

STGF3NC120HD

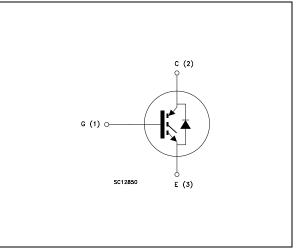
N-CHANNEL 3A - 1200V TO-220FP FAST PowerMESH™ IGBT with Integral Damper Diode

Table 1: General Features

ТҮРЕ	V _{CES}	V _{CE(sat)} (Max) @25℃	lc @100°C
STGF3NC120HD	TGF3NC120HD 1200 V		3 A

- LOW ON-VOLTAGE DROP (V_{cesat})
- HIGH CURRENT CAPABILITY
- OFF LOSSES INCLUDE TAIL CURRENT
- HIGH SPEED

DESCRIPTION


This PowerMESH[™] IGBT is designed using the latest high voltage technology based on a patented strip layout. A new lifetime control allows good switching performance and low voltage drop. This IGBT featuring a co-packaged diode is optimized for horizontal deflection applications in small and medium sets.

APPLICATIONS

- HORIZONTAL DEFLECTION
- HOME APPLIANCE
- LIGHTING

Figure 1: Package

Figure 2: Internal Schematic Diagram

Table 2: Order Code

PART NUMBER	MARKING	PACKAGE	PACKAGING
STGF3NC120HD	GF3NC120HD	TO-220FP	TUBE

Symbol	Parameter	Value	Unit	
V _{CES}	Collector-Emitter Voltage (V _{GS} = 0)	1200	V	
V_{ECR}	Emitter-Collector Voltage	20	V	
V_{GE}	Gate-Emitter Voltage	±20	V	
Ι _C	Collector Current (continuous) at T _C = 25°C	6	А	
I _C Collector Current (continuous) at T _C = 100°C		3	А	
I _{СМ} (∎)	Collector Current (pulsed)	10	А	
Ртот	Total Dissipation at $T_C = 25^{\circ}C$	25	W	
	Derating Factor	0.20	W/°C	
VISO	Insulation withstand voltage AC (t=1sec, Tc=25°C)	2500	V	
T _{stg}	Storage Temperature	-55 to 150	°C	
Tj	Operating Junction Temperature range	-55 to 150		

Table 3: Absolute Maximum ratings

(
) Pulse width limited by safe operating area

Table 4: Thermal Data

		Min.	Тур.	Max.	
Rthj-case	Thermal Resistance Junction-case			5.0	°C/W
Rthj-amb	Thermal Resistance Junction-ambient			62.5	°C/W
TL	Maximum Lead Temperature for Soldering Purpose (1.6 mm from case, for 10 sec.)		300		°C

ELECTRICAL CHARACTERISTICS (T_{CASE} =25°C UNLESS OTHERWISE SPECIFIED) Table 5: On/Off

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{BR(CES)}	Collector-Emitter Breakdown Voltage	I _C = 1 mA, V _{GE} = 0	1200			V
ICES	Collector cut-off Current $(V_{GE} = 0)$	V_{CE} = Max Rating, T_C = 25 °C V_{CE} = Max Rating, T_C = 125 °C			50 1	μA mA
I _{GES}	Gate-Emitter Leakage Current (V _{CE} = 0)	$V_{GE} = \pm 20V$, $V_{CE} = 0$			±100	nA
V _{GE(th)}	Gate Threshold Voltage	$V_{CE} = V_{GE}, I_C = 250 \ \mu A$ 2			5	V
V _{CE(sat)}	Collector-Emitter Saturation Voltage	V _{GE} = 15V, I _C = 3 A V _{GE} = 15V, I _C = 3 A, Tc= 125°C		2.3 2.2	2.8	V V

ELECTRICAL CHARACTERISTICS (CONTINUED) Table 6: Dynamic

Symbol	nbol Parameter Test Conditions		Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	$V_{CE} = 25 V$, $I_{C} = 3 A$		4		S
Cies	Input Capacitance	$V_{CE} = 25 \text{ V}, \text{ f} = 1 \text{ MHz}, \text{ V}_{GE} = 0$		470		pF
Coes	Output Capacitance	Output Capacitance		45		pF
Cres	Reverse Transfer Capacitance			6		pF
Q _g Q _{ge} Q _{gc}	Total Gate Charge Gate-Emitter Charge Gate-Collector Charge	e $V_{CC} = 960 \text{ V}, \text{ I}_{C} = 3 \text{ A},$ $V_{GE} = 15 \text{ V}$ (see Figure 22)		24 3 10	32	nC nC nC
I _{CL}	Turn-off SOA minimum current	oramp , ,				A

(1) Pulsed: Pulse duration= 300 µs, duty cycle 1.5%

Table 7: Switching On

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r (di/dt) _{on}	Turn-on Delay Time Current Rise Time Turn-on Current Slope			15 3.5 880		ns ns A/µs
t _{d(on)} t _r (di/dt) _{on}	Turn-on Delay Time Current Rise Time Turn-on Current Slope	$V_{CC} = 480 \text{ V}, I_C = 3 \text{ A}$ R _G = 10 Ω , V _{GE} = 15V, Tj= 125°C (see Figure 20)		14.5 4 770		ns ns A/µs

Table 8: Switching Off

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _r (V _{off})	Off Voltage Rise Time	$V_{cc} = 800 \text{ V}, I_C = 3 \text{ A},$		72		ns
t _d (_{off})	Turn-off Delay Time	R _G = 10 Ω , V _{GE} = 15 V T _J = 25 °C		118		ns
t _f	Current Fall Time	(see Figure 20)		250		ns
t _r (V _{off})	Off Voltage Rise Time	$V_{cc} = 800 \text{ V}, I_C = 3 \text{ A},$		132		ns
t _d (_{off})	Turn-off Delay Time	R _G = 10 Ω , V _{GE} = 15 V Ti = 125 °C		210		ns
t _f	Current Fall Time	(see Figure 20)		470		ns

Table 9: Switching Energy

Symbol	Parameterr	Test Conditions	Min.	Тур.	Max	Unit
Eon (2) E _{off} (3) E _{ts}	Turn-on Switching Losses Turn-off Switching Loss Total Switching Loss			236 290 526		μJ μJ
Eon (2) E _{off} (3) E _{ts}	Turn-on Switching Losses Turn-off Switching Loss Total Switching Loss			360 620 980		μJ μJ

(2) Eon is the turn-on losses when a typical diode is used in the test circuit in figure 2. If the IGBT is offered in a package with a co-pack diode, the co-pack diode is used as external diode. IGBTs & DIODE are at the same temperature (25°C and 125°C)
 (3) Turn-off losses include also the tail of the collector current.

Table 10: Collector-Emitter Diode

Symbol	Parameterr	Test Conditions	Min.	Тур.	Max	Unit
l _f I _{fm}	Forward Current Forward Current pulsed				3 12	A A
V _f	Forward On-Voltage	If = 1.5 A If = 1.5A, Tj = 125°C		1.6 1.3	2.0	V V
t _{rr} Q _{rr} I _{rm}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	If = 3 A, V_R = 40 V Tj = 25°C, di/dt = 100 A/µs (see Figure 23)		51 85 3.3		ns nC A
t _{rr} Q _{rr} I _{rm}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	If = 3 A, V_R = 40 V Tj = 125°C, di/dt = 100 A/µs (see Figure 23)		64 133 4.2		ns nC A

HV24060 lc(A) 60 $V_{GE} = 15V$ 14V 13\ 12\ 40 11 10V 9١ 20 8٧ 7١ 6٧ 0 3 6 9 12 $V_{CE}(V)$

Figure 3: Output Characteristics

Figure 4: Transconductance

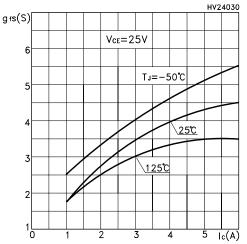
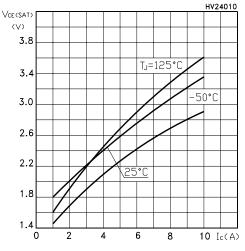



Figure 5: Collector-Emitter On Voltage vs Collector Current

Figure 6: Transfer Characteristics

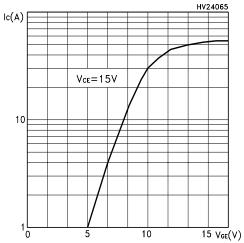


Figure 7: Collector-Emitter On Voltage vs Temperature

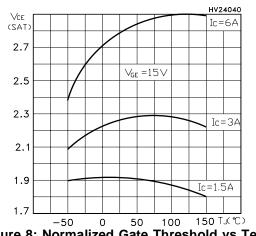
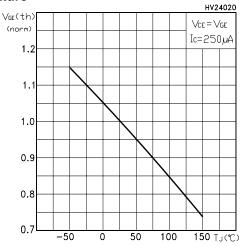
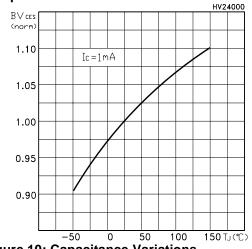




Figure 8: Normalized Gate Threshold vs Temperature

5

Figure 9: Normalized Breakdown Voltage vs Temperature

Figure 10: Capacitance Variations

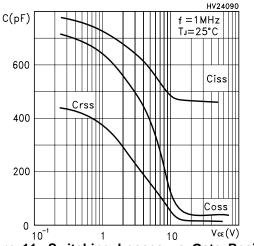
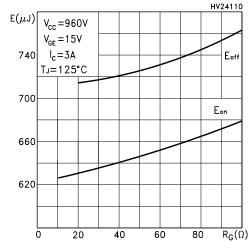
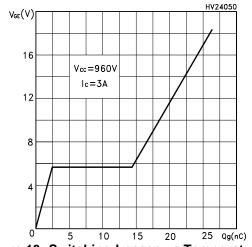
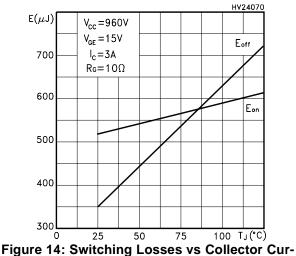
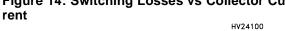
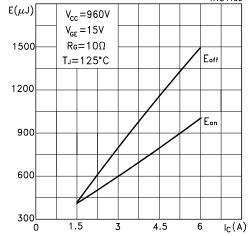
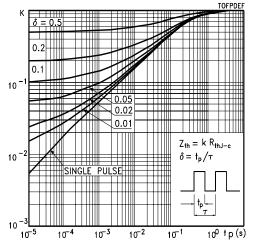
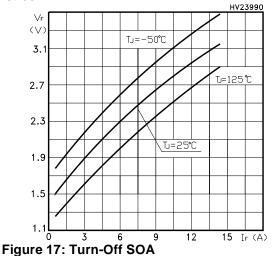



Figure 11: Switching Losses vs Gate Resistance

Figure 12: Gate Charge vs Gate-Emitter Voltage


Figure 13: Switching Losses vs Temperature



47/

Figure 15: Thermal Impedance

Figure 16: Collector-Emitter Diode Characteristics

HV24080 HV24080 $T_{j=150C}$ $T_{j=150C}$ $T_{j=150C}$

Figure 18: Power Losses

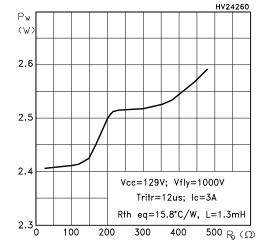


Figure 19: Power Losses

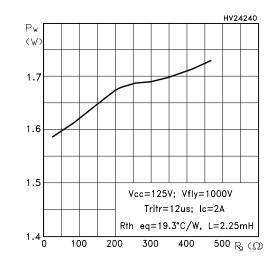


Figure 20: Test Circuit for Inductive Load Switching

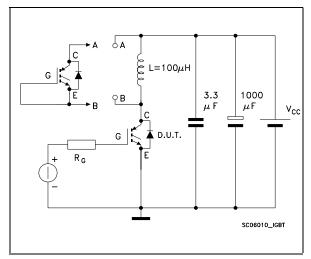


Figure 21: Switching Waveforms

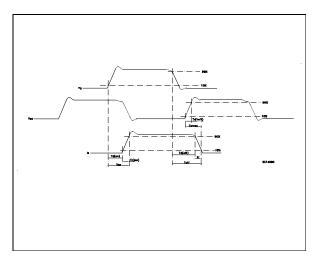


Figure 22: Gate Charge Test Circuit

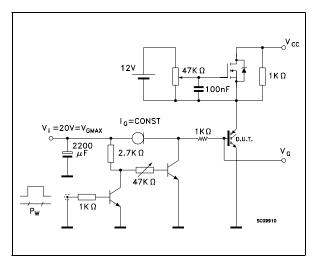
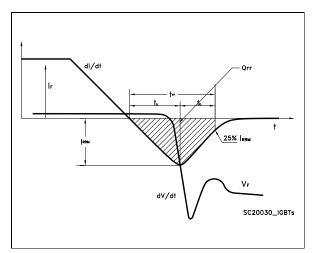
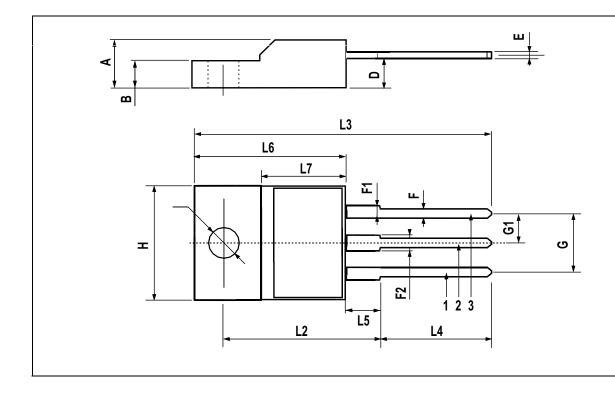




Figure 23: Diode Recovery Time Waveforms

TO-220FP MECHANICAL DATA

		mm.			inch	
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А	4.4		4.6	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
Е	0.45		0.7	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.7	0.045		0.067
F2	1.15		1.7	0.045		0.067
G	4.95		5.2	0.195		0.204
G1	2.4		2.7	0.094		0.106
Н	10		10.4	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	.0385		0.417
L5	2.9		3.6	0.114		0.141
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
Ø	3		3.2	0.118		0.126

Table 11: Revision History

Date	Revision	Description of Changes
13-Dec-2004	1	First release
21-Jan-2005	2	Modified Curve 17

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

All other names are the property of their respective owners

© 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.