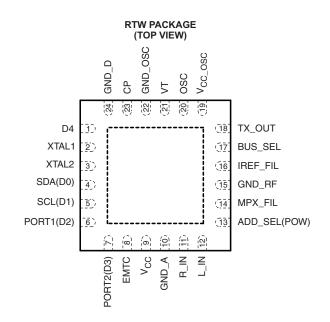


SLES226B-MAY 2008-REVISED FEBRUARY 2010

FM STEREO TRANSMITTER

Check for Samples: SN761634

FEATURES


- Single-Chip FM Stereo Transmitter
- Selectable I²C/Parallel Control Mode
- V_{CC} = 2.5 V to 4 V
- 76-MHz to 108-MHz Transmit Frequency Range
- Selectable –7-, –3-, 1-, 4-dBm Tx High-Power Output
- I_{CC} = 12 mA (Depends on Tx Power)
- 32.768-kHz Clock
- 24-Pin Quad Flatpack No Lead (QFN) Package, 4 × 4 mm
- Standby
- Fourth Order 15-kHz Low Pass Filter (LPF)

APPLICATIONS

- Portable Audio Players
- MP3 Players
- Personal Navigation Devices (PNDs)
- Portable Media Players (PMPs)

DESCRIPTION

The SN761634 is an FM stereo transmitter IC for portable audio players.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

T-∛

T

赱

 $\overline{}$

₹

СР

PLL

 $\frac{1}{m}$

www.ti.com **FM TRANSMITTER BLOCK** ADD_SEL(POW) PORT2 (D3) PORT1 (D2) vcc_osc GND_OSC BUS_SEL SCL (D1) SDA (D0) GND_RF GND_D GND_A D4 (D4) EMTC VCC TXPOW[1:0] LOGIC TXOUT LPF L IN Pre-+₽ -0 Emphasis osc MPX R_IN Pre-MODADJ[3:0] *# -0 Emphasis fc =15 kHz AFADJ[2:0] VT PLTADJ[2:0]

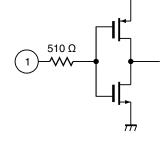
XTAL OSC

2

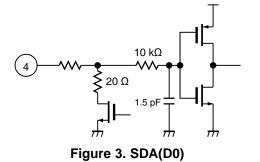
XTAL2

1

XTAL1


Texas

INSTRUMENTS


SLES226B – MAY 2008 – REVISED FEBRUARY 2010

	TERMINAL	DECODIDION	
NO.	NAME	DESCRIPTION	SCHEMATIC
1	D4(D4)	To be connected to ground in I ² C mode / D4 input in parallel mode	Figure 1
2	XTAL1	Crystal oscillator	Figure 2
3	XTAL2	Crystal oscillator	Figure 2
4	SDA(D0)	I2C data input/output in I ² C mode/ D0 input in parallel mode	Figure 3
5	SCL(D1)	I2C clock input / D1 input in parallel mode	Figure 4
6	PORT1(D2)	Port 1 output in I ² C mode / D2 input in parallel mode	Figure 5
7	PORT2(D3)	Port 2 output in I ² C mode / D3 input in parallel mode	Figure 5
8	EMTC	To be opened in I ² C mode / EMTC input in parallel mode	Figure 6
9	V _{CC}	Power supply	
10	GND_A	Analog ground	
11	R_IN	Audio right input	Figure 7
12	L_IN	Audio left input	Figure 7
13	ADD_SEL(POW)	I ² C address select in I ² C mode / TX power select in parallel mode	Figure 8
14	MPX_FIL	MPX PLL filter	Figure 9
15	GND_RF	RF ground	
16	IREF_FIL	Reference current filter	Figure 10
17	BUS_SEL	I ² C mode / Parallel mode select	Figure 11
18	TX_OUT	Transmitter output	Figure 12
19	V _{CC_OSC}	Oscillator power supply	
20	OSC	Oscillator input	Figure 13
21	VT	Tuning voltage output	Figure 14
22	GND_OSC	Oscillator ground	
23	CP	Charge pump output	Figure 14
24	GND_D	Digital ground	

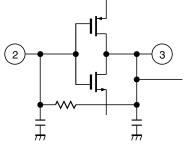
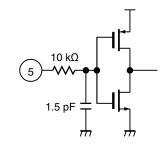
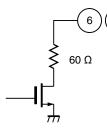
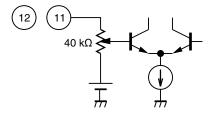
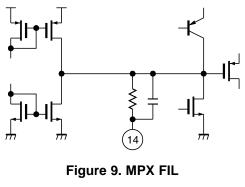
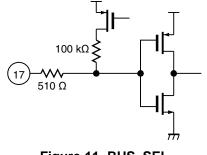


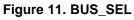
Figure 2. XTAL1 and XTAL2

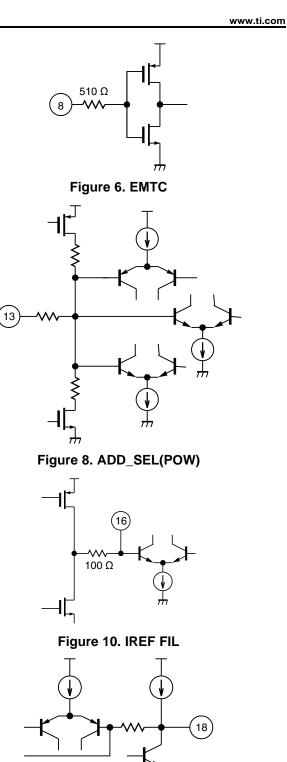



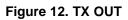

Figure 4. SCL(D1)

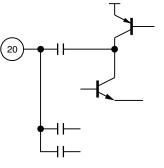



7


Figure 5. PORT1(D2) and PORT2(D3)







4

SLES226B-MAY 2008-REVISED FEBRUARY 2010

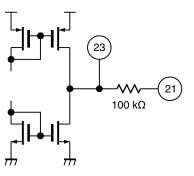


Figure 14. VT and CP

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over recommended operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage	V _{CC} , V _{CC_OSC}	-0.3	6.0	V
V _{IN}	Input voltage	Other pins	-0.3	V_{CC}	V
T _A	Operating free-air temperature range		-20	85	°C
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

			MIN	TYP	MAX	UNIT
V_{CC}	Supply voltage	V _{CC} , V _{CC_OSC}	2.5	3	4	V
T _A	Operating free-air temperature		-20		85	°C

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

www.ti.com

ELECTRICAL CHARACTERISTICS

 $V_{CC} = 3 \text{ V}, T_A = 25^{\circ}\text{C}, \text{ RF} \text{ frequency } f_{RF} = 98.1 \text{ MHz}, \text{ BAND} = 0 \text{ (USEU)}, \text{ TXPOW}[1:0] = -7 \text{ dBm}, \text{ MODADJ}[3:0] = 5 \text{ dB} \text{ (for } 98.1 \text{ MHz}), \text{ audio signal frequency } f_{AF} = 1 \text{ kHz}, 100\% \text{ means FM } 75 \text{ kdev}, \text{ BW} = \text{LPF } 30 \text{ kHz}, \text{ measured with typical home hi-fi tuner. (unless otherwise noted)}$

Supply Voltages and Currents

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{CC}	Supply voltage	V_{CC} and V_{CC_OSC} are the same voltage	2.5	3	4	V
I _{CC TX1}	Tx mode supply current 1	No L_IN, R_IN input, TXPOW[1:0] = 00, R _{TX} = open		13		mA
I _{CC TX2}	Tx mode supply current 2	No L_IN, R_IN input, TXPOW[1:0] = 00, R_{TX} = open, DIS AFLPF = 1		12		mA
I _{CC TX3}	Tx mode supply current 3	No L_IN, R_IN input, TXPOW[1:0] = 10, R_{TX} = 300 Ω		18		mA
I _{CC TX4}	Tx mode supply current 4	No L_IN, R_IN input, TXPOW[1:0] = 11, R_{TX} = 150 Ω		24		mA
I _{CC STBY1}	Standby current 1	STBY bit = 1 in I ² C mode		0.1	10	μA
I _{CC STBY2}	Standby current 2	D4, D3, D2, D1, D0 = 0, 0, 0, 0, 0 in parallel mode		0.1	10	μA

Crystal Oscillator

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
f _{XTAL}	Crystal oscillator frequency	Crystal $C_L = 12.5 \text{ pF}$		32.768		kHz

Voltage Controlled Oscillator

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{OSC}	Oscillator frequency range		150		217	MHz

Synthesizer

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Ν	Programmable counter	14 bit	271		16383	
f _{REF}	Reference frequency for phase detector			8.192		kHz
f _{STEP}	Tuning frequency step			8.192		kHz
		CP[1:0] = 00		0.6		
	Channe autor autorat	CP[1:0] = 01		1.25		۸
I _{CP}	Charge pump current	CP[1:0] = 10		2.5		μA
		CP[1:0] = 11		50		

RF Power

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
N		TXPOW[1:0] = 00, R_{TX} = open, R_L = 50 Ω		-7		
		TXPOW[1:0] = 01, R_{TX} = 300 Ω, R_{L} = 50 Ω		-3		dDm
VTXOUT	TX output power	TXPOW[1:0] = 10, R_{TX} = 300 Ω, R_{L} = 50 Ω		1		dBm
		TXPOW[1:0] = 11, R_{TX} = 150 Ω, R_{L} = 50 Ω		4	4	

AF Power

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
		AFADJ [2:0] = 000	-9		
		AFADJ [2:0] = 001	—6		
		AFADJ [2:0] = 010	—3		
<u>۸</u> ۲	AF input level adjust ratio	AFADJ [2:0] = 011 (Ref.)	0		dB
AF _{ADJ}		AFADJ [2:0] = 100	3		aв
		AFADJ [2:0] = 101	6		
		AFADJ [2:0] = 110	9		
		AFADJ [2:0] = 111	12		
	AF maximum input level (pre-emphasis 50 μs)	AFADJ = 0 dB, EMTC = 0, f_s = 400 Hz, L = R each channel		1000	mVpp
V _{IMAX50}		AFADJ = 0 dB, EMTC = 0, $f_s = 10 \text{ kHz}$, L = R each channel		330	mVpp
	AF maximum input level	AFADJ = 0 dB, EMTC = 1, f_s = 400 Hz, L = R each channel		1000	mVpp
V _{IMAX75}	(pre-emphasis 75 μs)	AFADJ = 0 dB, EMTC = 1, $f_s = 10$ kHz, L = R each channel		200	mVpp
V _{IAF}	AF typical input level for 100% dev	AFADJ = 0 dB, f_s = 400 Hz, DIS_EM = 0, L = R each channel	250		mVrms
f _{IAFR}	Input frequency range		20	15 k	Hz
R _{IAF}	AF input impedance		40		kΩ
		EMTC bit = 0	50		
t _{PRE}	Pre-emphasis	EMTC bit = 1	75		μs
f _{LPF}	AFLPF frequency response	DIS_AFLPF = 0, -3 dB	15		kHz

Mono Mode

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
fo mono	Output frequency response	CP = 1.25 µA	20		15 k	Hz
S/N _{MONO98}	Mono S/N at 98.1 MHz (100% modulation)	$\label{eq:L} \begin{array}{l} L = R = 250 \text{ mVrms}, \ f_{AF} = 1 \text{ kHz}, \ AFADJ = 0 \text{ dB}, \\ MODADJ = 5 \text{ dB}, \ PLTADJ = \text{ off}, \ MONO_ST = 1, \\ RF = 98.1 \text{ MHz}, \ BAND = 0 \end{array}$		60		dB
THD _{MONO98}	Mono THD at 98.1 MHz (30% modulation)	L = R = 75 mVrms, f_{AF} = 1 kHz, AFADJ = 0 dB, MODADJ = 5 dB, PLTADJ = off, MONO_ST = 1, RF = 98.1 MHz, BAND = 0		0.5		%
S/N _{MONO83}	Mono S/N at 83 MHz (100% modulation)	L = R = 250 mVrms, f_{AF} = 1 kHz, AFADJ = 0 dB, MODADJ = 11 dB, PLTADJ = off, MONO_ST = 1, RF = 83.0 MHz, BAND = 1		60		dB
THD _{MONO83}	Mono THD at 83 MHz (30% modulation)	L = R = 75 mVrms, f_{AF} = 1 kHz, AFADJ = 0 dB, MODADJ = 11 dB PLTADJ = off, MONO_ST = 1, RF = 83.0 MHz, BAND = 1		0.5		%
ATT _{MT MONO}	MUTE attenuation	MUTE bit = 1	50			dB

TEXAS INSTRUMENTS

www.ti.com

SLES226B-MAY 2008-REVISED FEBRUARY 2010

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
S/N _{ST98}	Stereo S/N at 98.1 MHz Main + sub = 90%, pilot = 10%	$ \begin{array}{l} L=R=225 \text{ mVrms, } f_{AF}=1 \text{ kHz,} \\ AFADJ=0 \text{ dB, } MODADJ=5 \text{ dB,} \\ PLTADJ=0 \text{ dB, } f_{RF}=98.1 \text{ MHz, } BAND=0 \end{array} $		55		dB
SEP _{ST98}	Stereo separation at 98.1 MHz Main + sub = 30%, pilot = 10%	L or R = 75 mVrms, f_{AF} = 1 kHz, AFADJ = 0 dB, PLTADJ = 0 dB, MODADJ = 5 dB, f_{RF} = 98.1 MHz, BAND = 0		30		dB
THD _{ST98}	Stereo THD at 98.1 MHz Main + sub = 30%, pilot = 10%	L or R = 75 mVrms, f_{AF} = 1 kHz, AFADJ = 0 dB, PLTADJ = 0 dB, MODADJ = 5 dB, f_{RF} = 98.1 MHz, BAND = 0		1.0		%
S/N _{ST83}	Stereo S/N at 83.0 MHz Main + sub = 90%, pilot = 10%	$\label{eq:linear} \begin{array}{l} L = R = 225 \text{ mVrms}, \ f_{AF} = 1 \text{ kHz}, \\ AFADJ = 0 \text{ dB}, \ PLTADJ = 0 \text{ dB}, \\ MODADJ = 11 \text{dB}, \ f_{RF} = 83.0 \text{ MHz}, \ BAND = 1 \end{array}$		55		dB
SEP _{ST83}	Stereo separation at 83.0 MHz Main + sub = 30%, pilot = 10%	L or R = 75 mVrms, f_{AF} = 1 kHz, AFADJ = 0 dB, MODADJ = 11 dB, PLTADJ = 0 dB, f_{RF} = 83.0 MHz, BAND = 1		30		dB
THD _{ST83}	Stereo THD at 83.0 MHz Main + sub = 30%, pilot = 10%	L or R = 75 mVrms, f_{AF} = 1 kHz, AFADJ = 0 dB, MODADJ = 11 dB, PLTADJ = 0 dB, f_{RF} = 83.0 MHz, BAND = 1		1.0		%
DIFF _{ST MOD}	Left channel and right channel modulation difference	L = R = 75 mVrms, f_{AF} = 1 kHz, AFADJ = 0 dB, MODADJ = 11 dB, PLTADJ = 0 dB, f_{RF} = 98.1 MHz, BAND = 1 Lch level Ref.	-1		1	dB

Modulation

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
		MODADJ[3:0] = 0000 (Ref.)	0		
		MODADJ[3:0] = 0001	1		
		MODADJ[3:0] = 0010	2		
		MODADJ[3:0] = 0011	3		
MODR _{ADJ}		MODADJ[3:0] = 0100	4		
		MODADJ[3:0] = 0101	5		
		MODADJ[3:0] = 0110	6		
	Madulation adjust ratio	MODADJ[3:0] = 0111	7		dB
	Modulation adjust ratio	MODADJ[3:0] = 1000	8		uБ
		MODADJ[3:0] = 1001	9		
		MODADJ[3:0] = 1010	10		
		MODADJ[3:0] = 1011	11		
		MODADJ[3:0] = 1100	12		
		MODADJ[3:0] = 1101	13		
		MODADJ[3:0] = 1110	14		
		MODADJ[3:0] = 1111	15		
MOD _{MONO76}	TX mono modulation at 76.0 MHz	L = R = 250 mVrms, f_{AF} = 1 kHz, AFADJ = 0 dB, PLTADJ = off, MONO_ST = 1, MODADJ = 13 dB, BAND = 1	75		kHzdev
MOD _{MONO83}	TX mono modulation at 83.0 MHz	L = R = 250 mVrms, f_{AF} = 1 kHz, AFADJ = 0 dB, PLTADJ = off, MONO_ST = 1, MODADJ = 11 dB, BAND = 1	75		kHzdev
MOD _{MONO90}	TX mono modulation at 90.0 MHz	$\label{eq:L} \begin{array}{l} L = R = 250 \text{ mVrms}, \ f_{AF} = 1 \text{ kHz}, \\ AFADJ = 0 \text{ dB}, \ PLTADJ = \text{off}, \ MONO_ST = 1, \\ MODADJ = 8 \text{ dB}, \ BAND = 1 \end{array}$	75		kHzdev
MOD _{MONO87}	TX mono modulation at 87.5 MHz	$\label{eq:L} \begin{array}{l} L = R = 250 \text{ mVrms}, \ f_{AF} = 1 \text{ kHz}, \\ AFADJ = 0 \text{ dB}, \ PLTADJ = \text{off}, \ MONO_ST = 1, \\ MODADJ = 9 \text{ dB}, \ BAND = 0 \end{array}$	75		kHzdev

www.ti.com

Modulation (continued)

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
MOD _{MONO98}	TX mono modulation at 98.1 MHz	L = R = 250 mVrms, f_{AF} = 1 kHz, AFADJ = 0 dB, PLTADJ = off, MONO_ST = 1, MODADJ = 5 dB, BAND = 0		75		kHzdev
MOD _{MONO108}	TX mono modulation at 108.0 MHz	L = R = 250 mVrms, $f_{AF} = 1$ kHz, AFADJ = 0 dB, PLTADJ = off, MONO_ST = 1, MODADJ = 3 dB, BAND = 0		75		kHzdev
		PLTADJ[2:0] = 000		-6		
		PLTADJ[2:0] = 001		-4		
		PLTADJ[2:0] = 010		-2		
MODR _{PLT}	Pilot modulation adjust ratio	PLTADJ[2:0] = 011 (Ref.)	0			dB
		PLTADJ[2:0] = 100		2		
		PLTADJ[2:0] = 101		4		
		PLTADJ[2:0] = 110		6		
MPLT _{TYP}	Typical pilot modulation	L = R = 225 mVrms, f_{AF} = 1 kHz, (main + sub = 90%), AFADJ = 0 dB, PLTADJ = 0 dB		10		%
MPLT _{MIN}	Minimum pilot modulation	L = R = 225 mVrms, f_{AF} = 1 kHz, (main + sub = 90%), AFADJ = 0 dB, PLTADJ = -6 dB		5		%
MPLT _{MAX}	Maximum pilot modulation	L = R = 225 mVrms, f_{AF} = 1 kHz, (main + sub = 90%), AFADJ = 0 dB, PLTADJ = 6 dB		20		%

I²C MODE (BUS_SEL PIN = GND)

	Table 1. Write Data												
BYTE	BIT 7 (MSB)	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0 (LSB)					
Address	1	1	0	0	0	1	AS	0					
Data 1	MUTE	0	N13	N12	N11	N10	N9	N8					
Data 2	N7	N6	N5	N4	N3	N2	N1	N0					
Data 3	PLTADJ2	PLTADJ1	PLTADJ0	DIS_TX	MONO_ST	TXPOW1	TXPOW0	PORT1					
Data 4	PORT2	STBY	BAND	MODADJ3	MODADJ2	MODADJ1	MODADJ0	DIS_AFLPF					
Data 5	DIS_EM	EMTC	0	AFADJ2	AFADJ1	AFADJ0	CP1	CP0					
Data 6	(reserved) ⁽¹⁾												

I²C Write Data

(1) Do not write any data on reserved area. The data of this area is loaded at power-on reset.

Table 2. Write Data Symbol Description

SYMBOL	DESCRIPTION							
AS	Address select bit 0: ADD_SEL(POW) pin GND 1: ADD_SEL(POW) pin Open							
MUTE	Mute control bit	0: Mute off 1: Mute on	0					
N13–N0	Programmable counter bits	Set main counter	all 0					
PLTADJ2,	Pilot level adjust bits	PLTADJ2 PLTADJ1 PLTADJ0 Level	0,					
PLTADJ1, PLTADJ0		0 0 0 -6 dB	1,					
1 EINBOO		0 0 1 -4 dB						
		0 1 0 –2 dB						
		0 1 1 0 dB						
		1 0 0 2 dB						
		1 0 1 4 dB						
		1 1 0 6 dB						
		1 1 1 pilot off						
DIS_TX	Disable TX power amp bit	0: TX power amp on 1: TX power amp off	0					
MONO_ST	Mono/stereo switch	0: 38 kHz sub carrier off 1: 38 kHz sub carrier on For mono mode, PLTADJ bits have to be set as "PLTADJ[2:0]=111"	0					
TXPOW1,	TX power level selection bits	TXPOW1 TXPOW0 Level	0,					
TXPOW0		0 0 –7 dBm	0					
		0 1 –3 dBm						
		1 0 1 dBm						
		1 1 4 dBm						
PORT1, PORT2	Port control bits	PORT1, PORT2 are enabled as general purpose ports 0: Low (Nch-MOS open drain on) 1: High (Nch-MOS open drain off)	1, 1					
STBY	Standby control bit	0: Standby off 1: Standby on	1					
BAND	Band selection bit	0: US/EU band (87.5 MHz to 108 MHz) 1: Japan band (76 MHz to 90 MHz)	0					

SN761634

SLES226B-MAY 2008-REVISED FEBRUARY 2010

12	Submit Documentation Feedback

SYMBOL			DESCRIPT	ION			DEFAULT
MODADJ3-	Modulation adjust bits	MODADJ3	MODADJ2	MODADJ1	MODADJ0	Total Composite Level	
MODADJ0		0	0	0	0	0 dB	
		0	0	0	1	1 dB	
		0	0	1	0	2 dB	
		0	0	1	1	3 dB	
		0	1	0	0	4 dB	
		0	1	0	1	5 dB	
		0	1	1	0	6 dB	
		0	1	1	1	7 dB	
		1	0	0	0	8 dB	
		1	0	0	1	9 dB	
		1	0	1	0	10 dB	
		1	0	1	1	11 dB	
		1	1	0	0	12 dB	
		1	1	0	1	13 dB	
		1	1	1	0	14 dB	
		1	1	1	1	15 dB	
DIS_AFLPF	Disable 15 kHz LPF		IZ LPF enabl IZ LPF disabl				0
DIS_EM	Disable pre-emphasis bit	0: De-emph 1: De-emph	asis on asis off				0
EMTC	Time constant control bit for pre-emphasis	0: 50 μs 1: 75 μs					1
AFADJ2,	AF level adjust bits	AFDJ2	AFDJ1	AFDJ0	Level		0,
AFADJ1, AFADJ0		0	0	0	–9 dB	_	1, 1
/1/1200		0	0	1	-6 dB		
		0	1	0	–3 dB		
		0	1	1	0 dB		
		1	0	0	3 dB		
		1	0	1	6 dB		
		1	1	0	9 dB		
		1	1	1	12 dB		
CP1, CP0	CP current selection bits	CP1	CP0	CP Current			1, 0
		0	0	0.6 μA			
		0	1	1.25 μA			
		1	0	2.5 μΑ			
		1	1	50 μA			

Table 2. Write Data Symbol Description (continued)

Copyright © 2008–2010, Texas Instruments Incorporated

www.ti.com

PLL Setting in I²C Mode

Calculation of N13–N0 14-bit word (N_{PLL}) can be done as follows:

 f_{RF} = desired tuning frequency

 f_{XTAL} = crystal frequency (32.768 kHz)

$$N_{PLL} = 4 \times \frac{f_{RF}}{f_{XTAL}}$$

Example:

 $f_{RF} = 88.0 \text{ M}$

$$N_{PLL} = 4 \times \frac{88.0 \text{ M}}{32.768 \text{ kHz}} = 10742$$

The PLL word becomes 29F6h (N13, N12, N11, N10, N9, N8, N7, N6, N5, N4, N3, N2, N1, N0 = 10 1001 1111 0110).

Initial setting	Audio input level	L = R = 75 mVrms, AF	$ADJ = 0 dB, f_s = 400 Hz$
	Pilot level:	PLTADJ = 0 dB means	10%
	FM modulation:	MODADJ depends on	TX frequency to be 22.5 kHz dev.
	Output power:	TXPOW = -7 dBm ,	pullup resistance is not necessary
		TXPOW = -3, 1 dBm,	antenna load 50 Ω add pullup resistance R_{TX} 300 Ω
		TXPOW = 4 dBm,	antenna load 50 Ω add pullup resistance R_{TX} 150 Ω

To Use External XTAL Signal

To use external signal instead of XTAL oscillation, pin assignment is as follows:

- XTAL1 (pin 9): OPEN
- XTAL2 (pin 10): signal input with coupling capacitor

Input signal wave should be sine wave or square wave, acceptable amplitude ranges are:

- Sine wave: 500 mVpp to 2 Vpp
- Rectangle (square) wave: 200 mVpp to 2 Vpp

SLES226B-MAY 2008-REVISED FEBRUARY 2010

PARALLEL MODE (BUS_SEL PIN = OPEN)

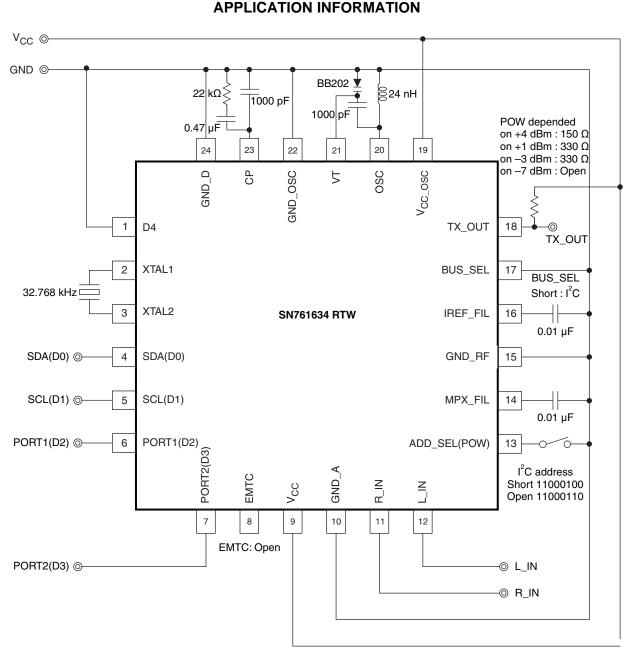
Channel/Standby Setting in Parallel Mode

CHANNEL SETTING NO.	D4	D3	D2	D1	D0	FREQUENCY (MHz) OR STANDBY	MODADJ SETTING
0	0	0	0	0	0	standby	9
1	0	0	0	0	1	87.7	9
2	0	0	0	1	0	87.9	9
3	0	0	0	1	1	88.1	9
4	0	0	1	0	0	88.3	9
5	0	0	1	0	1	88.5	9
6	0	0	1	1	0	88.7	9
7	0	0	1	1	1	88.9	3
8	0	1	0	0	0	106.7	3
9	0	1	0	0	1	106.9	3
10	0	1	0	1	0	107.1	3
11	0	1	0	1	1	107.3	3
12	0	1	1	0	0	107.5	3
13	0	1	1	0	1	107.7	3
14	0	1	1	1	0	107.9	3
15	0	1	1	1	1	standby	3
16	1	0	0	0	0	standby	13
17	1	0	0	0	1	76.8	13
18	1	0	0	1	0	77.0	13
19	1	0	0	1	1	77.2	13
20	1	0	1	0	0	77.4	13
21	1	0	1	0	1	77.6	13
22	1	0	1	1	0	77.8	13
23	1	0	1	1	1	78.0	13
24	1	1	0	0	0	88.0	9
25	1	1	0	0	1	88.2	9
26	1	1	0	1	0	88.4	9
27	1	1	0	1	1	88.6	9
28	1	1	1	0	0	88.8	9
29	1	1	1	0	1	89.0	9
30	1	1	1	1	0	89.2	9
31	1	1	1	1	1	standby	9

www.ti.com

Table 3. TX Power Setting in Parallel Mode

ADD_SEL(POW) PIN	TX POWER
Open	4 dBm
330 k Ω ±20% pulldown	1 dBm
100 k Ω ±20% pulldown	–3 dBm
GND	–7 dBm

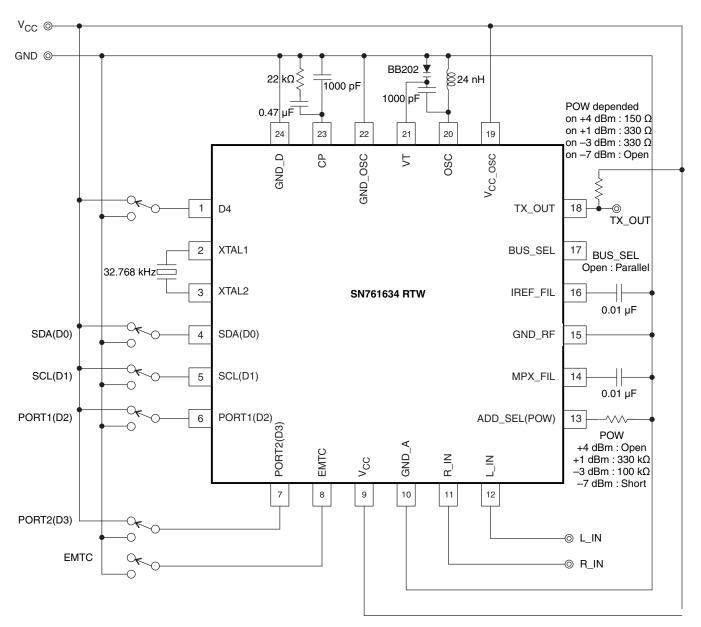

Table 4. Pre-Emphasis Setting in Parallel Mode

EMTC PIN	PRE-EMPHASIS TIME CONSTANT
Open	75 μs
GND	50 μs

Other settings used are "default" value in Table 1.

Texas Instruments

www.ti.com


A. Pin 1 (D4) input connects to GND.

NOTE

This application information is advisory and performance check is required at actual application circuits. TI assumes no responsibility for the consequences of use of this circuit, such as an infringement of intellectual property rights or other rights, including patents, of third parties.

NOTE

This application information is advisory and performance check is required at actual application circuits. TI assumes no responsibility for the consequences of use of this circuit, such as an infringement of intellectual property rights or other rights, including patents, of third parties.

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins Packa Qty	ge Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN761634RTWR	ACTIVE	QFN	RTW	24 300) Green (RoHS a no Sb/Br)	& CU NIPDAU	Level-2-260C-1 YEAR

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

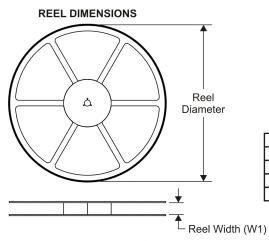
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

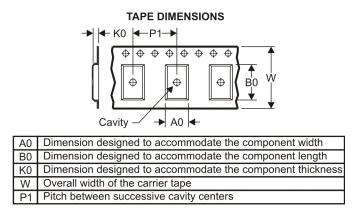
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

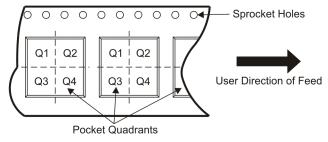
⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

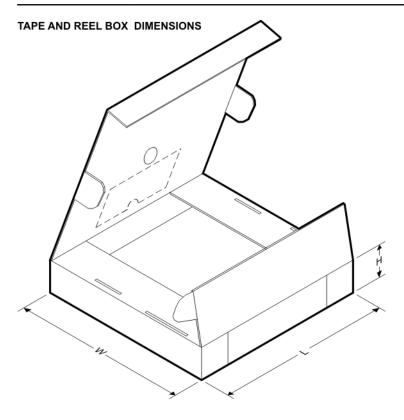

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

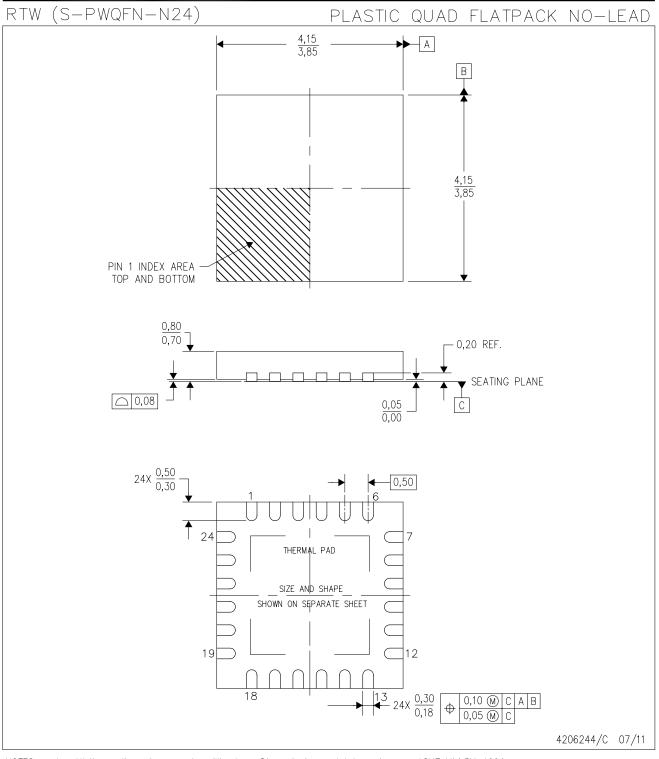
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


1	All dimensions are nominal												
	Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	SN761634RTWR	QFN	RTW	24	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION


20-Oct-2010

*All dimensions are nominal

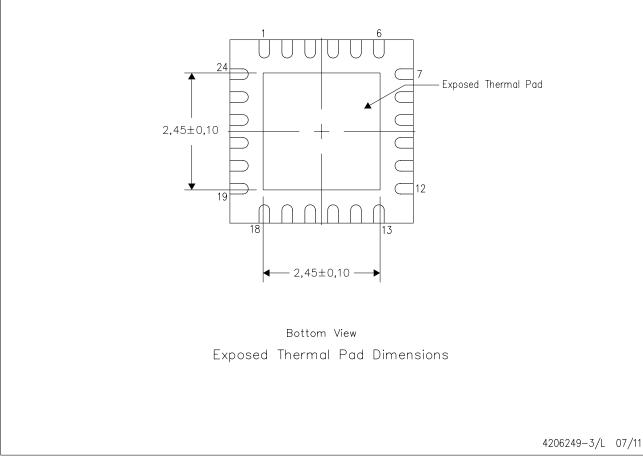
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN761634RTWR	QFN	RTW	24	3000	346.0	346.0	29.0

MECHANICAL DATA

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-Leads (QFN) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
 F. Falls within JEDEC M0-220.

<u>RTW (S-PWQFN-</u>N24)

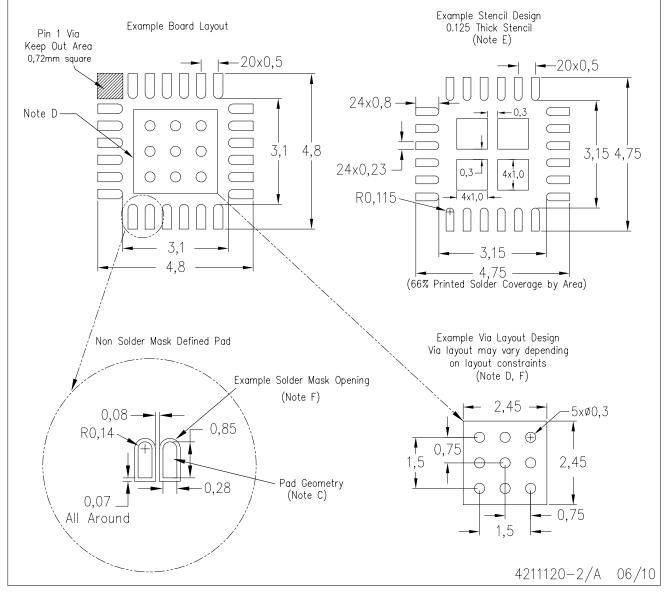

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.



NOTES: A. All linear dimensions are in millimeters

RTW (S-PWQFN-N24)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES:

- A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com	Wireless	www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions	www.ti.com/lprf		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated