High-voltage, high-side current sense amplifier #### **Features** - Independent supply and input common-mode voltages - Wide common-mode operating range: 2.9 to 70 V in single-supply configuration -2.1 to 65 V in dual-supply configuration - Wide common-mode surviving range: -16 to 75 V (reversed battery and load-dump conditions) - Supply voltage range:2.7 to 5.5 V in single supply configuration - Low current consumption: I_{CC} max = 360 µA - Pin selectable gain: 50 V/V or 100 V/V - Buffered output - EMI filtering #### **Applications** - Automotive current monitoring - DC motor control - Photovoltaic systems - Battery chargers - Precision current sources - Current monitoring of notebook computers - Uninterruptible power supplies - High-end power supplies #### **Description** The TSC1031 measures a small differential voltage on a high-side shunt resistor and translates it into a ground-referenced output voltage. The TSC1031's dedicated schematic eases the implementation of EMI filtering in harsh environments. The gain is adjustable to 50 V/V or 100 V/V by a selection pin. Wide input common-mode voltage range, low quiescent current, and tiny TSSOP8 packaging enable use in a wide variety of applications. The input common-mode and power supply voltages are independent. The common-mode voltage can range from 2.9 to 70 V in the single-supply configuration or be offset by an adjustable voltage supplied on the Vcc- pin in the dual-supply configuration. With a current consumption lower than 360 μA and a virtually null input leakage current in standby mode, the power consumption in the applications is minimized. Contents TSC1031 ## **Contents** | 1 | Appl | lication schematic and pin description | . 3 | |---|------|--|-----| | 2 | Abso | olute maximum ratings and operating conditions | . 6 | | 3 | Elec | trical characteristics | . 7 | | 4 | Para | meter definitions | 10 | | | 4.1 | Common mode rejection ratio (CMR) | 10 | | | 4.2 | Supply voltage rejection ratio (SVR) | 10 | | | 4.3 | Gain (Av) and input offset voltage (Vos) | 10 | | | 4.4 | Output voltage drift versus temperature | 12 | | | 4.5 | Input offset drift versus temperature | 13 | | | 4.6 | Output voltage accuracy | 13 | | 5 | Maxi | imum permissible voltages on pins | 15 | | 6 | Appl | lication information | 16 | | 7 | Pack | rage information | 18 | | | 7.1 | SO-8 package information | 19 | | | 7.2 | TSSOP-8 package information | 20 | | 8 | Orde | ering information | 21 | | a | Revi | sion history | 22 | ## 1 Application schematic and pin description The TSC1031 high-side current sense amplifier can be used in either single- or dual-supply mode. In the single-supply configuration, the TSC1031 features a wide 2.9 V to 70 V input common-mode range totally independent of the supply voltage. In the dual-supply range, the common-mode range is shifted by the value of the negative voltage applied on the Vcc-pin. For instance, with Vcc+=5 V and Vcc-=-5 V, then the input common-mode range is -2 V to 65 V. Figure 1. Single-supply configuration schematic Figure 2. Dual-supply configuration schematic Figure 3. Common-mode versus supply voltage in dual-supply configuration *Table 1* describes the function of each pin. Their position is shown in the illustration on the cover page and in *Figure 1 on page 3*. Table 1. Pin description | Symbol | Туре | Function | |--------|---------------|--| | Out | Analog output | The Out voltage is proportional to the magnitude of the sense voltage $V_p\text{-}V_m$. | | Gnd | Power supply | Ground line. | | Vcc+ | Power supply | Positive power supply line. | | Vcc- | Power supply | Negative power supply line. | | Vp | Analog input | Connection for the external sense resistor. The measured current enters the shunt on the $\rm V_{\rm p}$ side. | | Vm | Analog input | Connection for the external sense resistor. The measured current exits the shunt on the $\rm V_{\rm m}$ side. | | SEL | Digital input | Gain-select pin. | | A1 | Analog output | Connection to the output resistor. | ## 2 Absolute maximum ratings and operating conditions Table 2. Absolute maximum ratings | Table 2. | Absolute maximum ratings | | | |------------------------------------|---|-------------------------------|------| | Symbol | Parameter | Value | Unit | | V _{id} | Input pins differential voltage (V _p -V _m) | ±20 | V | | V _{in_sense} | Sensing pins input voltages $(V_p, V_m)^{(1)}$ | -16 to 75 | V | | V _{in_sel} | Gain selection pin input voltage (SEL) ⁽²⁾ | -0.3 to V _{cc+} +0.3 | V | | V _{in_A1} | A1 pin input voltage ⁽²⁾ | -0.3 to V _{cc+} +0.3 | V | | V _{cc+} | Positive supply voltage ⁽²⁾ | -0.3 to 7 | V | | V _{CC+} -V _{CC-} | DC supply voltage | 0 to 15 | V | | V _{out} | DC output pin voltage ⁽²⁾ | -0.3 to V _{cc+} +0.3 | V | | T _{stg} | Storage temperature | -55 to 150 | °C | | T _j | Maximum junction temperature | 150 | °C | | D | TSSOP8 thermal resistance junction to ambient | 120 | °C/W | | R _{thja} | SO8 thermal resistance junction to ambient | 125 | °C/W | | | HBM: human body model ⁽³⁾ | 2.5 | kV | | ESD | MM: machine model ⁽⁴⁾ | 150 | V | | | CDM: charged device model ⁽⁵⁾ | 1.5 | kV | ^{1.} These voltage values are measured with respect to the $V_{\rm cc}$ - pin. Table 3. Operating conditions | Symbol | Parameter | Value | Unit | |-------------------|---|------------|------| | V _{cc+} | DC supply voltage in single-supply configuration from T_{min} to T_{max} (V_{cc} - connected to Gnd = 0 V) | 2.7 to 5.5 | ٧ | | | Negative supply voltage in dual-supply configuration from T _{min} to T _{max} | | | | V _{cc-} | V _{cc+} = 5.5 V max | -8 to 0 | V | | | V _{cc+} = 3 V max | -11 to 0 | V | | V _{icm} | Common-mode voltage range referred to pin Vcc - $(T_{min} \text{ to } T_{max})$ | 2.9 to 70 | ٧ | | T _{oper} | Operational temperature range (T _{min} to T _{max}) | -40 to 125 | °C | 6/23 Doc ID 16875 Rev 1 ^{2.} These voltage values are measured with respect to the Gnd pin. ^{3.} Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 k Ω resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating. ^{4.} Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to ground. #### 3 Electrical characteristics The electrical characteristics given in the following tables are measured under the following test conditions unless otherwise specified. - $T_{amb} = 25^{\circ} \text{ C}$, $V_{cc+} = 5 \text{ V}$, V_{cc-} connected to Gnd (single-supply configuration). - \bullet V_{sense} = V_p-V_m = 50 mV, V_m = 12 V, no load on Out, all gain configurations. - Rf1, Rf2 and Rf3 resistors are short-circuited. #### Table 4. Supply | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |------------------|----------------------|--|------|------|------|------| | I _{CC} | Total supply current | V _{sense} = 0 V, T _{min} < T _{amb} < T _{max} | | 200 | 360 | μΑ | | I _{CC1} | Total supply current | $V_{sense} = 50 \text{ mV Av} = 50 \text{ V/V}$
$T_{min} < T_{amb} < T_{max}$ | | 300 | 480 | μΑ | Table 5. Input | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |----------------------|--|--|------|------|---------------|------------| | DC CMR | DC common-mode rejection
Variation of V _{out} versus V _{icm}
referred to input ⁽¹⁾ | 2.9 V< V _m < 70 V
T _{min} < T _{amb} < T _{max} | 90 | 105 | | dB | | AC CMR | AC common-mode rejection
Variation of V _{out} versus V _{icm}
referred to input (peak-to-peak
voltage variation) | Av = 50 V/V or 100 V/V
2.9 V< V _{icm} < 30 V
1 kHz sine wave | | 95 | | dB | | SVR | Supply voltage rejection
Variation of V _{out} versus V _{CC} ⁽²⁾ | Av = 50 V/V
2.7 V< V _{CC} < 5.5 V
V _{sense} = 30 mV | 85 | 100 | | dB | | V _{os} | Input offset voltage ⁽³⁾ | $T_{amb} = 25^{\circ} C$ $T_{min} < T_{amb} < T_{max}$ | | | ±500
±1100 | μV | | dV _{os} /dT | Input offset drift vs. T | $Av = 50 \text{ V/V}$ $T_{min} < T_{amb} < T_{max}$ | -20 | | +5 | μV/°C | | I _{lk} | Input leakage current | V _{CC} = 0 V | | | 1 | μΑ | | I _{ib} | Input bias current | V _{sense} = 0 V | | 10 | 15 | μΑ | | Rg1 | Input resistor value | | | 5 | | k Ω | | V _{IL} | Logic low voltage (SEL) | V _{CCmin} < V _{CC} < V _{CCmax} | -0.3 | | 0.5 | V | | V _{IH} | Logic high voltage (SEL) | V _{CCmin} < V _{CC} < V _{CCmax} | 1.2 | | V_{CC} | V | | I _{sel} | Gain-select pins (SEL)
leakage input current | SEL pin connected to GND or V _{CC} | | 400 | | nA | - 1. See Chapter 4: Parameter definitions on page 10 for the definition of CMR. - 2. See Chapter 4 for the definition of SVR. - 3. See Chapter 4 for the definition of V_{os} . Table 6. Output | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |-----------------------------------|--|--|------|-----------|------------|--------| | K1 | Sense amplifier gain (K1 = Rg3/Rg1) | | | 25 | | | | K2 | Voltage buffer gain | SEL= Gnd
SEL= Vcc+ | | 2
4 | | | | Av | Total gain (Av = K1.K2) | SEL= Gnd
SEL= Vcc+ | | 50
100 | | V/V | | $\Delta V_{out}/\Delta T$ | Output voltage drift vs. T ⁽¹⁾ | $Av = 50 \text{ V/V}$ $T_{min} < T_{amb} < T_{max}$ | | | ±240 | ppm/°C | | $\Delta V_{out} / \Delta I_{out}$ | Output stage load regulation | -10 mA < I _{out} <10 mA
I _{out} sink or source current
Av = 50 V/V, T _{amb} = 25° C | | 0.3 | ±1.5 | mV/mA | | $\Delta V_{ m out}$ | Total output voltage accuracy ⁽²⁾ | $V_{sense} = 50 \text{ mV}^{(3)}$ $T_{amb} = 25^{\circ} \text{ C}$ $T_{min} < T_{amb} < T_{max}$ | | | ±2.5
±4 | % | | $\Delta V_{ m out}$ | Total output voltage accuracy | $V_{sense} = 90 \text{ mV}^{(3)}$ $T_{amb} = 25^{\circ} \text{ C}$ $T_{min} < T_{amb} < T_{max}$ | | | ±3.5
±5 | % | | ΔV_{out} | Total output voltage accuracy | V_{sense} = 20 mV T_{amb} = 25° C T_{min} < T_{amb} < T_{max} | | | ±3.5
±5 | % | | ΔV_{out} | Total output voltage accuracy | V_{sense} = 10 mV T_{amb} = 25° C T_{min} < T_{amb} < T_{max} | | | ±5.5
±8 | % | | ΔV_{out} | Total output voltage accuracy | V_{sense} = 5 mV T_{amb} = 25° C T_{min} < T_{amb} < T_{max} | | | ±10
±22 | % | | I _{sc} | Short-circuit current | OUT connected to V _{CC} or GND | 15 | 26 | | mA | | V _{OH} | Output stage high-state saturation voltage $V_{OH} = V_{CC} - V_{out}$ | V _{sense} = 1 V
I _{out} = 1 mA | | 85 | 135 | mV | | V _{OL} | Output stage low-state saturation voltage | V _{sense} = -1 V
I _{out} = 1 mA | | 80 | 125 | mV | ^{1.} See Chapter 4: Parameter definitions on page 10 for the definition of output voltage drift versus temperature. The output voltage accuracy is the difference with the expected theoretical output voltage V_{out-th} = Av*V_{sense}. See Chapter 4 for a more detailed definition. ^{3.} Except for Av = 100 V/V. Table 7. Frequency response | Symbol | Parameter Test conditions | | Min. | Тур. | Max. | Unit | |------------------|--|---|------|------|------|------| | | | V_{sense} = 10 mV to 100 mV,
C_{load} = 47 pF | | | | | | ts | Output settling to 1% of final value | Av = 50 V/V | | 6 | | μs | | | | Av = 100 V/V | | 10 | | μs | | t _{SEL} | Output settling to 1% of final value | Any change of state of SEL | | 1 | | | | t _{rec} | Response to common-mode voltage change. Output settling to 1% of final value | V_{cc+} = 5 V, V_{cc-} = -5 V
V_m step change from -2 V to
30 V or 30 V to -2 V | | 20 | | μs | | SR | Slew rate | V _{sense} = 10 mV to 100 mV | 0.4 | 0.6 | | V/µs | | BW | 3 dB bandwidth | C_{load} = 47 pF V_{icm} = 12 V V_{sense} = 50 mV Av = 50 V/V | | 700 | | kHz | Table 8. Noise | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |--------|--------------------------------|-----------------|------|------|------|--------------------| | eN | Equivalent input noise voltage | f = 1 kHz | | 40 | | nV/√ Hz | Parameter definitions TSC1031 #### 4 Parameter definitions #### 4.1 Common mode rejection ratio (CMR) The common mode rejection ratio (CMR) measures the ability of the current sensing amplifier to reject any DC voltage applied on both inputs V_p and V_m . The CMR is referred back to the input so that its effect can be compared with the applied differential signal. The CMR is defined by the formula: $$CMR = -20 \cdot \log \frac{\Delta V_{out}}{\Delta V_{icm} \cdot Av}$$ #### 4.2 Supply voltage rejection ratio (SVR) The supply voltage rejection ratio (SVR) measures the ability of the current-sensing amplifier to reject any variation of the supply voltage V_{CC} . The SVR is referred back to the input so that its effect can be compared with the applied differential signal. The SVR is defined by the formula: $$SVR = -20 \cdot log \frac{\Delta V_{out}}{\Delta V_{CC} \cdot Av}$$ ### 4.3 Gain (Av) and input offset voltage (Vos) The input offset voltage is defined as the intersection between the linear regression of the V_{out} vs. V_{sense} curve with the X-axis (see *Figure 4*.). If V_{out1} is the output voltage with $V_{sense} = V_{sense2}$, then V_{os} can be calculated with the following formula. $$V_{os} = V_{sense1} - \left(\frac{V_{sense1} - V_{sense2}}{V_{out1} - V_{out2}} \cdot V_{out1} \right)$$ 10/23 Doc ID 16875 Rev 1 TSC1031 Parameter definitions Figure 4. V_{out} versus V_{sense} characteristics: detail for low V_{sense} values The values of V_{sense1} and V_{sense2} used for the input offset calculations are detailed in *Table 9*. Table 9. Test conditions for V_{os} voltage calculation | Av (V/V) | V _{sense1} (mV) | V _{sense2} (mV) | |----------|--------------------------|--------------------------| | 50 | 50 | 5 | | 100 | 40 | 5 | Parameter definitions TSC1031 #### 4.4 Output voltage drift versus temperature The output voltage drift versus temperature is defined as the maximum variation of V_{out} with respect to its value at 25° C over the temperature range. It is calculated as follows: $$\frac{\Delta V_{out}}{\Delta T} = max \frac{V_{out}(T_{amb}) - V_{out}(25^{\circ}C)}{T_{amb} - 25^{\circ}C}$$ with $T_{min} < T_{amb} < T_{max}$. Figure 5 provides a graphical definition of the output voltage drift versus temperature. On this chart V_{out} is always comprised in the area defined by the maximum and minimum variation of V_{out} versus T, and T = 25° C is considered to be the reference. TSC1031 Parameter definitions #### 4.5 Input offset drift versus temperature The input voltage drift versus temperature is defined as the maximum variation of V_{os} with respect to its value at 25° C over the temperature range. It is calculated as follows: $$\frac{\Delta V_{os}}{\Delta T} = max \frac{V_{os}(T_{amb}) - V_{os}(25^{\circ}C)}{T_{amb} - 25^{\circ}C}$$ with $T_{min} < T_{amb} < T_{max}$. Figure 6. provides a graphical definition of the input offset drift versus temperature. On this chart V_{os} is always comprised in the area defined by the maximum and minimum variation of V_{os} versus T, and T = 25° C is considered to be the reference. ### 4.6 Output voltage accuracy The output voltage accuracy is the difference between the actual output voltage and the theoretical output voltage. Ideally, the current sensing output voltage should be equal to the input differential voltage multiplied by the theoretical gain, as in the following formula. $$V_{out-th} = Av . V_{sense}$$ The actual value is very slightly different, mainly due to the effects of: - the input offset voltage V_{os}, - the non-linearity. Parameter definitions TSC1031 Vout Actual Ideal Vout accuracy for Vsense = 5 mV Vsense 5 mV AM04521 Figure 7. Vout vs. Vsense theoretical and actual characteristics The output voltage accuracy, expressed as a percentage, can be calculated with the following formula, $$\Delta V_{out} = \frac{abs(V_{out} - (Av \cdot V_{sense}))}{Av \cdot V_{sense}}$$ with 50 V/V or 100 V/V depending on the configuration of the SEL and SEL2 pins. ### 5 Maximum permissible voltages on pins The TSC1031 can be used in either single- or dual-supply configuration. The dual-supply configuration is achieved by disconnecting Vcc- and Gnd, and connecting Vcc- to a negative supply. *Figure 8* illustrates how the absolute maximum voltages on input pins Vp and Vm are referred to the Vcc- potential, while the maximum voltages on the positive supply pin, gain selection pins and output pins are referred to the Gnd pin. It should also be noted that the maximum voltage between Vcc- and Vcc+ is limited to 15 V. Vp and Vm SEL and Out Vcc+ Vcc+ + 0.3 V+15 V Gnd -0.3V -0.3 V Vcc+ SEL and Out Vcc-Vcc--16 V Vp and Vm AM04528 Figure 8. Maximum voltages on pins ### 6 Application information The TSC1031 can be used to measure current and to feed back the information to a microcontroller. Figure 9. Typical application The current from the supply flows to the load through the R_{sense} resistor causing a voltage drop equal to V_{sense} across R_{sense} . The amplifier's input currents are negligible, therefore its inverting input voltage is equal to V_m . The amplifier's open-loop gain forces its non-inverting input to the same voltage as the inverting input. As a consequence, the amplifier adjusts current flowing through Rg1 so that the voltage drop across Rg1 exactly matches V_{sense} . Therefore, the drop across Rg1 is: $$V_{Rg1} = V_{sense} = R_{sense} I_{load}$$ If I_{Rq1} is the current flowing through Rg1, then I_{Rq1} is given by the formula: $$I_{Rg1} = V_{sense}/Rg1$$ The I_{Rg1} current flows entirely into resistor R_{g3} (the input bias current of the buffer is negligible). Therefore, the voltage drop on the R_{g3} resistor can be calculated as follows. $$V_{Rg3} = R_{g3}.I_{Rg1} = (R_{g3}/R_{g1}).V_{sense}$$ Since the voltage across the R_{g3} resistor is buffered to the Out pin, V_{out} can be expressed as: $$V_{out} = (R_{q3}/R_{q1}).V_{sense}$$ or: $$V_{out} = (R_{g3}/R_{g1}).R_{sense}.I_{load}$$ The resistor ratio R_{g3}/R_{g1} is internally set to 20 V/V for TSC1031. Since they define the full-scale output range of the application, the R_{sense} resistor and the R_{g3}/R_{g1} resistor ratio (equal to Av) are important parameters and must therefore be selected carefully. The TSC1031's dedicated schematic eases the implementation of EMI filtering in harsh environments. An example of filters is described in *Figure 9*, where the input filtering is performed by R_{f1} , R_{f2} and C_{f} . The values of R_{f1} and R_{f2} should be equal so as to balance the contribution on both amplifier inputs. The value of the C_f capacitor should be chosen so that the cut-off frequency of the first-order low-pass filter provides enough attenuation to the high frequency interferences. To balance the contribution of R_{f1} and R_{f2} in the current sense amplifier gain, an output resistor R_{f3} should be connected between pin A1 and Gnd. The value of R_{f3} should be chosen according to the following formula. $$K1 = 25 = R_{q3}/R_{q1} = R_{f3}/R_{f1}$$ These precautions having been taken, the TSC1031's gain will be unaffected by the implementation of the input filtering resistors. Package information TSC1031 # 7 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark. # 7.1 SO-8 package information Figure 10. SO-8 package mechanical drawing Table 10. SO-8 package mechanical data | | | | Dime | nsions | | | |------|------|-------------|------|--------|--------|-------| | Ref. | | Millimeters | | | Inches | | | | Min. | Тур. | Max. | Min. | Тур. | Max. | | Α | | | 1.75 | | | 0.069 | | A1 | 0.10 | | 0.25 | 0.004 | | 0.010 | | A2 | 1.25 | | | 0.049 | | | | b | 0.28 | | 0.48 | 0.011 | | 0.019 | | С | 0.17 | | 0.23 | 0.007 | | 0.010 | | D | 4.80 | 4.90 | 5.00 | 0.189 | 0.193 | 0.197 | | E | 5.80 | 6.00 | 6.20 | 0.228 | 0.236 | 0.244 | | E1 | 3.80 | 3.90 | 4.00 | 0.150 | 0.154 | 0.157 | | е | | 1.27 | | | 0.050 | | | h | 0.25 | | 0.50 | 0.010 | | 0.020 | | L | 0.40 | | 1.27 | 0.016 | | 0.050 | | L1 | | 1.04 | | | 0.040 | | | k | 0 | | 8° | 1° | | 8° | | CCC | | | 0.10 | | | 0.004 | Package information TSC1031 ## 7.2 TSSOP-8 package information Figure 11. TSSOP8 package mechanical drawing Table 11. TSSOP8 package mechanical data | | Dimensions | | | | | | | | | |------|-------------|------|------|--------|--------|-------|--|--|--| | Ref. | Millimeters | | | Inches | | | | | | | | Min. | Тур. | Max. | Min. | Тур. | Max. | | | | | Α | | | 1.20 | | | 0.047 | | | | | A1 | 0.05 | | 0.15 | 0.002 | | 0.006 | | | | | A2 | 0.80 | 1.00 | 1.05 | 0.031 | 0.039 | 0.041 | | | | | b | 0.19 | | 0.30 | 0.007 | | 0.012 | | | | | С | 0.09 | | 0.20 | 0.004 | | 0.008 | | | | | D | 2.90 | 3.00 | 3.10 | 0.114 | 0.118 | 0.122 | | | | | E | 6.20 | 6.40 | 6.60 | 0.244 | 0.252 | 0.260 | | | | | E1 | 4.30 | 4.40 | 4.50 | 0.169 | 0.173 | 0.177 | | | | | е | | 0.65 | | | 0.0256 | | | | | | k | 0° | | 8° | 0° | | 8° | | | | | L | 0.45 | 0.60 | 0.75 | 0.018 | 0.024 | 0.030 | | | | | L1 | | 1 | | | 0.039 | | | | | | aaa | | | 0.10 | | | 0.004 | | | | # 8 Ordering information Table 12. Order codes | Part number | Temperature range | Package | Packaging | Marking | |----------------------------|-------------------|---------|-------------|----------| | TSC1031IPT | -40°C, +125°C | TSSOP8 | Tape & reel | 10311 | | TSC1031IDT | -40 C, +125 C | SO-8 | Tape & reel | TSC1031I | | TSC1031IYPT ⁽¹⁾ | -40°C, +125°C | TSSOP8 | Tape & reel | 1031Y | | TSC1031IYDT | Automotive grade | SO-8 | Tape & reel | TSC1031Y | Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q002 or equivalent are on-going. Revision history TSC1031 # 9 Revision history Table 13. Document revision history | Date | Revision | Changes | |-------------|----------|------------------| | 04-Jan-2010 | 1 | Initial release. | #### Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2010 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com