L | L | B data to A bus | | | | | L | Н | A data to B bus | | | | | Н | Χ | Isolation | | | | # logic diagram (positive logic) Pin numbers shown are for the DB, DGV, DW, N, NS, PW, and RGY packages. SCAS218S - JANUARY 1993 - REVISED DECEMBER 2003 # absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Supply voltage range, V _{CC} | | |---|---| | (see Note 1) | –0.5 V to 6.5 V | | Voltage range applied to any output in the high or low state, VO | | | (see Notes 1 and 2) | . -0.5 V to V _{CC} + 0.5 V | | Input clamp current, I _{IK} (V _I < 0) | –50 mA | | Output clamp current, I _{OK} (V _O < 0) | | | Continuous output current, IO | | | Continuous current through V _{CC} or GND | ±100 mA | | Package thermal impedance, θ_{JA} (see Note 3): DB package | 70°C/W | | (see Note 3): DGV package | 92°C/W | | (see Note 3): DW package | 58°C/W | | (see Note 3): GQN/ZQN package | | | (see Note 3): N package | 69°C/W | | (see Note 3): NS package | | | (see Note 3): PW package | | | (see Note 4): RGY package | | | Storage temperature range, T _{stq} | -65° C to 150° C | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed. - 2. The value of V_{CC} is provided in the recommended operating conditions table. - 3. The package thermal impedance is calculated in accordance with JESD 51-7. - 4. The package thermal impedance is calculated in accordance with JESD 51-5. # SN74LVC245A OCTAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS SCAS218S - JANUARY 1993 - REVISED DECEMBER 2003 # recommended operating conditions (see Note 5) | | | | T _A = 25°C | | -40 TO 85°C | | | | |-----------------|------------------------------------|--|-----------------------|----------------------|----------------------|------------------------|------|--| | | | | MIN | MAX | MIN | MAX | UNIT | | | ., | Owner have alterna | Operating | 1.65 | 3.6 | 1.65 | 3.6 | ., | | | VCC | Supply voltage | Data retention only | 1.5 | | 1.5 | | V | | | | | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ | 0.65 × V _C | С | $0.65 \times V_{CC}$ | , | | | | V_{IH} | High-level input voltage | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ | 1.7 | | 1.7 | | V | | | | | $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$ | 2 | | 2 | | | | | | | V _{CC} = 1.65 V to 1.95 V | | $0.35 \times V_{CC}$ | | 0.35 × V _{CC} | | | | V_{IL} | Low-level input voltage | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ | | 0.7 | | 0.7 | V | | | | | $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$ | | 0.8 | | 0.8 | | | | ٧ı | Input voltage | | 0 | 5.5 | 0 | 5.5 | V | | | ٧o | Output voltage | | 0 | VCC | 0 | VCC | V | | | | | V _{CC} = 1.65 V | | -4 | | -4 | | | | 1 | I Bala Javal autout aumant | V _{CC} = 2.3 V | | -8 | | -8 | A | | | ЮН | High-level output current | $V_{CC} = 2.7 \text{ V}$ | | -12 | | -12 | mA | | | | | V _{CC} = 3 V | | -24 | | -24 | | | | | | V _{CC} = 1.65 V | | 4 | | 4 | | | | la. | Loughout output ourse | V _{CC} = 2.3 V | | 8 | | 8 | A | | | lOL | Low-level output current | V _{CC} = 2.7 V | | 12 | | 12 | mA | | | | | V _{CC} = 3 V | | 24 | | 24 | | | | Δt/Δν | Input transition rise or fall rate | | | 10 | | 10 | ns/V | | NOTE 5: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. # electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | PARAMETER | | TEST CONDITIONS | | ., | TA | T _A = 25°C | | | -40 TO 85°C | | | |------------------|----------------|---|--------|-----------------|----------------------|-----------------------|------|----------------------|-------------|------|--| | | | | | VCC | MIN | TYP | MAX | MIN | MAX | UNIT | | | | | I _{OH} = -100 μA | | 1.65 V to 3.6 V | V _{CC} -0.2 | | | V _{CC} -0.2 | | | | | | | $I_{OH} = -4 \text{ mA}$ | | 1.65 V | 1.29 | | | 1.2 | | | | | | | I _{OH} = -8 mA | | 2.3 V | 1.9 | | | 1.7 | | ., | | | VOH | | 10 4 | | 2.7 V | 2.2 | | | 2.2 | | V | | | | | I _{OH} = −12 mA | | 3 V | 2.4 | | | 2.4 | | | | | | | I _{OH} = -24 mA | | 3 V | 2.3 | | | 2.2 | | | | | | | I _{OL} = 100 μA | | 1.65 V to 3.6 V | | | 0.1 | | 0.2 | | | | | | I _{OL} = 4 mA | | 1.65 V | | | 0.24 | | 0.45 | V | | | VOL | | I _{OL} = 8 mA | | 2.3 V | | | 0.3 | | 0.7 | | | | | | I _{OL} = 12 mA | | 2.7 V | | | 0.4 | | 0.4 | | | | | | I _{OL} = 24 mA | | 3 V | | | 0.55 | | 0.55 | | | | lį | Control inputs | V _I = 0 to 5.5 V | | 3.6 V | | | ±1 | | ±5 | μΑ | | | l _{off} | | V _I or V _O = 5.5 V | | 0 | | | ±1 | | ±10 | μΑ | | | loz† | | V _O = 0 to 5.5 V | | 3.6 V | | | ±1 | | ±10 | μΑ | | | | | $V_I = V_{CC}$ or GND | | 0.01/ | | | 1 | | 10 | • | | | Icc | | $3.6 \text{ V} \le \text{V}_{\text{I}} \le 5.5 \text{ V}^{\ddagger}$ | IO = 0 | 3.6 V | | | 1 | | 10 | μΑ | | | ΔICC | | One input at V _{CC} – 0.6 V,
Other inputs at V _{CC} or GND | | 2.7 V to 3.6 V | | | 500 | | 500 | μА | | | Ci | Control inputs | $V_I = V_{CC}$ or GND | | 3.3 V | | 4 | | | | pF | | | C _{io} | A or B ports | $V_I = V_{CC}$ or GND | | 3.3 V | | 5.5 | | | | pF | | [†] For I/O ports, the parameter I_{OZ} includes the input leakage current. # switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1) | DADAMETED | FROM | то | ., | T, | Վ = 25° C | ; | -40 TO | 85°C | | |--------------------|----------|----------|----------------|-----|------------------|------|--------|------|------| | PARAMETER | (INPUT) | (OUTPUT) | VCC | MIN | TYP | MAX | MIN | MAX | UNIT | | | | | 1.8 V ± 0.15 V | 1 | 6 | 12.2 | 1 | 12.7 | | | | A = :: D | D as A | 2.5 V ± 0.2 V | 1 | 3.9 | 7.8 | 1 | 8.3 | | | ^t pd | A or B | B or A | 2.7 V | 1 | 4.2 | 7.1 | 1 | 7.3 | ns | | | | | 3.3 V ± 0.3 V | 1.5 | 3.8 | 6.1 | 1.5 | 6.3 | | | | ŌĒ | A or B | 1.8 V ± 0.15 V | 1 | 7 | 14.8 | 1 | 15.3 | | | | | | 2.5 V ± 0.2 V | 1 | 4.5 | 10 | 1 | 10.5 | | | ^t en | | | 2.7 V | 1 | 5.4 | 9.3 | 1 | 9.5 | ns | | | | | 3.3 V ± 0.3 V | 1.5 | 4.4 | 8.3 | 1.5 | 8.5 | 5 | | | ŌĒ | | 1.8 V ± 0.15 V | 1 | 7.8 | 16.5 | 1 | 17 | ns | | | | A or B | 2.5 V ± 0.2 V | 1 | 4 | 9 | 1 | 9.5 | | | ^t dis | | | 2.7 V | 1 | 4.4 | 8.3 | 1 | 8.5 | | | | | | 3.3 V ± 0.3 V | 1.7 | 4.1 | 7.3 | 1.7 | 7.5 | | | t _{sk(o)} | | | 3.3 V ± 0.3 V | | | | | 1 | ns | [‡] This applies in the disabled state only. # SN74LVC245A **OCTAL BUS TRANSCEIVER** WITH 3-STATE OUTPUTS SCAS218S – JANUARY 1993 – REVISED DECEMBER 2003 # operating characteristics, $T_A = 25^{\circ}C$ | PARAMETER | | | TEST
CONDITIONS | VCC | TYP | UNIT | |------------------------------|---|------------------|--------------------|-------|-----|------| | | | | | 1.8 V | 42 | | | | Outputs enabled | | 2.5 V | 43 | | | | | | | f = 10 MHz | 3.3 V | 45 | pF | | C _{pd} Power dissip | Power dissipation capacitance per transceiver | | | 1.8 V | 1 | | | | | Outputs disabled | | 2.5 V | 1 | | | | | | | 3.3 V | 2 | | #### PARAMETER MEASUREMENT INFORMATION | TEST | S1 | |-----------|-------| | tPLH/tPHL | Open | | tPLZ/tPZL | VLOAD | | tPHZ/tPZH | GND | | ., | INPUTS | | ., | ., | _ | _ | ., | |--------------------|----------------|--------------------------------|--------------------|-------------------|-------|--------------|-----------------------| | Vcc | ٧ _I | t _r /t _f | VM | VLOAD | CL | RL | $oldsymbol{V}_\Delta$ | | 1.8 V \pm 0.15 V | VCC | ≤ 2 ns | V _{CC} /2 | 2×V _{CC} | 30 pF | 1 k Ω | 0.15 V | | 2.5 V \pm 0.2 V | VCC | ≤ 2 ns | V _{CC} /2 | 2×VCC | 30 pF | 500 Ω | 0.15 V | | 2.7 V | 2.7 V | ≤2.5 ns | 1.5 V | 6 V | 50 pF | 500 Ω | 0.3 V | | 3.3 V \pm 0.3 V | 2.7 V | ≤2.5 ns | 1.5 V | 6 V | 50 pF | 500 Ω | 0.3 V | NOTES: A. C_I includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \ \Omega$. - D. The outputs are measured one at a time with one transition per measurement. - E. tpLz and tpHz are the same as tdis. - F. tpzL and tpzH are the same as ten. - G. tpLH and tpHL are the same as tpd. - H. All parameters and waveforms are not applicable to all devices. Figure 1. Load Circuit and Voltage Waveforms # GQN (R-PBGA-N20) #### **PLASTIC BALL GRID ARRAY** NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. MicroStar Junior™ configuration D. Falls within JEDEC MO-225 variation BC. E. This package is tin-lead (SnPb). Refer to the 20 ZQN package (drawing 4204492) for lead-free. MicroStar Junior is a trademark of Texas Instruments. # ZQN (R-PBGA-N20) # **PLASTIC BALL GRID ARRAY** - NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. MicroStar Junior™ configuration. - D. Fall within JEDEC MO-225 variation BC. - E. This package is lead-free. Refer to the 20 GQN package (drawing 4200704) for tin-lead)SnPb). MicroStar Junior is a trademark of Texas Instruments. # N (R-PDIP-T**) #### **16 PINS SHOWN** # PLASTIC DUAL-IN-LINE PACKAGE NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. Falls within JEDEC MS-001, except 18 and 20 pin minimum body Irngth (Dim A). The 20 pin end lead shoulder width is a vendor option, either half or full width. # DGV (R-PDSO-G**) #### **24 PINS SHOWN** #### **PLASTIC SMALL-OUTLINE** NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side. D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194 NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. QFN (Quad Flatpack No-Lead) package configuration. - The package thermal performance may be enhanced by bonding the thermal die pad to an external thermal plane. This pad is electrically and thermally connected to the backside of the die and possibly selected ground leads. - E. Package complies to JEDEC MO-241 variation BC. # DW (R-PDSO-G**) #### PLASTIC SMALL-OUTLINE PACKAGE #### **16 PINS SHOWN** NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). D. Falls within JEDEC MS-013 # **MECHANICAL DATA** # NS (R-PDSO-G**) # 14-PINS SHOWN # PLASTIC SMALL-OUTLINE PACKAGE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15. # DB (R-PDSO-G**) # PLASTIC SMALL-OUTLINE #### **28 PINS SHOWN** NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-150 # PW (R-PDSO-G**) #### 14 PINS SHOWN # PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-153 #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | Products | | Applications | | |------------------|------------------------|--------------------|---------------------------| | Amplifiers | amplifier.ti.com | Audio | www.ti.com/audio | | Data Converters | dataconverter.ti.com | Automotive | www.ti.com/automotive | | DSP | dsp.ti.com | Broadband | www.ti.com/broadband | | Interface | interface.ti.com | Digital Control | www.ti.com/digitalcontrol | | Logic | logic.ti.com | Military | www.ti.com/military | | Power Mgmt | power.ti.com | Optical Networking | www.ti.com/opticalnetwork | | Microcontrollers | microcontroller.ti.com | Security | www.ti.com/security | | | | Telephony | www.ti.com/telephony | | | | Video & Imaging | www.ti.com/video | | | | Wireless | www.ti.com/wireless | Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright © 2003, Texas Instruments Incorporated