МВУ8

C

Модуль вывода

паспорт и руководство по эксплуатации

введение	4
1. НАЗНАЧЕНИЕ	6
2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И УСЛОВИЯ ЭКСПЛУАТАЦИИ	
ПРИБОРА МВУ8	
3. КОНСТРУКЦИЯ ПРИБОРА	8
4. КОНФИГУРИРОВАНИЕ ПРИБОРА С ПОМОЩЬЮ ПРОГРАММЫ	
«КОНФИГУРАТОР МВУ8»	9
4.1. Общие сведения	9
4.2. Установка и запуск программы	
4.3. Установка связи с прибором	9
4.3.1. Общие сведения	
4.3.2. Окно установки связи с прибором	
4.4. Выбор режима работы Конфигуратора	
4.5. Главное окно программы	
4.5.1. Общие сведения	
4.5.2. Меню, панель инструментов и «горячие» клавиши	
4.5.3. Рабочее поле программы	
4.6. Работа с программой	
4.6.1. Создание новой конфигурации	
4.6.2. Открытие конфигурации из файла	
4.6.3. Изменение значений параметров	
4.6.4. Считывание конфигурации из прибора	
4.6.5. Запись значений параметров в прибор	
4.6.6. Сохранение конфигурации в файл	17
4.7. Восстановление заводских значений сетевых	
параметров прибора	17
5. НЕПОСРЕДСТВЕННОЕ УПРАВЛЕНИЕ ВЭ ПО СЕТИ RS-485	
5.1. Общие сведения	19
5.2. Конфигурирование прибора для непосредственного управления	
ВЭ по сети RS-485	
5.3. Организация обмена данными с МВУ8. Протоколы обмена	
5.3.1. Обмен по протоколу OBEH	
5.3.2. Обмен по протоколу ModBus	
5.3.3. Обмен по протоколу DCON	
5.4. Режим «Авария»	21
6. ИНТЕЛЛЕКТУАЛЬНОЕ УПРАВЛЕНИЕ ИМ ПРИ СОВМЕСТНОЙ РАБОТЕ	00
С ПРИБОРАМИ ОВЕН	
6.1. Сетевые входы, работающие по протоколу ОВЕН	
6.2. Преобразователи сигнала	22

Содержание

6.2.1. Параметры ПС	22
6.2.2. Ограничение диапазона и скорости роста сигнала	23
6.2.3. Способы управления ИМ	
6.2.4. Выходные сигналы МВУ8	27
6.3. Блоки управления исполнительными механизмами	27
6.3.1. Общие сведения	27
6.3.2. Управление 2-х позиционными ИМ	28
6.3.3. Управление задвижками	28
6.3.4. Управление 3-х позиционными ИМ	28
6.3.5. Управление ИМ с аналоговым управлением	30
6.3.6. Подключение БУИМ типа Нагреватель и типа Холодильник	30
6.3.7. Пороги сигнала управления для БУИМ	30
6.4. Выходные элементы	31
6.5. Полное и частичное изменение конфигурации. Отключение ПС	
6.6. Управление системами ИМ	31
6.6.1. Системы ИМ	31
6.6.2. Пороги сигналов при управлении системами ИМ	32
6.6.3. Конфигурирование при управлении системой ИМ	33
6.7. Примеры конфигурирования МВУ8 для режима интеллектуального	
управления ИМ	34
6.7.1. Управление системой аварийной сигнализации	34
6.7.2. Управление 3-х позиционным ИМ (задвижкой)	35
6.7.3. Управление системой ИМ	36
6.7.4. Управление объектами с нелинейной характеристикой	39
6.8. Нештатные ситуации при интеллектуальном управлении ИМ	40
6.8.1. Пропадание напряжения питания	40
6.8.2. Режим «Авария»	41
7. МЕРЫ БЕЗОПАСНОСТИ	42
8. MOHTAЖ ЖАТНОМ .8	43
8.1. Монтаж прибора	43
8.2. Монтаж внешних связей	43
8.2.1. Общие требования	43
8.2.2. Подключение прибора	43
8.3. Схемы подключения к выходным элементам	44
8.3.1. ВЭ дискретного типа	44
8.3.2. ВЭ аналогового типа	45
9. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	47
10. МАРКИРОВКА И УПАКОВКА	47
11. ПРАВИЛА ТРАНСПОРТИРОВАНИЯ И ХРАНЕНИЯ	47

12. КОМПЛЕКТНОСТЬ	4
13. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА	48
ПРИЛОЖЕНИЕ А. ГАБАРИТНЫЙ ЧЕРТЕЖ	49
ПРИЛОЖЕНИЕ Б. ПОДКЛЮЧЕНИЕ ПРИБОРА	50
ПРИЛОЖЕНИЕ В. ПАРАМЕТРЫ ПРИБОРА	53
ПРИЛОЖЕНИЕ Г. ОБЩИЕ СВЕДЕНИЯ ПО ПРОТОКОЛУ ОВЕН	
ДЛЯ ИНТЕРФЕЙСА RS-485	58
ПРИЛОЖЕНИЕ Д. ФУНКЦИОНАЛЬНАЯ ПРОВЕРКА И ЮСТИРОВКА ВЭ	60
ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ	63
СВЕДЕНИЯ О ПРИЕМКЕ И ПРОДАЖЕ	64

Введение

ВВЕДЕНИЕ

Настоящее руководство по эксплуатации предназначено для ознакомления обслуживающего персонала сустройством, принципом действия, конструкцией, работой и техническим обслуживанием модуля вывода управляющего МВУ8 (в дальнейшем по тексту именуемого «прибор» или «МВУ8»).

Руководство по эксплуатации распространяется на прибор МВУ8, выпущенный по ТУ 4217-001-46526536-06.

Прибор МВУ8 изготавливается в нескольких модификациях, отличающихся друг от друга типом встроенных выходных элементов, предназначенных для управления исполнительными механизмами. Модификациям прибора соответствует следующее условное обозначение:

Прибор МВУ8-ХХХХХХХХ

- Х тип выходных элементов:
- Р реле электромагнитное;
- К оптопара транзисторная n-p-n-типа;
- С оптопара симисторная;
- И цифроаналоговый преобразователь «параметр ток 4...20 мА»;
- У цифроаналоговый преобразователь «параметр напряжение 0...10 В»;
- Т выходной элемент для управления твердотельным реле.

Пример полного названия прибора при заказе и в документации к другой продукции, где он может быть применен:

Прибор МВУ8-РРРСССС - ТУ 4217-001-46526536-06

Это означает, что изготовлению и поставке подлежит прибор с четырьмя э/м реле и четырьмя симисторными оптопарами.

Прибор можно использовать с модулем расширения МР1, который выпускается с выходными элементами только следующих типов: P, C, K и T.

На прибор имеется сертификат соответствия № 03.009.0106.

В настоящем документе приняты следующие обозначения и сокращения.

Блок управления исполнительным механизмом (БУИМ) – программный модуль, позволяющий управлять одним ИМ при помощи нескольких ВЭ, подключенных к данному БУИМ.

Выходной элемент (ВЭ) – элемент схемы прибора, служащий для подключения ИМ.

Имя параметра – набор символов, однозначно определяющий доступ к параметру в приборе.

Индекс параметра – цифра, отличающая параметры однотипных элементов с одинаковыми именами.

ИМ – исполнительный механизм

Исполнительный механизм (ИМ) 2-х позиционный – ИМ, имеющий два состояния: «ВКЛ.» и «ВЫКЛ.».

Исполнительный механизм (ИМ) 3-х позиционный (задвижка) – ИМ, управляемый тремя типами сигналов: «больше» / «меньше» / «стоп».

Конфигурационные параметры – параметры, определяющие конфигурацию прибора (значения задаются в программе-конфигураторе.

Конфигурация – совокупность значений параметров прибора.

Мастер сети – прибор или ПК, инициирующий обмен данными в сети между отправителем и получателем данных.

МР1 – модуль расширения (выпускается с выходными элементами Р, С, К и Т).

Нагреватель – тип ИМ. ИМ этого типа увеличивает значение регулируемой величины (например, ТЭНы, компрессоры).

Название параметра – словесное описание параметра.

Оперативные параметры – данные, которые прибор передает по сети RS-485.

ПК – персональный компьютер.

Программный модуль (ПМ) – блок программы прибора, выполняющий одно конкретное действие. В одном приборе может быть несколько однотипных программных модулей.

ПС – преобразователь сигнала.

Регулятор – любой прибор (или SCADA-система, ПК) – источник данных, передающий сигнал по сети RS-485 с информацией о мощности, подаваемой на ИМ.

Сетевой Вход (СВ) – программный модуль, принимающий данные от конкретного прибора-источника данных по сети RS-485.

Сетевые параметры (**СП**) – служебные параметры, определяющие работу прибора в сети RS-485.

Система ИМ – группа ИМ, управляемая одним сигналом от одного регулятора.

Скважность – отношение длительности импульса ШИМ-сигнала к его периоду.

Формат данных – тип значений параметров (целое число, число с плавающей точкой и др.).

Холодильник – тип ИМ. ИМ этого типа уменьшает значение регулируемой величины (например, кондиционеры).

ЦАП – цифроаналоговый преобразователь.

ШИМ – широтно-импульсная модуляция.

1. НАЗНАЧЕНИЕ

Прибор MBУ8 предназначен для преобразования цифровых сигналов, передаваемых по сети RS-485, в аналоговые или дискретные сигналыуправления исполнительными механизмами.

МВУ8 может осуществлять управление ВЭ в двух режимах:

- непосредственное управление по сети RS-485;
- интеллектуальное управление ИМ.

МВУ8 может управлять ИМ (от 1 до 8) следующих типов:

- 2-х позиционными (ТЭНами, холодильниками, вентиляторами и т.п.);
- 3-х позиционными (задвижками постоянной скорости с датчиком или без датчика положения, шиберами, поворотными заслонками, регулирующими клапанами и т.п.);
 - ИМ с аналоговым управлением;
 - устройствами сигнализации или защиты оборудования.

МВУ8 может использоваться совместно с модулем расширения MP1, содержащим восемь дискретных ВЭ, что позволяет увеличить количество ВЭ и ИМ в системе.

MBУ8 работает в сети RS-485 по стандартным протоколам OBEH, ModBus-RTU, ModBus-ASCII, DCON.

MBУ8 не является мастером сети, поэтому сеть RS-485 должна содержать мастер сети (например, SCADA-систему, OPC-драйвер, контроллерили регулятор). В качестве мастера сети могут использоваться приборы OBEH TPM151, TPM133, контроллеры OBEH ПЛК и т.п.

В комплекте с МВУ8 предоставляется бесплатный ОРС-драйвер и библиотека стандарта WIN DLL, которые рекомендуется использовать при подключении прибора к SCADA-системам и контроллерам других производителей.

Конфигурирование MBУ8 осуществляется с помощью ПК через адаптер интерфейса RS-485/RS-232 или RS-485/USB (например, OBEH AC3 или AC4 соответственно) с помощью программы «Конфигуратор MBУ8», входящей в комплект поставки.

2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И УСЛОВИЯ ЭКСПЛУАТАЦИИ ПРИБОРА МВУ8

2.1. Технические характеристики МВУ8 приведены в табл. 1 и 2.

Таблица 1

Общие характеристики

Наименование	Значение
Напряжение питания переменного тока	90264 B
	частотой 4763 Гц
Потребляемая мощность	не более 12 ВА
Количество выходных элементов	8
Интерфейс связи с компьютером	RS-485
Протокол связи, используемый для передачи информации	OBEH; ModBus-RTU; ModBus-ASCII; DCON
Степень защиты корпуса	IP20
Габаритные размеры прибора	157х86х57 мм
Масса прибора	не более 0,5 кг
Средний срок службы	8 лет

Таблица 2

Рабочие электрические параметры выходных элементов

Обозначе	ение / Наименование ВЭ	Значение рабочих электрических параметров
Р	Реле электромагнитное	4A при напряжении не более 220 В частотой 50 Гц (cos φ > 0,4)
К	Оптопара транзисторная n-p-n-типа	400 мА при напряжении не более 60 В постоянного тока
С	Оптопара симисторная	50 мА при напряжении 250 В (в импульсном режиме частотой 50 Гц с длительностью импульса до 1 А не более 5 мс)
И	ЦАП «параметр – ток» 420 мА	Нагрузка 0900 Ом. Напряжение питания 1532 В
у	ЦАП «параметр — напряжение 010 В»	Нагрузка не менее 2 кОм. Напряжение питания 1532 В
т	Выходные элементы для управления твердотельным реле	Выходное напряжение 46 В. Максимальный ток 50 мА

2.2. Условия эксплуатации прибора

Прибор предназначен для эксплуатации в следующих условиях:

- закрытые взрывобезопасные помещения без агрессивных паров и газов;
- температура окружающего воздуха от +1 до +50 °C;
- верхний предел относительной влажности воздуха 80 % при 25 °С и более низких температурах без конденсации влаги;
 - атмосферное давление от 86 до 106,7 кПа.

2.3 Устойчивость к механическим и климатическим воздействиям

По устойчивости к климатическим воздействиям при эксплуатации МВУ8 соответствует группе исполнения В4 по ГОСТ 12997-84.

По устойчивости к механическим воздействиям при эксплуатации МВУ8 соответствует группе исполнения N1 по ГОСТ 12997-84.

3. КОНСТРУКЦИЯ ПРИБОРА

- 3.1. Прибор выпускается в корпусе, предназначенном для крепления на DIN-рейку шириной 35 мм. Габаритный чертеж прибора приведен в *Прил.* A.
 - 3.2. На лицевой панели прибора расположены светодиоды:
- «**выходы 1 ...8**», сигнализирующие постоянным свечением о включении дискретного ВЭ и миганием о включении аналогового ВЭ;
 - «RS-485», сигнализирующий миганием о приеме данных прибором;
 - «питание», сигнализирующий о включении питания;
- «авария», сигнализирующий об осутствии обмена по сети RS-485 в течение недопустимо долгого времени.

4. КОНФИГУРИРОВАНИЕ ПРИБОРА С ПОМОЩЬЮ ПРОГРАММЫ «КОНФИГУРАТОР МВУ8»

4.1. Общие сведения

4.1.1. Перед началом работы с прибором следует задать его **конфигурацию**: определить, какие программные модули (ПМ) прибора будут задействованы в работе, и присвоить значения программируемым параметрам этих модулей. Для незадействованных модулей значения параметров задавать не надо.

ВНИМАНИЕ! Поскольку МВУ8 может работать либо в режиме непосредственного управления ВЭ (см. разд. 5), либо в режиме интеллектуального управления ИМ (см. разд. 6), при конфигурировании следует задавать значения параметров только выбранного режима.

Конфигурирование МВУ8 производится с ПК через адаптер RS-485 с помощью программы «Конфигуратор МВУ8» в следующем порядке.

4.2. Установка и запуск программы

Для установки программы «Конфигуратор МВУ8» следует запустить файл установки (MVU8_setup.exe) и следовать инструкциям программы установки.

Для запуска программы выбрать команду Пуск | Программы | OWEN | Конфигуратор МВУ8 | Конфигуратор МВУ8 или щелкнуть левой кнопкой мыши на «иконке» программы.

4.3. Установка связи с прибором

4.3.1. Общие сведения

MBУ8 может работать по одному из четырех протоколов обмена информацией о результатах измерений: OBEH, ModBus-RTU, ModBus-ASCII или DCON. Конфигурирование прибора осуществляется только по протоколу OBEH, и «Конфигуратор MBУ8» работает по протоколу OBEH.

После запуска программа «Конфигуратор МВУ8» устанавливает связь с прибором. Наличие связи определяется программой в процессе перехода на протокол ОВЕН. Установка связи происходит при значениях сетевых параметров, установленных при предыдущем запуске программы.

Если связь установлена, открывается Окно выбора режима работы конфигуратора, (см. п. 4.4) и включается режим автоматического чтения. Затем открывается Главное окно программы (см. п. 4.5).

4.3.2. Окно установки связи с прибором

Если связь с прибором не устанавливается и перевести МВУ8 на работу по протоколу ОВЕН не удается, открывается Окно установки связи с прибором (см. рис. 1).

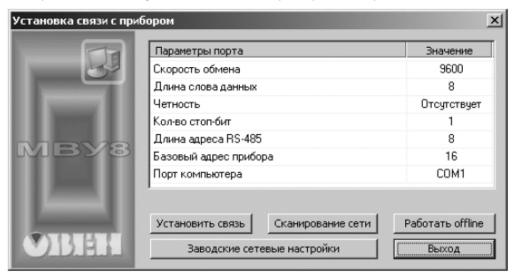


Рис. 1

Вверху таблицы отображается информация о текущих значениях сетевых параметров программы (наименование и значение параметра).

Если значения сетевых параметров прибора известны, следует задать их значения в таблице в сетевых параметрах программы. Для изменения значения параметра следует дважды щелкнуть левой кнопкой мыши на требуемой строке списка параметров в столбце «Значение». Поле ячейки таблицы перейдет в режим редактирования, после чего значение параметра может быть изменено. В зависимости от типа редактируемого параметра новое значение может быть либо введено с клавиатуры (например, «Базовый адрес прибора»), либо выбрано из раскрывающегося списка (например, «Порт компьютера»). После задания требуемых значений сетевых параметров программы следует нажать кнопку Установить связь. При первом отклике прибора процедура установки связи прекращается.

Если значения сетевых параметров прибора не известны, следует нажать кнопку Сканирование сети и запустить процедуру сканирования сети с целью установки связи по всем доступным протоколам, с перебором скоростей обмена, начиная со скорости обмена 2400 и далее до скорости 115200 бит/с. Остальные сетевые параметры программы (четность, длина слова данных и др.) в процессе сканирования не меняются. При первом отклике прибора сканирование прекращается.

Еслиустановить связь с прибором не удается, необходимо восстановить заводские значения сетевых параметров прибора (см.п. 4.7), нажать кнопку Заводские сетевые настройки и повторить попытку установления связи.

При нажатии кнопки **Работать offline** попытки установить связь программы с прибором прекращаются; открывается Окно выбора режима работы Конфигуратора (см. п. 4.4). При этом режим автоматического чтения параметров сети отключается.

При нажатии кнопки Выход происходит выход из программы.

4.4. Выбор режима работы Конфигуратора

После запуска программы и установления связи с прибором открывается Окно выбора режима работы Конфигуратора (рис. 2).

В открывшемся окне следует выбрать один из доступных режимов:

- 1) Режим доступа к параметрам МВУ8:
 - параметрам непосредственного управления выходами для работы совместно с контроллерами и SCADA-системами;

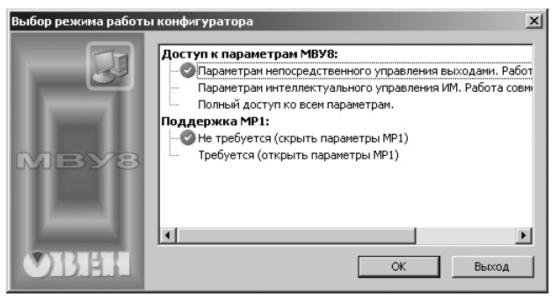


Рис. 2

- параметрам интеллектуального управления ИМ для работы совместно с приборами ОВЕН;
- полный доступ ко всем параметрам;
- 2) Режим поддержки МР1:
 - не требуется (скрыть параметры MP1);
 - требуется (открыть параметры MP1).

Для перехода в выбранный режим следует щелкнуть левой кнопкой мыши на соответствующей строке списка режимов и нажать кнопку **ОК** окна. По умолчанию выбирается режим непосредственного управления, без использования MP1.

При нажатии кнопки Выход процедура выбора режима завершается.

При нажатии кнопки **ОК** Окно выбора режима закрывается и открывается Главное окно конфигуратора с перечнем параметров, соответствующим выбранному режиму (параметры, настройка которых в выбранном режиме не предусмотрена, не отображаются).

4.5. Главное окно программы

4.5.1. Общие сведения

Главное окно программы (рис. 3) включает Титульную строку, в которой отображаются запись «Конфигуратор МВУ8» и наименование текущей конфигурации прибора, Меню, Панель инструментов и Рабочее поле. Рабочее поле содержит папки конфигурационных и оперативных параметров программы и прибора, структурированные в виде дерева (слева), обозначения параметров и их значения (справа).

Полный список параметров прибора приведен в Прил. В.

Чтобы открыть папку параметров следует нажать на «плюс» в квадрате слева от пиктограммы папки. При этом «плюс» поменяется на «минус». Чтобы закрыть папку, следует нажать на «минус».

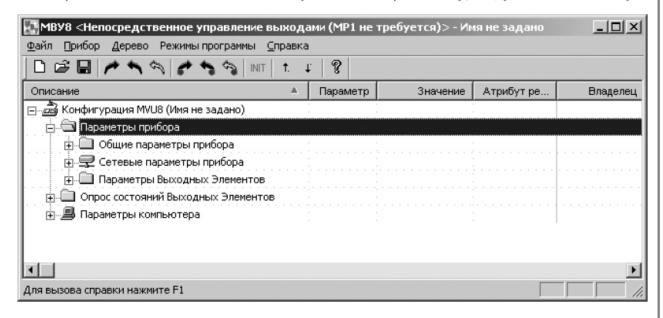


Рис. 3

4.5.2. Меню, панель инструментов и «горячие» клавиши

Работа с программой осуществляется с помощью Меню, кнопок Панели инструментов или «горячих» клавиш.

Пункт меню	Кнопка	Горячие	Описание	
		клавиши		
Файл Новый		Ctrl + N	Создание новой конфигурации прибора	
Файл Открыть	≟	Ctrl + O	Открытие файла конфигурации (расширение – *.mva)	
Файл Сохранить		Ctrl + S	Сохранение конфигурации в файл	
Файл Сохра-			Сохранение конфигурации в файл с другим именем	
нить как			(открывает стандартное окно указания файла)	
Файл Выход			Выход из программы	
Файл ∣ Послед- ние файлы			Быстрый доступ к последним четырем файлам кон- фигурации	
Прибор Считать	*	Alt + R	Считывание значений всех параметров из прибора в	
все параметры			программу	
Прибор Записать все параметры	1	Alt + W	Запись всех параметров из программы в прибор	
	4-			
Прибор Записать	¢2	Alt + U	Запись измененных значений параметров из про-	
Записать измене-			граммы в прибор. Измененные значения параметра	
ния (только			отображаются зеленым цветом, записанные в при-	
измененные)			бор – черным	
Прибор Сравнить		Alt = C	Сравнение значений параметров прибора и откры-	
с реальными			той конфигурации	
значениями				
Прибор Сервис			Запись в прибор базовой заводской конфигурации	
Инициализировать				
прибор				
Прибор Сервис	INIT	Alt = I	Перевод прибора на работу с новыми значениями	
послать			конфигурационных параметров. Команда	
команду INIT			эквивалентна выключению и включению питания	
Прибор Сервис		Alt + A	Перевод прибора на работу с новыми значениями	
послать			сетевых параметров	
команду APPLY				
Прибор Сервис			Запуск программы юстировки ЦАП (подробнее	
Юстировка			см. Прил. Д)	
Прибор Опрос		Alt + S	Предоставление доступа к отдельным параметрам	
отдельного			прибора	
параметра				
параметра				

Пушут мошо	Vuenve	Fongues	Описсиис	
Пункт меню	кнопка	Горячие		
Прибор Проверка связи с прибором		клавиши Alt+N	Считывание имени прибора и номера версии прошивки прибора. Выполнение проверки связи между прибором	
			и программой. Открывается информационное окно с номером версии прошивки, именем прибора или сообщением об ошибке	
Прибор К преды-			Если при записи или при считывании параметра	
дущему	† .	Alt +↑	прибора произошла ошибка, то параметр выделяется	
проблемному			красным цветом. При выборе команды компьютер	
параметру /	1.	Alt +↓	по очереди переводит курсор на ошибочно	
/ К следующему проблемному			считанные (или записанные) параметры	
параметру				
Прибор Преоб-			Выбор (щелчком левой кнопкой мыши) типа	
разователь			преобразователя RS-485/RS-232:	
│ Полуавтомати- ческий (АСЗ) /			Полуавтоматический (AC3) – связь с прибором будет поддерживаться через полуавтоматические (например,	
/ Автоматический			ОВЕН АСЗ) и автоматические преобразователи.	
, , , , , , , , , , , , , , , , , , , ,			Автоматический – связь с прибором будет поддержи-	
			ваться через автоматические преобразователи; обмен	
			информацией будет происходить быстрее, но работа с полуавтоматическими преобразователями невозможна	
Дерево Прочи-	*	Alt+Ctrl+		
тать все		+N	параметров выделенной ветви	
параметры				
выделенной				
Ветви Дорово I	4	Alt+Ctrl+	Запись всех параметров выделенной ветви из программы	
Дерево	**	+W		
Записать все параметры		+vv	в прибор	
выделенной				
ветви				
Дерево	*	Alt+Ctrl+	+ Запись измененных значений параметров из	
Записать		+U	выделенной ветви в прибор. После изменения значения	
только			параметра он помечается зеленым цветом,	
измененные			после записи в прибор – черным	
параметры				
выделенной				
ветви				

Пункт меню	Кнопка	Горячие	Описание	
		клавиши		
Дерево Сравнить		Alt+Ctrl+	Сравнение значений параметров выделенной ветви	
значения		+C	и открытой конфигурации	
с реальными				
в рамках ветви				
Режимы			Показывает индексы параметров. Линейные индексы	
программы			параметров необходимы при создании новых	
Показыват			программ, работающих с прибором	
линейные				
индексы				
Режимы			Программа автоматически считывает из прибора	
программы			значения параметров открываемой папки. При запуске	
Режим авто-			программы «Конфигуратор МВУ8» этот режим включен.	
матического			Для отключения режима (например, при работе с	
чтения			Конфигуратором при отключенном приборе) следует	
			снять флажок перед командой Прибор Режим	
			автоматического чтения	
Режимы			Введенные параметры автоматически записываются	
программы			в память прибора (без нажатия на кнопку Записать	
Режим немед-			только измененные)	
ленной записи				
Режимы			Обмен информацией об индивидуальных защитных	
программы			атрибутах параметров не производится	
Не передавать				
атрибуты				
параметров				
Справка Справка		F1	Открывается окно электронной контекстной справки программы	
Справка			Открывается окно информации о текущей версии	
О программе			программы	
Справка Экспорт			Запуск процедуры экспорта списка текущих параметров	
списка пара-			конфигурации в файл формата *.html. Список	
метров в HTML			открывается в окне программы-браузера и может	
			быть сохранен	

4.5.3. Рабочее поле программы

4.5.3.1. Папки параметров прибора и программы

Ниже приведен перечень папок параметров, соответствующий режиму полного доступа к параметрам прибора (см. п. 4.4). В зависимости от выбранного режима перечень папок может сократиться.

Папка Параметры прибора включает вложенные папки:

- Общие параметры прибора - содержит не редактируемые информационные параметры прибора (название прибора, версию прошивки);

- Сетевые параметры прибора содержит сетевые параметры, определяющие работу прибора по интерфейсу RS-485;
- Сетевые входы содержит восемь вложенных папок с параметрами сетевых входов, работающих по протоколу ОВЕН;
- Преобразователь сигналов (ПС) содержит вложенные папки с параметрами ПС; используется только в режиме интеллектуального управления ИМ;
- Блоки управления ИМ (БУИМ) содержит параметры восьми Блоков Управления ИМ;
- Параметры выходных элементов содержит параметры ВЭ; используется только в режиме непосредственного управления.

Папка Параметры компьютера включает вложенные папки:

- Сервисные параметры программы содержит указание версии операционной системы и версии программы «Конфигуратор МВУ8»;
- Сетевые параметры программы содержит параметры настройки сети RS-485.

Полный перечень параметров приведен в Прил. В.

4.5.3.2 Папка оперативных параметров протокола ОВЕН

Папка **Опрос состояний выходных элементов** предназначена для работы соперативными параметрами прибора, позволяющими считывать или изменять состояния ВЭ МВУ8 и модуля MP1.

Для считывания состояния ВЭ следует установить флажок в поле переключателя, расположенного в строке требуемого ВЭ, после чего начнется считывание данных с периодом, указанным в столбце «Период» (задается в мс). Состояние ВЭ отображается в столбце «Значение» в виде числа в диапазоне от 0 до 1. Для дискретных ВЭ отображается скважность ШИМ, для аналоговых – значение, пропорциональное выходному току или напряжению.

Для изменения состояния ВЭ следует щелкнуть левой кнопкой мыши в столбце «Значение» соответствующей строки. Поле ячейки таблицы перейдет в режим редактирования, после чего необходимо изменить число в диапазоне от 0 до 1 в соответствии с требуемым состоянием ВЭ (см. далее п. 5.1, табл. 4). При нажатии клавиши Enter число записывается в прибор и ВЭ переходит в состояние, соответствующее этому числу.

ВНИМАНИЕ!

- 1. Одновременно может производиться процедура либо считывания, либо изменения состояния ВЭ, поэтому следует устанавливать флажок в поле соответствующего переключателя.
- 2. Следует иметь в виду, что МВУ8, сконфигурированный для интеллектуального управления, может самостоятельно изменять состояние задействованных ВЭ, поэтому считанное значение может отличаться от записанного ранее.
- 3. Для ВЭ модуля MP1 возможно только изменение состояния. Считать состояние ВЭ MP1 невозможно.

4.6. Работа с программой

4.6.1. Создание новой конфигурации

Выбрать команду Файл | Новый. Откроется Главное окно программы с корневым каталогом Конфигурация МВУ8 (Без имени). Развернув дерево параметров (см. п. 4.5.1), ввести требуемые значения параметров (см. п. 4.6.3). Конфигурация создана и может быть сохранена в файл (см. п. 4.6.6) или записана в прибор (см. п. 4.6.5).

4.6.2. Открытие конфигурации из файла

Выбрать команду **Файл** | **Открыть**. Откроется окно, в котором нужно выбрать файл конфигурации и нажать кнопку **Открыть**. В заголовке Главного окна программы и рядом с корневой папкой **Конфигурация МВУ8** отобразится имя открытого файла, значения параметров будут соответствовать заданным в выбранном файле.

4.6.3. Изменение значений параметров

Для изменения значения параметра следует дважды щелкнуть левой кнопкой мыши в требуемой строке поля **Значение**. Поле ячейки таблицы перейдет в режим редактирования и значение параметра может быть изменено.

Требуемое значение параметра вводится с клавиатуры или выбирается из раскрывающегося списка. Для завершения ввода следует нажать клавишу **Enter** на клавиатуре.

Измененные значения отображаются зеленым цветом и сохраняются только в памяти программы до тех пор, пока не будут записаны в прибор (см. п. 4.6.5).

4.6.3.1. Задание сетевых параметров программы

Значения сетевых параметров программы задаются в начале процедуры конфигурирования прибора в Окне установки связи с прибором (см. п. 4.3.2.)

Для установки связи программы с прибором необходимо задать значения сетевых параметров программы, соответствующие текущим значениям сетевых параметров прибора. Если значения сетевых параметров прибора были утеряны, то необходимо восстановить заводские значения сетевых параметров прибора (см. п. 4.7)

Заводские значения сетевых параметров прибора МВУ8 приведены в табл. 3.

Таблица 3

Имя	Наименование	Заводская установка
параметра		
bPS	Скорость обмена данными	9600 бит/с
LEn	Длина слова данных	8 бит
PrtY	Контроль четности данных	отсутствует
Sbit	Количество стоп бит	1
A.Len	Длина сетевого адреса	8 бит
Addr	Базовый адрес прибора	16
Prot	Протокол обмена	OBEH

После задания сетевых параметров программы следует проверить наличие связи с прибором. Для этого выбрать команду **Прибор** | **Проверка связи**. Если произошла ошибка считывания, следует проверить правильность установки сетевых параметров программы и правильность подключения прибора к компьютеру через адаптер RS-485.

При работе с несколькими приборами в сети может потребоваться изменение значений сетевых параметров программы. Необходимые изменения производятся в папке **Параметры компьютера/Сетевые параметры программы** (см. п. 4.5.3.1).

Примечание. При одновременной работе нескольких приборов в одной сети должны отличаться только их Базовые сетевые адреса (параметр **Addr**), остальные сетевые параметры приборов должны быть одинаковы. Изменение базового адреса описано в п. Г.2 Прил. Г.

4.6.3.2. Задание сетевых параметров прибора, установка протокола обмена

Значения сетевых параметров прибора и установка протокола обмена задаются в папке Параметры прибора | Сетевые параметры прибора (см. п. 4.5.3.1).

Измененные параметры отображаются зеленым цветом, после их записи в прибор (см. п. 4.6.5) – черным. До тех пор, пока измененные параметры не записаны в прибор, он продолжает работать с прежними значениями сетевых параметров.

После записи в прибор измененных значений сетевых параметров прибора программа автоматически предлагает изменить сетевые параметры программы. При работе с одним прибором в сети следует изменить сетевые параметры программы, нажав кнопку «ОК» в открывшемся окне.

ВНИМАНИЕ! Прибор начинает работать по установленному протоколу обмена только после выключения и последующего включения питания или посылки команды **INIT**.

При неустойчивой связи с прибором, на что указывают частые сообщения об ошибках при чтении или записи параметров, следует изменить скорость обмена данными. Например, на «медленных» ПК следует заменить скорость 9600 бит/с на 38400 или 57600 бит/с.

4.6.4. Считывание конфигурации из прибора

Для считывания конфигурации из прибора предусмотрены следующие режимы.

Режим считывания всех параметров: Выбрать команду **Прибор** | **Считать все параметры.** Считывание всех параметров из прибора сопровождается открытием окна мониторинга процесса, закрывающегося при завершении процесса. В рабочем поле программы отобразятся считанные значения.

Режим считывания параметров выделенной папки: Выделить требуемую папку параметров, выбрать команду **Дерево** | **Считать параметры выделенной ветви.** В рабочем поле программы отобразятся считанные значения.

Режим автоматического чтения позволяет автоматически считать значения группы параметров, содержащихся воткрываемой папке. Считывание параметров в этом режиме возможно, если ранее значения параметров из прибора считаны не были (в поле **Значение** было указано «Нет данных»). При запуске программы этот режим включается по умолчанию. Для его отключения следует снять флажок в меню **Режимы программы** | **Режим автоматического чтения.**

Примечание. При работе без подключенного прибора (в режиме offline) режим автоматического чтения рекомендуется отключить.

4.6.5. Запись значений параметров в прибор

Для записи значений параметров в прибор предусмотрены следующие режимы.

Режим записи всех параметров. Выбрать команду **Прибор МВУ8** | **Записать все параметры**. Откроется информационное окно процесса записи. При завершении процесса записи параметров в память прибора окно автоматически закроется. Зеленый цветотображения измененных значений параметров изменится на черный.

Режим записи только измененных значений параметров. Выбрать команду **Прибор МВУ8** | **Запись измененных параметров**. Запись в этом режиме осуществляется быстрее.

Режим записи параметров выделенной папки. Выделить требуемую папку, выбрать команду **Прибор МВУ8** | **Запись параметров выделенной ветви**.

4.6.6. Сохранение конфигурации в файл

Выбрать команду Файл | Сохранить / Сохранить как. Откроется стандартное диалоговое окно, в котором следует задать имя и место расположения файла на диске. Команда Сохранить позволяет сохранить файл под существующим именем. Файл конфигурации имеет расширение .mvu.

4.7. Восстановление заводских значений сетевых параметров прибора

Восстановление заводских сетевых настроек прибора используется при восстановлении связи между компьютером и прибором при утере информации о заданных значениях сетевых параметров прибора.

Для восстановления заводских значений сетевых параметров прибора необходимо выполнить следующие действия:

- отключить питание МВУ8;
- открыть корпус прибора;
- установить перемычку **JP2** в положение «Замкнуто»; при этом прибор работает с заводскими значениями сетевых параметров, но в его памяти сохраняются установленные ранее значения сетевых параметров;
 - включить питание, не закрывая корпус прибора;

ВНИМАНИЕ! Напряжение на некоторых элементах печатной платы прибора опасно для жизни! Прикосновение к печатной плате, а также попадание посторонних предметов внутрь корпуса недопустимы!

- запустить программу «Конфигуратор МВУ8»;
- в Окне установки связи задать заводские значения сетевых параметров (в соответствии с данными табл. 3) или нажать кнопку «Заводские сетевые настройки». Связь с прибором установится с заводскими значениями сетевых параметров;
- считать значения сетевых параметров прибора, выбрав команду **Прибор МВУ8 | Считать** все параметры или открыв папку **Сетевые параметры прибора**;
 - зафиксировать на бумаге значения сетевых параметров прибора, которые были считаны;
 - закрыть программу «Конфигуратор МВУ8»;
 - отключить питание прибора;
 - снять перемычку JP2 и закрыть корпус прибора;
 - подключить питание прибора и запустить программу «Конфигуратор МВУ8»;
- установить зафиксированные ранее на бумаге значения параметров в Окне установки связи с прибором;
- нажать кнопку **Установить связь** и проверить наличие связи с прибором, выбрав команду **Прибор МВУ 8** | **Проверить связь с прибором**.

5. НЕПОСРЕДСТВЕННОЕ УПРАВЛЕНИЕ ВЭ ПО СЕТИ RS-485

5.1. Общие сведения

Непосредственное управление ВЭ МВУ8 совместно с МР1 осуществляется с использованием контроллера, SCADA-системы с подключенным ОРС-драйвером МВУ8, работающим по протоколу ОВЕН, либо с использованием иной программы, настроенной с помощью библиотеки ОВЕН WIN DLL или работающей по протоколам ModBus или DCON.

Структурная схема МВУ8, сконфигурированного для непосредственного управления ВЭ, представлена на рис. 4 (программные модули, предназначенные для интеллектуального управления ВЭ, не задействованы, и ВЭ управляются командами, передаваемыми непосредственно по сети RS-485). Любой программный модуль, расположенный на схеме слева от каждой из трех толстых линий, может быть соединен с любым модулем, расположенным справа от этой линии.

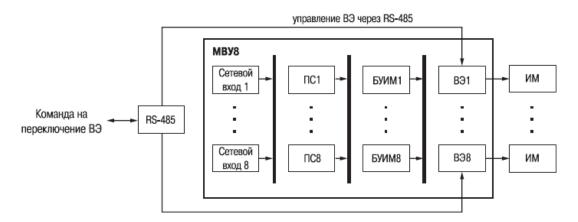


Рис. 4

Состояние ВЭ МВУ8 (MP1) различных типов в зависимости от значения сигнала, передаваемого по сети RS-485 в соответствии с используемыми протоколами обмена, представлено в табл. 4.

Таблица 4

				•
Значение пара-				
метра г.ОЕ или г.ОЕ.Ѕ по прото- колу ОВЕН или значение, переданное по	записанное в регистр по протоколу ModBus	дискретного типа (P, K, C, T)	ЦАП 420 мА (И)	ЦАП 010В (У)
протоколу DCON				
0	0	Выключено	4 mA	0 B
1	1000	Включено	20 мА	10 B
В диапазоне от 0 до 1	В диапазоне от 0 до 1000	ШИМ-сигнал заданной	Ток от 4 до 20 мА	Напряжение от 0 до10 В
		скважности		

ШИМ-сигналы при непосредственном управлении ВЭ прибора определяются двумя параметрами: *периодом ШИМ-сигнала* и *скважностью ШИМ-сигнала*.

Период ШИМ-сигнала для каждого ВЭ задается в папке Параметры ВЭ:

- для МВУ8: Параметры ВЭ №1...8 | Период ШИМ при управлении ВЭ по сети;
- для МР1: Параметры ВЭ № 9...16 | Период ШИМ при управлении ВЭ по сети.

Заданный период ШИМ-сигнала сохраняется в энергонезависимой памяти МВУ8 и в процессе работы прибора не меняется.

Скважность ШИМ-сигнала передается в процессе работы по сети RS-485 в соответствии с выбранным протоколом. Скважность определяется оперативными параметрами r.OE и r.OE.S (см. Прил. В, табл. В.3) в диапазоне от 0 до 1 (см. табл. 4).

Примечание. Минимально допустимая длительность импульса при непосредственном управлении ВЭ прибора составляет 50 миллисекунд.

5.2. Конфигурирование прибора для непосредственного управления ВЭ по сети RS-485

При конфигурировании МВУ8 (MP1) для непосредственного управления ВЭ по сети RS-485 необходимо выполнить следующие действия:

- запустить «Конфигуратор МВУ8», установить связь с прибором (см. пп. 4.2, 4.3);
- задать сетевые параметры прибора, установить протокол обмена (см. п. 4.6.3.2);
- задать для всех используемых ВЭ период ШИМ при управлении ВЭ по сети (папка Параметры выходных элементов | параметр thpd).
- выключить и снова включить питание МВУ8 (или выбрать команду Главного меню **Прибор** | **Сервис | INIT**). После этого прибор начнет работать с новыми значениями сетевых параметров.

Прибор готов к работе, можно включать его в систему управления и посылать сигналы в соответствии с требуемым состоянием ВЭ (см. табл. 4).

Примечание. При работе в режиме непосредственного управления ПС прибора **не должны быть подключены** к ВЭ, управляемым по сети RS-485. Программа «Конфигуратор МВУ8» выдает запрос на отключение всех ПС и высвобождение всех ВЭ для непосредственного управления (см. рис. 5), который необходимо подтвердить нажатием кнопки «**YES**». Если требуется сконфигурировать МВУ8 в режиме, когда часть ВЭ управляется непосредственно, а другая часть – интеллектуально, то необходимо отказаться от переконфигурирования и нажать кнопку «**NO**».

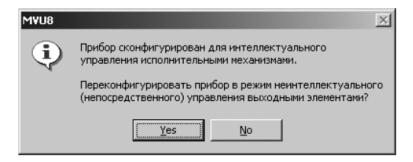


Рис. 5

Подробнее о конфигурировании МВУ8 для работы в смешанном режиме см. в п. 6.5.

5.3. Организация обмена данными с МВУ8. Протоколы обмена

МВУ8 может работать по одному из следующих протоколов обмена: OBEH, ModBus, DCON. Работа по каждому из них определяется соответствующим значением параметра **Prot** (папка **Сетевые параметры**).

5.3.1. Обмен по протоколу ОВЕН

Для работы ВЭ по протоколу ОВЕН необходимо присвоить значения оперативным параметрам МВУ8 (МР1) в соответствии с данными табл. 4:

- восьми параметрам r.OE для управления ВЭ МВУ8;
- восьми параметрам r.OE.S для управления ВЭ МР1.

Подробно об индексации оперативных параметров протокола ОВЕН см. в Прил. Г.

5.3.2. Обмен по протоколу ModBus

Обмен по протоколу ModBus может происходить в режимах ASCII или RTU в зависимости от заданного значения параметра **Prot** (см. *Прил*. B, табл. B.2).

По протоколу ModBus в прибор передается скважность генерации ШИМ или значение, подаваемое на аналоговый ВЭ (в диапазоне от 0 до 1000) (см. табл. 4). Регистры записываются стандартной для этого протокола командой 16 (10h) и читаются командами 4 (04h) или 3 (03h)

Список регистров протокола ModBus приведен в Прил. В, табл. В.4.

5.3.3. Обмен по протоколу DCON

По протоколу DCON производится только посылка значения каждому ВЭ.

Посылка:

#ААN(данные)[CHK](cr),

где

АА – адрес модуля, от 00 до FF;

N – номер канала от 0 до F (в шестнадцатеричном формате, начиная с 0);

(данные) – значение от 0 до 1, посылаемое на ВЭ в десятичном формате с 3 знаками после запятой;

[СНК] – контрольная сумма (сумма байт по модулю 256);

(cr) - символ перевода строки (0x0D).

Ответ:

>[CHK](cr) – в случае приема значения, не выходящего за допустимые границы (от 0 до 1);

?AA[CHK](cr) – в случае приема значения, выходящего за допустимые границы (т.е. меньше 0 или больше 1)

![CHK](cr) – ответ в случае недопустимого или нераспознаваемого значения.

При синтаксической ошибке или ошибке в контрольной сумме ответ не посылается.

Пример посылки:

#1610.550 – установить на выходе № 2 модуля с шестнадцатеричным адресом 16 значение 0,550 (55 %).

5.4. Режим «Авария»

В случае, если данные, передаваемые по сети RS-485 от прибора-источника, не поступили на ВЭ в течение времени, заданного для всех ВЭ в одном параметре «Максимальный сетевой тайм-аут» (t.out), происходит перевод всех ВЭ в безопасное состояние.

Безопасное состояние задается для каждого ВЭ в параметре «Аварийное значение на ВЭ» (O.AIr) в процентах (от 0 до 100 %).

Значение параметра **t.out** задается в секундах (в диапазоне 0...600). Если задано значение 0, то ВЭ в безопасное состояние переводиться не будут.

При переводе ВЭ в безопасное состояние на передней панели прибора загорается светодиод «Авария». Если в режиме «Авария» на прибор приходит какой-либо запрос от Мастера сети, то индикатор «Авария» гаснет, но ВЭ остаются в безопасном состоянии до тех пор, пока на них не поступит корректная посылка записи от прибора-источника данных.

6. ИНТЕЛЛЕКТУАЛЬНОЕ УПРАВЛЕНИЕ ИМ ПРИ СОВМЕСТНОЙ РАБОТЕ С ПРИБОРАМИ ОВЕН*

Структурная схема МВУ8, сконфигурированного под интеллектуальное управление ИМ, изображена на рис. 6. Любой программный модуль, расположенный на схеме слева от каждой из трех толстых линий, можетбыть соединен слюбым модулем, расположенным справа от этой линии.

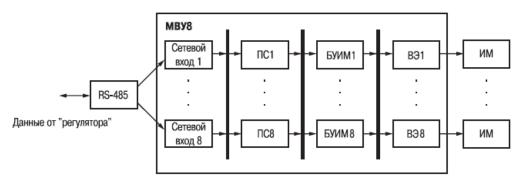


Рис. 6

6.1. Сетевые входы, работающие по протоколу ОВЕН

В «Конфигураторе МВУ8» параметры сетевых входов (СВ), работающих по протоколу ОВЕН, сгруппированы в восьми папках **Сетевой вход №1…Сетевой вход №8.**

Восемь СВ МВУ8 получают по сети RS-485 сигналы двух типов:

- цифровые сигналы, преобразующиеся в сигналуправления ИМ или в ток для регистрации;
- сигналы с датчика положения задвижки.

ВНИМАНИЕ! При конфигурировании следует задать параметры только используемых СВ.

Для каждого СВ необходимо задать следующие программируемые параметры (папки **Сетевой вход №1…№8**) (см. *Прил.* В, табл. В.2):

- Базовый адрес источника данных (параметр SoUr) указывает адрес прибора или ПК, данные с которого поступают на данный СВ;
- Имя параметра источника данных (параметр CHAr) указывает имя параметра источника, от которого поступают данные в сеть RS-485;
- Тип данных (параметр dAtA) определяет тип поступающих данных;
- **Наличие модификатора времени в данных** (параметр **t.InC**) используется для определения типа данных:
- **Аварийный тайм-аут** (параметр **ALr.t**) определяет время, через которое сетевой входперейдет в аварийный режим работы, если данные по сети RS-485 не будут получены.

Подробнее о базовом адресе источника данных, имени и типе параметра см. в руководстве по эксплуатации прибора-источника данных.

С сетевого входа МВУ8 сигнал поступает на один или несколько Преобразователей сигнала (ПС).

6.2. Преобразователи сигнала

6.2.1. Параметры ПС

В МВУ8 имеется восемь независимых ПС. Параметры ПС сгруппированы в папках Преобразователь сигнала №1...№8.

^{*} Конфигурирование прибора для работы в интеллектуальном режиме рекомендуется производить только высококвалифицированным специалистам. В случае возникновения вопросов предлагаем обращаться в группу технической поддержки компании OBEH: (495) 174-82-82, e-mail: support@owen.ru.

Для каждого ПС необходимо задать следующие параметры:

- **Номер СВ** (параметр **F.In**) указывает СВ, с которого поступает сигнал на данный ПС;
- Сигнал на ПС при аварии СВ (параметр P.ALr) определяет значение сигнала, которое ПС будет использовать в качестве входного при прерывании обмена данными по сети RS-485 с подключенным СВ в случае, если на СВ не поступило данных за время, определенное в параметре Аварийный тайм-аут (ALr.t); при восстановлении сетевого обмена МВУ8 автоматически отключает аварийный режим и использует вновь поступившее значение;
- Ограничение диапазона и скорости роста сигнала (параметры HLP, Pou.H, Pou.L,
 P.rES) позволяют ограничить величину и скорость роста сигнала, (см. п.6.2.2);
- Способ управления ИМ (параметр CP.t) позволяет выбрать линейный или ON/OFF способ управления ИМ (см. п.6.2.3);

для ON/OFF способа управления следует задать:

- гистерезис (параметр **HYS.P**);
- тип логики управления (параметр **CP.tL**);
- Параметры, отвечающие за дальнейшее распределение сигнала в приборе; их задают соответственно в папках Нагреватель и Холодильник:
- Количество БУИМ (параметры nPCP и nPCO) указывается количество БУИМ, задействованных для управления Нагревателями, и количество БУИМ, задействованных для управления Холодильниками (от 1 до 8);
- Нижний порог сигнала для Нагревателей (см. п. 6.3.7);
- Нижний порог сигнала для Холодильников (см. п. 6.3.7);
- Указатели на БУИМ типа Нагреватель (Холодильник) это две папки, которые содержат по восемь строк для указания номеров задействованных БУИМ прибора.

6.2.2. Ограничение диапазона и скорости роста сигнала

Ограничение диапазона сигнала, поступающего в МВУ8, задается двумя параметрами:

- Верхняя граница диапазона (Преобразователь сигнала | Pou. H)
- Нижняя граница диапазона (Преобразователь сигнала | Pou.L)

При получении от CB сигналов, значение которых выходит за границы допустимого диапазона, эти значения принимаются равными верхней или нижней границе диапазона соответственно.

Пример. По условиям технологического процесса система охлаждения установки должна работать не менее чем на 50 % своей мощности. Если указать для параметра **Преобразователь сигнала** | **Pou.L** значение 50,0, то при поступлении на вход МВУ8 ошибочного сигнала (например, 30 %) система охлаждения будет работать на 50 % своей мощности.

Ограничение скорости роста сигнала необходимо для «безударного» включения ИМ. Максимальная скорость изменения входного сигнала задается в параметре **P.rES** (ед/мин). Если для параметра **P.rES** задано значение 0,0, то ограничение скорости **отключается**, т.е. сигнал может сколь угодно быстро изменять свое значение.

Полностью отключить ограничения сигнала можно в параметре **Преобразователь сигнала** | **HLP**.

6.2.3. Способы управления ИМ

Способ управления ИМ следует задать в параметре **Преобразователь сигнала** NI1...8 | CP.t:

 – Линейный способ управления: мощность ИМ линейно меняется от минимального до максимального значения; при линейном управлении на СВ МВУ8 подается (как

правило) сигнал от регулятора, содержащий информацию о значении мощности, которую требуется подавать на ИМ;

 ON/OFF-способ управления: мощность на ИМ меняется скачкообразно от минимума к максимуму или наоборот; при ON/OFF управлении на СВ МВУ8 подается (как правило) значение измеренной или вычисленной физической величины.

6.2.3.1 Линейный способ управления ИМ

Линейный способ управления ИМ используется:

- при ШИМ-управлении 2-х позиционным ИМ;
- при управлении 3-х позиционным ИМ;
- при управлении ИМ с управлением аналогового типа, сигнал которых может принимать значения в диапазоне 4...20 мА или 0...10 В.

При линейном способе управления ИМ на вход МВУ8 поступает сигнал от регулятора, в качестве которого может быть использован:

- регулятор ОВЕН (ТРМ151, ТРМ133, ТРМ148 и т.д.);
- SCADA-система с ОРС-драйвером, поддерживающим протокол ОВЕН;
- иная программа, позволяющая работать в сети RS-485 по протоколу ОВЕН.

Работа ИМ при линейном способе управления показана на рис. 7.

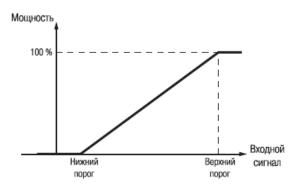


Рис. 7

Конфигурирование МВУ8 для управления ИМ линейным способом осуществляется в следующем порядке.

- 1. Установить связь с прибором (см. п. 4.3).
- 2. Задать значения параметров папки Сетевые входы.
- 3. Задать значения параметров папки **Преобразователи сигнала** в такой последовательности:
 - задать значение параметра Номер Сетевого входа (F.in);
 - задать параметры папки Ограничение сигнала (Pou.H, Pou.L, P.rES) или отключить ограничение сигнала в параметре Наличие ограничений сигнала (HLP);
 - установить значение Линейный в параметре Способ управления Исполнительными механизмами (СР.t);
 - при использовании ИМ типа Нагреватель:
 - задать значение 1 (единица) в параметре Общее количество БУИМ типа Нагреватель (пРСР) и значение 0 (ноль) в параметре Общее количество БУИМ типа Холодильник (пРСО):
 - в папке Нагреватели указать ссылку на свободный БУИМ в параметре Указатель №1
 на БУИМ типа Нагреватель (n.ZP);
 - задать значение Нижнего порога сигнала для Нагревателей (PC.L.P);

при использовании ИМ типа Холодильник:

- задать значение 1 (единица) в параметре Общее количество БУИМ типа Холодильник (пРСО) и значение 0 (ноль) в параметре Общее количество БУИМ типа Нагреватель (пРСР);
- в папке Холодильники указать ссылку на свободный БУИМ в параметре Указатель № 1
 на БУИМ типа Холодильник (п.ZO);
- задать значение Нижнего порога сигнала для Холодильников (PC.L.O).
- 4. Задать значения параметров выбранного БУИМ (папки **Основные / Дополнительные БУИМ**):
 - задать значение Верхнего порога сигнала управления (РСРН);
 - в параметре **Тип Исполнительного механизма** (**SE.P**) выбрать тип ИМ: 2-х; 3-х позиционный или аналоговый ИМ;
 - в зависимости от выбранного типа ИМ задать значения соответствующих параметров ИМ;
 - задать Ссылки на ВЭ (ОР):
 - для 2-х позиционного или аналогового ИМ в параметре Ссылка №1 на ВЭ;
 - для 3-х позиционного ИМ в параметрах Ссылка №1 на ВЭ и Ссылка №2 на ВЭ.

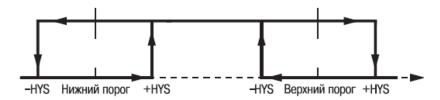
Примечание. Параметр **ОР** принимает значения Выходной элемент № 1...8 для МВУ8 и Выходной элемент № 9...16 для МР1.

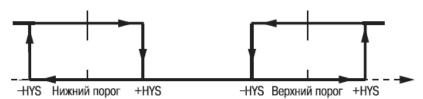
5. Выключить и снова включить питание МВУ8 (или выбрать команду Главного меню **Прибор | Сервис | INIT**). После этого прибор начнет работать с новыми значениями параметров.

6.2.3.2. ON/OFF - способ управления ИМ

ON/OFF управление ИМ используется:

- для управления ИМ, которые могут находиться только в двух состояниях: «включено» и «выключено», или ИМ, которыми нельзя управлять с помощью ШИМ-сигнала (например, компрессором);
- для контроля выхода измеряемой величины за границы допустимого диапазона значений или для аварийной сигнализации.


ON/OFF управление осуществляется по нескольким типам логики.


Для прямой и обратной логики:

- Верхний порог определяет значение сигнала с СВ, при котором (+/- гистерезис) будет переключаться ИМ;
- Нижним порогом может быть любое значение, меньшее разности (Верхний порог гистерезис).

В) П-образная логика

Г) U-образная логика

Для П-образной и U-образной логики:

- Верхний и Нижний пороги задают значения сигнала с СВ, при которых (+/- гистерезис) будет переключаться ИМ;
- Сумма (Нижний порог + гистерезис) должна быть меньше разности (Верхний порог гистерезис).

Примечание. Для использования МВУ8 в качестве регулятора следует задать обратную логику.

Конфигурирование МВУ8 (МР1) для управления ИМ способом ОN/OFF осуществляется в следующем порядке:

- 1. Установить связь с прибором (см. п. 4.3).
- 2. Задать значения параметров папки Сетевые входы.
- 3. Задать значения параметров папки **Преобразователи сигнала** в такой последовательности:
 - задать Номер СВ (F.in);
 - задать значения параметров папки **Ограничение сигнала** (**Pou.H**, **Pou.L**, **P.rES**) *или* отключить ограничение сигнала в параметре **Отключение ограничений сигнала** (**HLP**);
 - задать значение ON/OFF в параметре Способ управления ИМ (CP.t);
 - задать значения параметров папки Параметры ON/OFF управления ИМ: Тип логики Управления ИМ (CP.tL) и Гистерезис (HYS.P);
 - задать значение 1 (единица) в параметре Общее количество БУИМ типа Нагреватель (nPCP);
 - в папке Нагреватели задать ссылку на свободный БУИМ в параметре Указатель №1 на БУИМ типа Нагреватель (n.ZP №1);
 - задать значение 0 (ноль) в параметре **Общее количество БУИМ типа Холодильник** (**nPCO**);
 - задать значение Нижнего порога сигнала для БУИМ типа Нагреватель (PC.L.P).

ВНИМАНИЕ! При ON/OFF-способе управления ИМ (любой типлогики) следует использовать только БУИМ типа Нагреватель, даже если ИМ работает как холодильник.

- 4. Задать значения параметров папки выбранного БУИМ (папки **Основные** / **Допол- нительные Блоки управления ИМ**):
 - задать значение Верхнего порога сигнала для БУИМ (РСРН).
 - в параметре **Тип Исполнительного механизма** (**SE.P**) выбрать тип ИМ (2-х, 3-х позиционный или аналоговый);
 - в зависимости от выбранного типа ИМ задать его параметры;
 - задать Ссылки на Выходные элементы (ОР):
 - для 2-х позиционного или аналогового ИМ задать ссылку в параметре Ссылка
 №1 на Выходной элемент;
 - для 3-х позиционного ИМ задать ссылки в параметрах **Ссылка №1 на Выходной** элемент и **Ссылка №2 на Выходной элемент**.

Примечание. Параметр **ОР** принимает значения Выходной элемент № 1...8 для МВУ8 и Выходной элемент № 9...16 для МР1.

5. Выключить и снова включить питание МВУ8 (или выбрать команду Главного меню **Прибор** | **Сервис** | **INIT**). После этого прибор начнет работать с новыми значениями сетевых параметров.

Примечание. При конфигурировании МВУ8 следует задать значения параметров только используемых ПС.

6.2.4. Выходные сигналы МВУ8

В зависимости от типа ВЭ и выбранного способа управления прибор может осуществлять интеллектуальное управление ИМ разными способами (табл. 5).

Таблица 5

Способ управле- ния ИМ	Дискретные ВЗ транзист	Аналоговые ВЭ (ЦАП 420 мА и 010 В)	
	2-х поз. ИМ	3-х поз. ИМ	ИМ с аналоговым управлением
Линейное	ШИМ-сигнал	Сигнал для постановки задвижки в произвольное положение	Ток в диапазоне 420 мА или напряжение в диапазоне 010 В
ON/OFF	вкл/выкл (при переходе сигнала через порог (+/- гистерезис))	Сигнал для постановки задвижки только в крайние положения	Ток 4 или 20 мА, напряжение 0 или 10 В (при переходе сигнала через порог (+/- гистерезис))

С ПС управляющий сигнал поступает на один или несколько БУИМ.

6.3. Блоки управления исполнительными механизмами

6.3.1. Общие сведения

Блок управления исполнительным механизмом (БУИМ) – это программный модуль (ПМ), позволяющий управлять одним ИМ при помощи нескольких ВЭ, подключенных к данному БУИМ.

МВУ8 содержит восемь БУИМ, параметры которых содержатся в папках **БУИМ №1... БУИМ №8**.

При использовании модуля расширения MP1 необходимо включить его поддержку (см. п. 4.4). При этом в Главном окне конфигуратора отобразятся папки, содержащие параметры дополнительных БУИМ (папки **БУИМ №9...БУИМ №16**).

ВНИМАНИЕ! Дополнительные БУИМ могут управлять только двухпозиционными ИМ.

Для каждого БУИМ задаются следующие параметры:

- Тип ИМ (SE.P) определяет, ИМ какого типа будет управлять данный БУИМ:
 - 2-х позиционным для управления ТЭНами, клапанами и т.д.;
 - 3-х позиционным для управления задвижками, трехходовыми клапанами и т.д.;
 - ИМ с аналоговым управлением;
- **Ссылки №1 и №2 на ВЭ** (два параметра **ОР**) задают номер ВЭМВУ8 или МР1, к которым подключают ИМ:
 - для управления 2-х позиционным ИМ следует задавать один ВЭ в параметре **OP:1**;
 - для управления 3-х позиционным ИМ (задвижкой) следует задавать два ВЭ в параметрах **ОР:1** и **ОР:2**;

- Верхний порог сигнала управления (РСРН);
- Параметры 2-х позиционного ШИМ-регулирования (tHP и t.L);
- Параметры 3-х позиционного регулирования задвижкой (tP.H, db.F, tFP, dLP. LSP и i.dP).

6.3.2. Управление 2-х позиционными ИМ

Двухпозиционный ИМ имеет два состояния: «вкл.» и «выкл.». Для управления таким ИМ используется один дискретный ВЭ (реле, транзисторный ключ, симистор, твердотельное реле).

С помощью MBУ8 можно реализовать два способа управления 2-х позиционным ИМ: линейное и ON/OFF. Тип управления задается в параметре **Преобразователь сигналов** | **CP.t** (см. п. 6.2.3).

При линейном управлении на ВЭ подается ШИМ-сигнал (рис. 8).

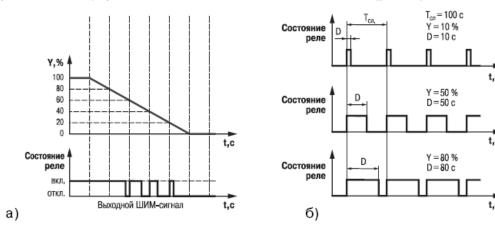


Рис. 8

Для управления 2-х позиционными ИМ в папке соответствующего БУИМ задаются 2 параметра:

- Период следования ШИМ-импульсов (tHP);
- Минимально допустимая длительность ШИМ-импульса (tL).

При ON/OFF управлении 2-х позиционным ИМ параметры ШИМ-сигнала можно не задавать.

6.3.3. Управление задвижками

МВУ8 позволяет управлять задвижками двух типов:

- задвижками с дискретным управлением (3-х позиционными ИМ) (см. п. 6.3.4);
- задвижками с аналоговым управлением (см. п. 6.3.5).

6.3.4. Управление 3-х позиционными ИМ

3-х позиционный ИМ (задвижка) управляется тремя сигналами: «больше»/ «меньше»/ «стоп». Для этого используются два дискретных ВЭ МВУ8: первый дает команду на открытие («больше»), второй – на закрытие («меньше»).

6.3.4.1. Трехпозиционные ИМ с датчиком положения

При управлении трехпозиционными ИМ с датчиком положения информация о положении задвижки поступает с СВ (СВ2, см. рис.9). Величина сигнала с датчика положения задвижки изменяется в диапазоне от 0 до 100.

Для такого управления задают значения следующих параметров:

– папка БУИМ №1...8 | Параметры 3-х позиционного регулирования задвижки | параметр dLP – значение «Есть», указывающее на наличие в системе датчика положения задвижки;

- в любой незанятой папке **Сетевой вход 1...8** | **Базовый адрес и имя источника данных**, а также формат данных, передаваемых по сети RS-485;
- папка БУИМ і і.dp (Номер Сетевого Входа).

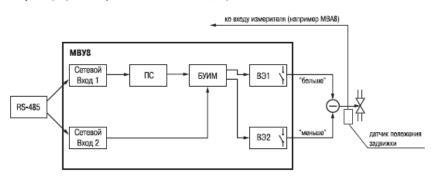


Рис. 9. Структурная схема управления трехпозиционным ИМ с датчиком положения

ВНИМАНИЕ! При использовании задвижки с полным временем хода менее 10-15 с и датчиком положения, или при слишком большом периоде опроса датчика положения любых других задвижек (1с и более) МВУ8 может не установить задвижку в требуемое положение (внутрь заданной зоны нечувствительности). Для предотвращения этого необходимо увеличить зону нечувствительности задвижки (параметр **db.F**) или сократить период опроса датчика положения.

6.3.4.2. Трехпозиционные ИМ без датчика положения

При управлении 3-х позиционным ИМ без датчика положения (рис. 10) прибор вычисляет положение ИМ в любой момент времени по математической модели.

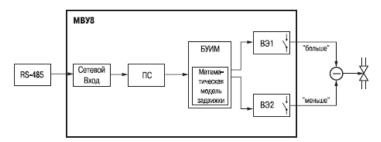


Рисунок 10. Структурная схема управления трехпозиционным ИМ без датчика положения

Для построения математической модели необходимо с максимальной точностью задать значения следующих параметров папки **Блоки управления исполнительными механизмами**:

- Полное время хода задвижки (tP.H);
- Начальное положение задвижки (LSP);
- Время выборки люфта задвижки (TFP).

ВНИМАНИЕ!

- 1. Управление без датчика положения недопустимо при использовании задвижек без концевых выключателей.
- 2. При пропадании питания может происходить «обнуление» данных, вычисленных по математической модели (подробнее см. п. 6.8).

Во избежание частого переключения ВЭ, управляющих задвижками, при быстром изменении управляющего сигнала в МВУ8 предусмотрен параметр Зона нечувствительности задвижки (db.F). Если управляющий сигнал меняется в указанных пределах, состояние ВЭ не меняется. Зона нечувствительности задается в процентах.

6.3.5. Управление ИМ с аналоговым управлением

Аналоговое управление ИМ осуществляется ВЭ аналогового типа (ЦАП 4...20 мА или ЦАП 0...10 В). В МВУ8 аналоговое управление осуществляется по прямопропорциональному закону (т.е. 4 мА или 0 В должны соответствовать минимальной мощности ИМ, а 20 мА или 10 В должны соответствовать максимальной мощности ИМ).

Для реализации аналогового управления необходимо подключить к БУИМ аналоговый ВЭ (параметр **OP**).

6.3.6. Подключение БУИМ типа Нагреватель и типа Холодильник

При подключении ИМ кПС необходимо указать тип ИМ. Для этого в папке **Преобразователи сигнала** необходимо задать номер подключаемого БУИМ в очередном параметре **Указатель** на **БУИМ** типа **Нагреватель** (n.ZP) или **Указатель** на **БУИМ** типа **Холодильник** (n.ZO).

Необходимо указать количество используемых БУИМ в параметрах **Количество БУИМ** типа Нагреватель (nPCP) и Количество БУИМ типа Холодильник (nPCO).

6.3.7. Пороги сигнала управления для БУИМ

Для каждого БУИМ задаются два порога сигнала управления:

- Верхний порог, при котором мощность исполнительного механизма составляет 100 %:
- для 2-х позиционного ИМ это состояние «вкл.»:
- для 3-х позиционного ИМ это полностью открытое состояние;
- для ИМ с аналоговым управлением это состояние, соответствующее току 20 мА или напряжению 10 В;
- Нижний порог, при котором мощность исполнительного механизма составляет 0 %:
- для 2-х позиционного ИМ это состояние «выкл.»;
- для 3-х позиционного ИМ это полностью закрытое состояние;
- для ИМ с аналоговым управлением это состояние, соответствующее току 4 мА или напряжению 0 В.

Пороги задаются в единицах величины, которая поступает на СВ.

Значение Верхнего порога задается в параметрах БУИМ №1...8 | РСРН.

Значение Нижнего порога задается следующим образом:

- для Нагревателей в параметре РС.L.Р (папки ПС №1...8);
- для Холодильников в параметре PC.L.O (папки ПС №1...8);
- для систем ИМ нижний порог равен верхнему порогу предыдущего БУИМ (см. п. 6.6.2).

ВНИМАНИЕ! Для Нагревателей верхний порог должен быть *больше* нижнего, для Холодильников – *меньше* нижнего порога.

Значения порогов для различных типов входных сигналов приведены в табл. 6.

Таблица 6

Порог	Для ИМ типа Нагреватель	Для ИМ типа Холодильни к			
Регул	яторы ТРМ151, ТРМ133, ТРМ2XX и т.д. с	управляющим сигналом от -1 до 1			
Нижний	0	0			
Верхний	1	-1			
	Регулятор или ПК с сигналом от - 100 до + 100				
Нижний	0	0			
Верхний	100	-100			

Порог	Для ИМ типа Нагреватель	Для ИМ типа Холодильник
Регулятор или программы с сигналом в виде непосредственного значения мощности (например, в кВт)		
Нижний	0	Следует подключить ИМ как Нагре-
Верхний	максимальное значение мощности	ватели, даже если они работают как
	(например, 15,0 кВт)	Холодильники
Входные сигналы других типов		
Нижний	минимальное входное значение	максимальное входное значение
Верхний	максимальное входное значение	минимальное входное значение

Примеры задания порогов для разных случаев применения МВУ8 см. в п. 6.6.2.

С БУИМ преобразованный сигнал поступает на ВЭ МВУ8 или МР1.

6.4. Выходные элементы

МВУ8 имеет 8 встроенных ВЭ (папки ВЭ №1...ВЭ №8). Дляувеличения числа ВЭ используют модуль расширения, параметры ВЭ которого содержатся в папках ВЭ№9...ВЭ№16.

В режиме интеллектуального управления значения параметров ВЭ не задаются. В перечисленных папках можно просмотреть значения параметра **POUt**, определяющего тип ВЭ (в режиме «только чтение»).

6.5. Полное и частичное изменение конфигурации. Отключение ПС

При эксплуатации МВУ8 может потребоваться переконфигурирование прибора.

Для полного переконфигурирования следует выбрать команду **Прибор** | **Сервис** | **Инициализация**. При инициализации разрушаются все заданные ранее установки и связи в приборе и восстанавливаются заводские значения параметров.

При частичном изменении конфигурации процедуру инициализации можно не проводить, а отключить один или несколько ранее работавших ПС, задав для них значения параметров **nPCP=0** и **nPCO=0** в соответствующих папках. При этом все элементы, связанные с этими ПС, высвобождаются и могут быть использованы в других ПС.

ВНИМАНИЕ! Не отключенный ПС при отсутствии входного сигнала может перейти в аварийное состояние; при этом загорится светодиод «**АВАРИЯ**» на передней панели прибора.

6.6. Управление системами ИМ

6.6.1. Cистемы ИМ

МВУ8 может управлять системами ИМ: группами ИМ, управляемыми одним сигналом от одного Регулятора. Для управления системой ИМ требуется один СВ, один ПС и два или более БУИМ.

Системы ИМ могут состоять из Нагревателей, из Холодильников, из Нагревателей и Холодильников, 3-х позиционных ИМ (задвижек), 2-х и 3-х позиционных ИМ в различных комбинациях.

В МВУ8 можно организовать до 8 систем ИМ (по числу ПС в приборе).

Все системы ИМ работают в одном из двух режимов: линейном или ON/OFF, задаваемом в параметре Преобразователи сигнала | CP.t.

При необходимости управления ИМ с помощью одного входного сигнала и в линейном, и в ON/OFF режимах следует создать две системы ИМ (используя два ПС) и настроить их на требуемые режимы (одну – на ON/OFF, другую – на линейный режим). Обе системы (оба ПС) следует подключить к одному СВ, задав ограничения входного сигнала и пороги сигнала управления. Соответствующий пример приведен в п. 6.6.3.

Для управления системой ИМ к ПС необходимо подключить столько БУИМ, сколькими ИМ необходимо управлять в системе. При подключении БУИМ к ПС необходимо учитывать тип ИМ

(Нагреватель или Холодильник). Количество тех и других задается в параметрах **пРСР** и **пРСО** соответственно

Пример. Пусть имеется система из трех ИМ: двух Нагревателей и одного Холодильника. Пусть Нагреватели подключены к БУИМ №1 и №2, а Холодильник – к БУИМ №3. Тогда в папке Преобразователь сигнала, к которому следует подключить эти ИМ, в параметре n.ZP1 надо указать «БУИМ 1», в n.ZP2 – «БУИМ2», в n.ZO1 – «БУИМ 3». В параметре Количество БУИМ типа Нагреватель (nPCP) – задать 2, в Количество БУИМ типа Холодильник (nPCO) – 1. Схема конфигурирования МВУ8 для управления данной системой представлено на рис. 11.

ВНИМАНИЕ! Номер БУИМ задается в параметрах **n.ZP** или **n.ZO** с наименьшим свободным номером (нельзя задать **n.ZP6**, если **n.ZP1** ... **n.ZP5** не заполнены).

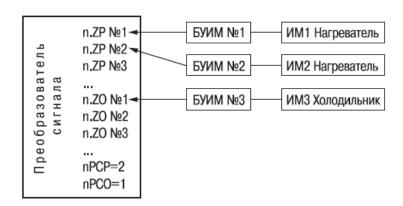


Рис. 11

6.6.2. Пороги сигналов при управлении системами ИМ

При управлении системами ИМ с помощью нескольких БУИМ для каждого БУИМ необходимо задать значения порогов сигналов.

Диапазон значений входного сигнала, приходящего от CB, следует разбить на несколько зон, соответствующих различным ИМ. БУИМ, получив сигнал от CB, прошедший через ПС, анализирует его и включает соответствующий ИМ.

Когда значение входного сигнала от СВ находится в зоне, соответствующей предыдущему ИМ, текущий ИМ перестает работать. Когда значение входного сигнала находится в зоне текущего ИМ, то он работает с неполной мощностью. Чем ближе значение входного сигнала к верхней границе зоны, тем выше мощность текущего ИМ, и, соответственно, чем ближе значение входного сигнала к нижней границе зоны, тем ниже мощность текущего ИМ. При «переходе» значения выходного сигнала в зону последующего ИМ текущий ИМ работает с максимальной мощностью.

Верхний порог (**PCPH**) задается для каждого БУИМ; нижний порог (**PC.L.0** и **PC.L.P**) задается для всей системы ИМ. Нижний порог последующего БУИМ задается равным верхнему порогу предыдущего БУИМ.

Пример. Для обогрева складского помещения используется система из 4-х ТЭНов мощностью 10 кВт каждый. В зависимости от сигнала с регулятора температуры МВУ8 должен поочередно включать ТЭНы, чтобы достичь суммарной мощности в 40 кВт.

Конфигурирование. К одному ПС подключают 4 БУИМ, каждый из которых управляет одним ТЭНом. Сигнал от регулятора изменяется в диапазоне от 0 до 1; его разбивают на 4 зоны для четырех ТЭНов: в параметре **PCPH** указывают значение для БУИМ 1 – 0,25, БУИМ 2 – 0,50, БУИМ 3 – 0,75, БУИМ 4 – 1,0 (рис. 12).

Нижний порог для системы (нижний порог первой зоны) задается равным 0 в параметре **Преобра- зователь сигнала** | **Нижний порог сигнала для БУИМ типа Нагреватель (PC.L.P).** Тем самым диапазон значений сигнала от 0 до 1 делится на 4 равные зоны, и каждый ИМ будет работать в «своей» зоне. При таком способе управления ИМ обеспечивается плавный рост суммарной мощности системы, без перенагрузки коммутационных элементов системы управления (реле или пускателей).

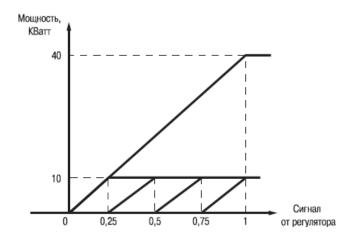


Рис. 12

В данном примере плавный рост мощности ИМ (ТЭНе) обеспечивается управлением с помощью ШИМ-сигналов.

6.6.3. Конфигурирование при управлении системой ИМ

Конфигурирование осуществляется в следующем порядке:

- 1. Установить связь с прибором (см. п. 4.3).
- 2. Задать значения параметров папки Сетевой вход.
- 3. Задать значения параметров папки **Преобразователи сигнала** в такой последовательности:
- Номер СВ (F.in);
- **Ограничение сигнала** | **Pou.H, Pou.L, P.res** (*или* отключить ограничение сигнала в параметре **Наличие ограничений сигнала** (**HLP**));
- Способ управления Исполнительными механизмами (CP.t);
- если ПС должен работать в ON/OFF режиме Параметры ON/OFF управления ИМ |
 CP.tL, HYS.P;
- Общее количество БУИМ типа Нагреватель (nPCP);
- Указатели на подключенные БУИМ типа Нагреватель (n.ZP);
- Общее количество БУИМ типа Холодильник (nPCO);
- Указатели на подключенные БУИМ типа Холодильник (n.ZO);
- Нижний порог сигнала для БУИМ типа Нагреватель (PC.L.P);
- Нижний порог сигнала для БУИМ типа Холодильник (PC.L.O).
- 4. Задать значения параметров всех подключенных БУИМ (папки **Основные** / **Дополнительные БУИМ**):
 - Верхний порог сигнала управления (РСРН);
 - Тип Исполнительного механизма (SE.P) выбрать ИМ 2-х; 3-х позиционный или с аналоговым управлением;
 - в зависимости от выбранного типа ИМ задать значения соответствующих параметров ИМ;
 - Ссылки на ВЭ (ОР): для 2-х позиционного или аналогового ИМ в параметре Ссылка №1 на ВЭ; для 3-х позиционного ИМ в параметрах Ссылка №1 на ВЭ и Ссылка №2 на ВЭ.

- 5. Выключить и снова включить питание МВУ8 или выбрать команду **Прибор** | **Сервис** | **INIT**. После этого прибор начнет работать с новыми значениями сетевых параметров.
 - 6.7. Примеры конфигурирования МВУ8 для режима интеллектуального управления ИМ
 - 6.7.1. Управление системой аварийной сигнализации

Необходимо сконфигурировать МВУ8 для управления системой аварийной сигнализации о выходе контролируемой величины за допустимые границы.

Описание конфигурации:

Для контроля выхода величины за допустимые пределы применяется ON/OFF управление исполнительным механизмом с U-образной логикой.

В МВУ8 следует организовать структуру из СВ, соединенного с ПС. Для ПС задается ОN/ OFF тип управления ИМ (**CP.t**). К ПС подключается БУИМ типа Нагреватель. Нижняя граница допустимого диапазона **PC.L.P** задается в папке **ПС**, верхняя граница диапазона **PCPH** задается в папке **БУИМ**.

Предположим, что контролируемая величина измеряется прибором OBEHMBA 8 с сетевым адресом 48. Имя оперативного параметра MBA8: **READ**, тип Float + модификатор времени. Пусть допустимый диапазон составляет от 100 до 200 единиц.

Конфигурирование:

Сетевые входы:

+ Сетевой вход №1

Базовый адрес источника данных **SOUR** = 48

Имя параметра источника данных **Char** = READ

Тип данных data = Float

Наличие модификатора времени в данных **t.inC** = Есть

Аварийный тайм-аут **ALr.t** = 00:30

Преобразователи Сигнала

+ Преобразователь Сигнала №1

Номер Сетевого входа **F.in** = Сетевой вход 1

Сигнал на ПС при аварии P.ALr = 90

Комментарий: При отсутствии связи с измеряющим контролируемую величину MBA8 в течение 30 с модуль MBУ8 перейдет в аварийное состояние и будет «считать», что на его сетевой вход пришло значение, заданное в параметре P.Alr, т.е. 90. Поскольку значение 90 выходит за границы допустимого диапазона, произойдет срабатывание реле, сигнализирующего об аварии.

Наличие ограничений сигнала **HLP** = Выкл.

Способ управления ИМ CP.t = ON/OFF

+ Параметры ON/OFF управления ИМ

Гистерезис **HYS.P** = 0,1

Тип логики управления ИМ CP.tL = U-образная

+ Нагреватели

Общее кол-во БУИМ типа Нагреватель **nPCP** =1

Нижний порог сигнала для Нагревателей РС. L. Р = 100,0

Указатель №1 на БУИМ типа Нагреватель n.ZP =БУИМ № 1

+ Холодильники

Общее кол-во БУИМ типа Холодильник **nPCO** = 0

Блоки управления исполнительными механизмами

+ БУИМ №1

Верхний порог сигнала РСРН = 200,0

Тип Исполнительного механизма SE.P = 2-х позиц. ИМ

Ссылка №1 на ВЭ **ОР** = ВЭ1

Примечание. Значения параметров, не указанных выше, задавать не надо, так как они не влияют на работу прибора.

ВНИМАНИЕ! Для совместной работы модулей МВА8 и МВУ8 требуется мастер сети RS-485, подробнее см п. Г.З *Прил*. Г.

6.7.2. Управление 3-х позиционным ИМ (задвижкой)

Необходимо сконфигурировать МВУ8 для линейного управления 3-х позиционным ИМ (задвижкой).

Система для регулирования температуры и влажности состоит из климатокамеры, TPM151, MBУ8, ТЭНа и задвижек. Первый канал регулирования TPM151 поддерживает температуру при помощи ТЭНа, второй – влажность при помощи задвижки, которая регулирует подачу пара в камеру. Первый выход TPM151 задействован для управления ТЭНом, второй – для аварийной сигнализации. МВУ8 управляет задвижкой по сигналу от регулятора второго канала TPM151.

Описание конфигурации:

Пусть базовый адрес TPM 151 равен 32. Тогда выходной сигнал регулятора № 2 можно считать из оперативного параметра с именем **r.Out** источника данных (TPM151) с сетевым адресом 33. Тип данных: Float. Диапазон выходного сигнала ПИД-регулятора TPM151: от –1 до +1, но, поскольку требуется управлять Нагревателем (подаваемый пар увлажняет камеру, т.е. увеличивает параметр Влажность), диапазон можно ограничить: от 0 до +1. Пороги срабатывания ИМ также надо задать равными 0 и 1,0.

В МВУ8 следует настроить один СВ, соединить его с ПС, работающим по Линейной логике управления ИМ, и подключить один БУИМ, управляющий 3-х позиционным ИМ.

Конфигурирование:

Сетевые входы

+ Сетевой вход №1

Базовый адрес источника данных **SOUR** = 33

Имя параметра источника данных **СНА**r = R.OUT

Тип данных data = Float

Наличие модификатора времени в данных t.inC = Heт

Аварийный тайм-аут ALr.t=00:30

Преобразователи Сигнала

+ Преобразователь Сигнала №1

Номер Сетевого входа F.in = Сетевой вход 1

Сигнал на ПС при аварии P.ALr = 0,0

Комментарий 1. При отсутствии связи с измеряющим контрольную величину TPM151 в течение 30 с модуль MBУ8 перейдет в аварийное состояние и будет «считать», что на его сетевой вход пришло значение, заданное в параметре P.Air, т.е. 0,0. При этом задвижка будет закрыта.

Наличие ограничений сигнала **HLP** = Вкл.

+ Ограничение сигнала

Максимально допустимая скорость изменения сигнала **P.rES** = 0,0

Комментарий 2. При задании P.rES = 0,0 ограничение скорости снимается.

Верхняя граница диапазона **Pou.H** = 1,0

Нижняя граница диапазона **Pou.L** = 0,0

Способ управления ИМ СР. t = Линейный

+ Нагреватели

Общее количество БУИМ типа Нагреватель **nPCP** = 1

Нижний порог сигнала для Нагревателей РС. L. Р = 0,0

Указатель №1 на БУИМ типа Нагреватель n.ZP = БУИМ № 1

+ Холодильники

Общее количество БУИМ типа Холодильник **пРСО** = 0

Блоки управления исполнительными механизмами

+ БУИМ №1

Верхний порог сигнала РСРН = 1,0

Тип Исполнительного механизма **SE.P** = 3-х позиц. ИМ

Ссылка №1на Выходной элемент ОР = ВЭ1

Ссылка №2 на Выходной элемент ОР = ВЭ2

+ Параметры 3-х позиционного регулирования задвижкой

Наличие датчика положения задвижки dLP = Heт

Зона нечувствительности задвижки, % db.F = 5,0

+ Без датчика положения задвижки

Полное время хода задвижки **tP.H** = 75

Время выборки люфта задвижки **tFP** = 0,5

Исходное положение задвижки **LSP** = 0.0

Примечание. Значения параметров, не указанных выше, задавать не надо, так как они не влияют на работу прибора.

6.7.3. Управление системой ИМ

Необходимо сконфигурировать МВУ8 для управления системой ИМ.

В климатокамере для поддержания температуры и влажности используются: для поддержания температуры – ТЭН и охлаждающий контур; для осушения камеры – этот же охлаждающий контур (при работе на нем происходит конденсация влаги); для увлажнения камеры – две форсунки, распыляющие воду. Форсунки разного размера, одна для сильного увлажнения, другая – для более точного режима поддержания влажности. Управлять форсунками с помощью ШИМ-сигнала не представляется возможным, т.к. требуется последовательно включать или выключать их.

В качестве регулятора используем TPM151, в котором задействованы два ПИД- регулятора: Регулятором №2 регулируется температура, Регулятором №2 регулируется влажность. Выходные сигналы от обоих регуляторов по сети RS-485 поступают в MBУ8.

Описание конфигурации:

В приборе МВУ8 следует организовать систему из двух СВ, трех ПС и пяти БУИМ, по числу ИМ: ТЭН, холодильник (в качестве охладителя), холодильник (в качестве осушителя) и две форсунки.

Структурная схема данной системы приведена на рис. 13.

Примечание. В данном примере использованы следующие два практических приема, позволяющих решать нестандартные задачи.

- 1. Сигнал от одного СВ можно подать на несколько ПС, работающих в разных режимах управления ИМ.
- 2. Один ИМ можно подключить к двум разным ВЭ. Тогда один ИМ может выполнять две различные функции в зависимости от вида управляющего воздействия.

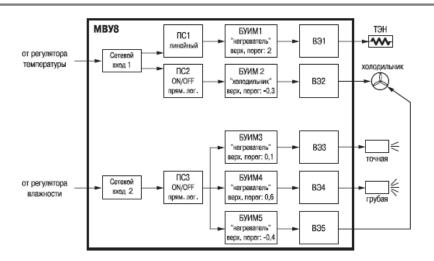


Рис. 13

ПС № 1 принимает сигнал от Регулятора № 1, работает в линейном режиме и выдает на ТЭН ШИМ-сигнал. Мощность ИМ постепенно растет и при значении с Регулятора № 1, равном 1, достигает 100 %. В ПС № 1 включается ограничение входного сигнала регулятора, «обрезающее» отрицательные значения.

ПС №2 также принимает сигнал от Регулятора №1, но работает в ON/OFF режиме, поскольку управлять компрессором холодильника с помощью ШИМ-сигнала невозможно. В ПС №2 включается режим ограничения сигнала и «обрезаются» все положительные значения диапазона входного сигнала регулятора, т.к. сигнал ПИД-регулятора находится в диапазоне от –1 до +1. Холодильник включается, когда сигнал от регулятора равен –0,3 или ниже.

ПС №3 работает в ON/OFF режиме с прямой логикой. Этот ПС должен управлять холодильником и двумя форсунками. Форсунки открываются по очереди по мере возрастания сигнала от Регулятора №2. «Точная» форсунка открывается при значении сигнала, равном 0,1, а «грубая», сильно увлажняющая камеру, при значении сигнала, равном 0,6 и более. При отрицательном значении сигнала от Регулятора №2 (-0,4 и ниже) должен включаться холодильник для осушения камеры. Понижающаяся при этом температура в камере компенсируется Регулятором №1 (включается ТЭН)

Пять БУИМ распределены между тремя ПС: БУИМ №1, БУИМ №3 и БУИМ №4 подключены как Нагреватели, БУИМ №2 и БУИМ №5 подключены как Холодильники. БУИМ №2 И №5 через «свои» ВЭ управляют одним реальным исполнительным механизмом, но прибор воспринимает его как два разных ИМ: охладитель и осущитель.

Конфигурирование:

Сетевые входы

+ Сетевой вход №1

Базовый адрес источника данных **SOUR** = 32

Имя параметра источника данных **CHA**r = R.OUT

Тип данных dAtA = Float

Наличие модификатора времени в данных t.inC = Heт

Аварийный тайм-аут ALr.t = 00:30

Преобразователи Сигнала

+ Преобразователь Сигнала №1

Номер Сетевого Входа F.in = сетевой вход 1

Сигнал на ПС при аварии P.ALr = 0,0

Наличие ограничений сигнала **HLP** = Вкл.

+ Ограничение сигнала

Верхняя граница диапазона Рои.Н = 1

Нижняя граница диапазона Pou. L = 0,0

Способ управления ИМ СР. t = линейный

+ Нагреватели

Общее кол-во БУИМ типа Нагреватель **пРСР** = 1

Нижний порог сигнала Нагревателей РС. L. Р = 0,0

Указатель №1 на БУИМ типа Нагреватель n.ZP = БУИМ №1

+ Холодильники

Общее кол-во БУИМ типа Холодильник **пРСО** = 0

+ Преобразователь Сигнала №2

Номер Сетевого Входа **F.in** = Сетевой вход 1

Сигнал на ПС при аварии P.ALr = 0,0

Наличие ограничений сигнала **HLP**= Вкл.

+ Ограничение сигнала

Верхняя граница диапазона Рои.Н = 0,0

Нижняя граница диапазона **Pou.L** = -1,0

Способ управления ИМ CP.t = ON/OFF

+ Параметры ON/OFF управления ИМ

Гистерезис **HYS.P** = 0,0

Тип логики управления **ИМ CP.tL** = прямая логика

+ Нагреватели

Общее количество БУИМ типа Нагреватель пРСР = 0

+ Холодильники

Общее количество БУИМ типа Холодильник пРСО = 1

Нижний порог сигнала для Холодильников РС.L.0 = 0,0

Указатель №1 на БУИМ типа Холодильник п.ZO = БУИМ № 2

+ Преобразователь Сигнала №3

Номер Сетевого Входа **F.in** = Сетевой вход 2

Сигнал на ПС при аварии P.ALr = 0,0

Наличие ограничений сигнала **HLP** = Выкл.

Способ управления ИМ Cp.t = ON/OFF

+ Параметры ON/OFF управления ИМ

Гистерезис **HYS.P** = 0,0

Тип логики управления **ИМ СР.tL** = прямая логика

+ Нагреватели

Общее кол-во БУИМ типа Нагреватель **nPCP** = 2

Нижний порог сигнала Нагревателей РС. L. Р = 0,0

Указатель №1 на БУИМ типа Нагреватель **n.ZP** = БУИМ № 3

Указатель №2 на БУИМ типа Нагреватель **n.ZP** = БУИМ № 4

+ Холодильники

Общее количество БУИМ типа Холодильник **пРСО** = 1

Нижний порог сигнала для Холодильников РС.L.О = 0,0

Указатель №1 на БУИМ типа Холодильник п.ZO = БУИМ № 5

Блоки управления исполнительными механизмами

+ БУИМ №1

Верхний порог сигнала РСРН = 1,0

Тип ИМ SE.P = 2-х позиц. ИМ

Ссылка №1 на Выходной элемент ОР = ВЭ1

Мин. допуст. длит. ШИМ-импульса t.L = 0,05

Период следования ШИМ-импульсов tHP = 3,0

+ БУИМ №2

Верхний порог сигнала **РСРН** = -0.3

Тип ИМ **SE.P** = 2-х позиц. ИМ

Ссылка №1на ВЭ **ОР** = ВЭ2

+ БУИМ №3

Верхний порог сигнала РСРН = 0,1

Тип ИМ **SE.P** = 2-х позиц. ИМ

Ссылка №1на ВЭ **ОР** = ВЭЗ

+ БУИМ №4

Верхний порог сигнала РСРН = 0,6

Тип ИМ SE.P = 2-х позиц. ИМ

Ссылка №1на ВЭ **ОР** = ВЭ4

+ БУИМ №5

Верхний порог сигнала **РСРН** = -0.4

Тип ИМ SE.P = 2-х позиц. ИМ

Ссылка №1на ВЭ **ОР**= ВЭ5

Примечание. Значения параметров, не указанных выше, задавать не надо, т. к. они не влияют на работу прибора.

6.7.4. Управление объектами с нелинейной характеристикой

МВУ8 идеально подходит для управления объектами с нелинейной характеристикой. Нелинейная характеристика может быть представлена кусочно-линейной функцией (ломаной линией), состоящей из нескольких участков, каждый из которых имеет свой угол наклона. Примеры такой аппроксимации показаны на рис. 14, *a*, б.

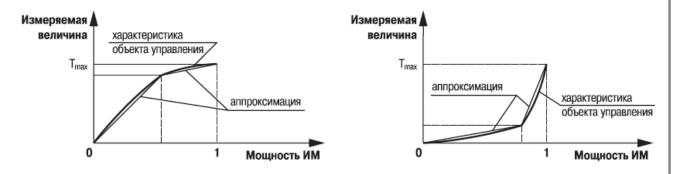


Рис. 14

Примером объекта, имеющего нелинейную характеристику (см. рис. 14, *a*), является печь с поврежденной теплоизоляцией.

Пусть для поддержания в этой печитемпературы до 50 °С требуется ТЭН мощностью 20 кВт. Для поддержания температуры выше 50 °С с учетом возросших утечек тепла требуется дополнительно подключить еще один ТЭН мощностью 10 кВт.

Описание конфигурации: Следует подключить ПС к СВ, а к ПС подключить два БУИМ типа Нагреватель. ПС должен работать в линейном режиме управления ИМ.

Диапазон значений выходного сигнала с Регулятора, полученного от СВ, целесообразно разбить на две зоны. Нижний порог сигнала для всех БУИМ (**PC.L.P**) установим равным 0. Верхний порог сигнала для БУИМ №1 (**PCPH**) должен быть равен значению с регулятора в точке перегиба (см. рис. 14), например, 0,65. Верхний порог сигнала для БУИМ № 2 надо задать равным 1.

Тогда при значениях выходного сигнала от 0 до 0,65 будет работать только первый ТЭН в режиме ШИМ, а при значениях от 0,65 до 1 будут работать оба ТЭНа: первый на 100 %, второй в режиме ШИМ (рис. 15).

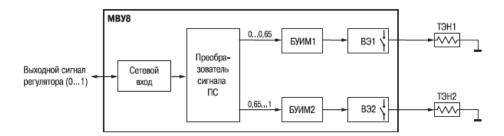


Рис. 15

6.8. Нештатные ситуации при интеллектуальном управлении ИМ

6.8.1. Пропадание напряжения питания

Прибор имеет энергонезависимую память, в которой значения программируемых параметров прибора сохраняются в течение нескольких лет. Поэтому при пропадании напряжения питания значения параметров сохраняются.

При работе прибора с 3-х позиционным ИМ без датчика положения текущее положение задвижки вычисляется с помощью математической модели. После восстановления питания прибор восстанавливает математическую модель, используя значение параметра Начальное положение задвижки (LSP, папка БУИМ №1...8) либо данные о фактическом положении задвижки перед пропаданием питания.

Запись в память прибора информации о фактическом положении задвижки разрешается при установке джампера JP1. При снятии джампера JP1 прибор защищен от записи информации, но при этом невозможно конфигурирование прибора. Джампер JP1 рекомендуется снимать только при работе прибора в условиях сильных радиопомех в случаях, способных привести к случайной потере значений конфигурационных параметров.

Приборы продаются с установленным джампером JP1.

Для установки / снятия джампера JP1 следует выполнить следующие действия.

- 1. Выключить питание прибора.
- 2. Снять верхнюю крышку корпуса.
- 3. Установить или снять джампер JP1 (JP2 и JP3 должны быть установлены в положение Открыто).
- 4. Закрыть корпус.
- 5. Подать питание на прибор.

ВНИМАНИЕ! При первом включении прибора после установки джампера JP1 положение задвижки определяются значением параметра **LSP**. Необходимо установить значение этого параметра равным реальному проценту открытия задвижки, или установить задвижку в положение, заданное в параметре **LSP**. Для синхронизации математической модели и реальной задвижки следует установить задвижку в положение, указанное в параметре **LSP**, и дать команду **Сервис** | **INIT** Главного меню программы «Конфигуратор МВУ8».

6.8.2. Режим «Авария»

При отсутствии данных, передаваемых по сети RS-485 от прибора-источника данных, в течение времени, заданного в параметре **Сетевой вход №1…8** | **ALr.t** (Аварийный тайм-аут), МВУ8 включает светодиод «Авария» и переводит ПС, связанный с этим СВ, в аварийный режим работы. В этом режиме ПС работает так, как если бы к нему на вход поступило значение, заданное в параметре **P.ALr**.

Если в приборе используются несколько ПС, то они могут одновременно работать в разных режимах: одни в аварийном, другие в обычном режиме. Светодиод «Авария» включается, когда хотя бы один ПС находится в аварийном режиме.

Если при ошибочном конфигурировании был задействован ПС, на который не должны поступать данные по сети RS-485, то он по истечении тайм-аута перейдет в аварийный режим. Поэтому все неиспользуемые ПС необходимо отключить.

8. МОНТАЖ

8.1. Монтаж прибора

- 8.1.1. Подготовить место в шкафу электрооборудования. Конструкция шкафа должна обеспечивать защиту прибора от попадания в него влаги, грязи и посторонних предметов.
- 8.1.2. Укрепить прибор на DIN-рейку. При размещении прибора следует помнить, что при эксплуатации открытые контакты клемм находятся под напряжением, опасным для человеческой жизни. Доступ внутрь таких шкафов разрешен только квалифицированным специалистам.

8.2. Монтаж внешних связей

8.2.1. Общие требования

8.2.1.1. Питание прибора следует осуществлять от сетевого фидера, не связанного непосредственно с питанием мощного силового оборудования. Во внешней цепи рекомендуется установить выключатель, обеспечивающий отключение прибора от сети. Питание каких-либо устройств от сетевых контактов прибора запрещается.

Связь прибора по интерфейсу RS-485 выполнять по двухпроводной схеме. Длина линии связи должна быть не более 1000 метров. Подключение следует осуществлять витой парой проводов, соблюдая полярность. Провод А подключается к выводу А прибора, аналогично соединяются между собой выводы В. Подключение производить при отключенном питании обоих устройств.

8.2.1.2. Для обеспечения надежности электрических соединений рекомендуется использовать кабели с медными многопроволочными жилами, сечением не более 0,75 мм², концы которых перед подключением следует зачистить и облудить. Зачистку жил кабелей необходимо выполнять с таким расчетом, чтобы срез изоляции плотно прилегал к клеммной колодке, т.е. чтобы оголенные участки провода не выступали за ее пределы.

8.2.2. Подключение прибора

- 8.2.2.1. Подготовить кабели для соединения прибора с ИМ, с источником питания и RS-485.
- 8.2.2.2. Подключить прибор по схемам, приведенным в *Прил*. Б, соблюдая при этом нижеизложенную последовательность:
 - подключить МВУ8 к источнику питания;
 - подключить линии связи «прибор исполнительные механизмы»;
 - подключить линии интерфейса RS-485;
 - подать питание на прибор.

На работу прибора могут оказывать влияние внешние помехи:

- помехи, возникающие под действием электромагнитных полей (электромагнитные помехи);
- помехи, возникающие в питающей сети.

Дляуменьшения влияния **электромагнитных помех** необходимо выполнять приведенные ниже рекомендации:

- при прокладке, длину сигнальных линий следует по возможности уменьшать и выделять их в самостоятельную трассу (или несколько трасс), отделенную (ых) от силовых кабелей;
- обеспечить надежное экранирование сигнальных линий. Экраны следует электрически изолировать от внешнего оборудования на протяжении всей трассы и подсоединять к заземленному контакту щита управления;
- прибор рекомендуется устанавливать в металлическом шкафу, внутри которого не должно быть никакого силового оборудования. Корпус шкафа должен быть заземлен.

Дляуменьшения **помех, возникающих в питающей сети,** следует выполнять следующие рекомендации:

- подключать прибор к питающей сети отдельно от силового оборудования;
- при монтаже системы, в которой работает прибор, следует учитывать правила организации эффективного заземления и прокладки заземленных экранов:
- все заземляющие линии и экраны прокладывать по схеме «звезда», при этом необходимо обеспечить хороший контакт с заземляемым элементом;
- заземляющие цепи должны быть выполнены как можно более толстыми проводами.
- устанавливать фильтры сетевых помех в линиях питания прибора;
- устанавливать искрогасящие фильтры в линиях коммутации силового оборудования.

8.3. Схемы подключения к выходным элементам

ВЭприбора могутбыть двух типов: аналогового (маркировка И, У) и дискретного (маркировка Р, К, С, Т), модуль расширения МР1 может быть оснащен ВЭ только дискретного типа.

8.3.1. ВЭ дискретного типа

К таким ВЭ относятся реле (маркировка \mathbf{P}), симисторные оптопары (\mathbf{C}) и транзисторные ключи (\mathbf{K}), выходы для управления твердотельным реле (\mathbf{T}).

Электромагнитное реле позволяет подключать нагрузку с максимально допустимым током 4 А при напряжении 220 В, см. рис. В.2. На клеммы прибора выведены сухие контакты реле.

Транзисторный ключ применяется, как правило, для управления низковольтным реле (до 60 В). Схема включения приведена на рис. 16. Во избежание выхода из строя транзистора из-за большого тока самоиндукции параллельно обмотке реле Р1 необходимо устанавливать диод VD1, рассчитанный на напряжение 100 В и ток 1 А.

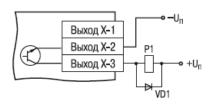


Рис. 16

Оптосимистор включается в цепь управления мощного симистора через ограничивающий резистор R1 по схеме, показанной на рис. 17. Значение сопротивления резистора определяет величину тока управления симистора.

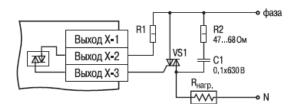


Рис. 17

Оптосимистор может также управлять парой встречно-параллельно включенных тиристоров VS1 и VS2 (рис. 18). Для предотвращения пробоя тиристоров из-за высоковольтных скачков напряжения в сети к их выводам рекомендуется подключать фильтрующую RC-цепочку (R2C1).

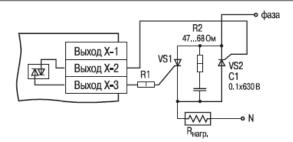


Рис. 18

Оптосимистор имеет встроенное устройство перехода через ноль и поэтому обеспечивает полное открытие подключаемых тиристоров без применения дополнительных устройств.

Транзисторный ключ и оптосимистор имеют гальваническую развязку от схемы прибора.

Выход Т предназначен для непосредственного управления твердотельным реле. Выход не имеет гальванической развязки. Гальваническая развязка прибора и ИМ осуществляется за счет самого твердотельного реле. Схема подключения к входу Т см. рис. 19

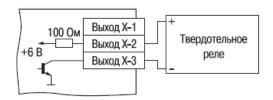


Рис. 19

8.3.2. ВЭ аналогового типа

8.3.2.1. **ЦАП 4...20 мА** (маркировка **И).** Схему подключения см. на рис. 20).

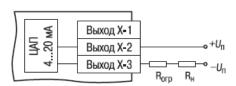


Рис. 20

Для работы ЦАП 4...20 мА используется внешний источник питания постоянного тока, номинальное значение напряжения **Un** которого рассчитывается следующим образом:

$$U_{\text{n.min}} < U_{\text{n}} < U_{\text{n.max}};$$
 $U_{\text{n.min}} = 10B + 0.02 \text{ A} \cdot R_{\text{H}};$
 $U_{\text{n.max}} = U_{\text{n.min}} + 2.5 \text{ B};$

где $U_{\text{п.min}}$, $U_{\text{п.max}}$ – соответственно минимально и максимально допустимое напряжение источника питания, B;

 $R_{_{\rm II}}$ – сопротивление нагрузки ЦАП, Ом.

Если напряжение источника питания ЦАП, находящегося в распоряжении пользователя, превышает расчетное значение *U*п.max, то последовательно с нагрузкой

необходимо включить ограничительный резистор (см. рис. 19), сопротивление которого $R_{\rm orb}$ рассчитывается по формулам:

$$R_{\text{orp,min}} < R < R_{\text{orp,max}};$$

$$R_{\text{orp.max}} = \frac{U_{\text{n}} - U_{\text{n.min}}}{I_{\text{LIAT.max}}} \times 10^{3},$$

где $R_{\text{огр. ном}}$ – номинальное значение сопротивления ограничительного резистора, кОм;

 $R_{
m orp.min}$, $R_{
m orp.max}$ — соответственно минимально и максимально допустимые значения сопротивления ограничительного резистора, кОм;

 $I_{\text{uan max}}$ - максимальный выходной ток ЦАП, мА.

ВНИМАНИЕ! Напряжение источника питания ЦАП $U_{_{\! \Pi}}$ не должно быть более 36 В.

8.3.2.2. ЦАП 0...10 В (маркировка У). Схему подключения см. на рис. 21.

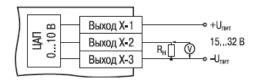


Рис. 21

Для работы ЦАП 0...10 В используется внешний источник питания постоянного тока, номинальное значение напряжения которого лежит в диапазоне от 15 до 32 В.

ВНИМАНИЕ! Напряжение источника питания ЦАП 0..10 В не должно быть более 36 В.

Выходной элемент рассчитан на резистивную нагрузку не менее 2 кОм.

Любой аналоговый ВЭ необходимо юстировать. При изготовлении МВУ8 на заводе производится начальная юстировка ВЭ. Юстировочные коэффициенты можно посмотреть в одноименной папке в конфигураторе МВУ8. При нарушении характеристик ВЭ может возникнуть необходимость провести повторную юстировку аналоговых ВЭ (см. Прил. Д).

9. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 9.1. При выполнении работ по техническому обслуживанию прибора соблюдать меры безопасности, изложенные в разд. 8.
- 9.2. Технический осмотр прибора проводится обслуживающим персоналом не реже одного раза в 6 месяцев и включает в себя выполнение следующих операций:
 - очистку корпуса и клеммных колодок прибора от пыли, грязи и посторонних предметов;
 - проверку качества крепления прибора на DIN-рейке;
 - проверку качества подключения внешних связей.

Обнаруженные при осмотре недостатки следует немедленно устранить.

9.3. Один раз в 2 года следует производить функциональную проверку ВЭ прибора с маркировкой Р, И и У, см. прил. Д, разд. Д.1. Для ВЭ с маркировкой К, Т и С проверка не требуется.

Если ВЭ аналогового типа не выдержали функциональную проверку, следует провести юстировку, см. Приложение Д, раздел Д.2.

10. МАРКИРОВКА И УПАКОВКА

- 10.1. При изготовлении на прибор наносятся:
- наименование прибора;
- знак соответствия требованиям нормативно-технической документации;
- знак утверждения типа средства измерений;
- наименование предприятия-изготовителя;
- год изготовления;
- диапазон напряжений питания и потребляемая мощность;
- штрих-код.
- 10.2. Прибор упаковывается в потребительскую тару из гофрированного картона.

11. ПРАВИЛА ТРАНСПОРТИРОВАНИЯ И ХРАНЕНИЯ

- 11.1. Прибор должен транспортироваться в упаковке при температуре от минус 25 до + 55 °C и относительной влажности воздуха не более 95 % (при 35 °C).
 - 11.2. Транспортирование допускается всеми видами закрытого транспорта.
- 11.3. Транспортирование на самолетах должно производиться в отапливаемых герметичных отсеках.
- 11.4. Условия хранения МВУ8 в транспортной таре на складе потребителя должны соответствовать условиям 1 по ГОСТ 15150-69. Воздух помещения не должен содержать агрессивных паров и газов.

12. КОМПЛЕКТНОСТЬ

Прибор МВУ8	1 шт.
Паспорт	1 шт.
Руководство по эксплуатации	1 шт.
Программа конфигурирования на дискете 3.5" или на CD	1 шт.
Гарантийный талон	1 шт.

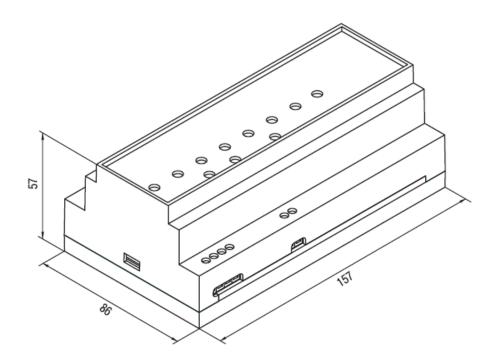
13. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

- 13.1. Изготовитель гарантирует соответствие прибора требованиям ТУ при соблюдении потребителем условий транспортирования, хранения, монтажа и эксплуатации.
 - 13.2. Гарантийный срок эксплуатации 24 месяца со дня продажи.
- 13.3. В случае выхода прибора из строя в течение гарантийного срока при условии соблюдения потребителем правил транспортирования, хранения, монтажа и эксплуатации, а также при наличии заполненной Ремонтной карты предприятие-изготовитель обязуется осуществить его бесплатный ремонт.

Для отправки в ремонт необходимо:

- заполнить Ремонтную карту в Гарантийном талоне;
- вложить в коробку с прибором заполненный Гарантийный талон;
- отправить коробку по почте или привезти по адресу:

109456, г. Москва, 1-й Вешняковский пр., д. 2.


Тел.: (495) 742-48-45, e-mail: rem@owen.ru

ВНИМАНИЕ! 1. Гарантийный талон не действителен без даты продажи и штампа продавца.

2. Диск или дискету с программным обеспечением и данное руководство вкладывать в коробку не нужно.

ГАБАРИТНЫЙ ЧЕРТЕЖ

(справочное)

ПОДКЛЮЧЕНИЕ ПРИБОРА

Б.1. Общий чертеж печатной платы прибора МВУ8 с указаниями номеров клемм и расположением переключателей ЈР приведен на рис. Б.1, назначение клемм приведено в табл. Б.1.

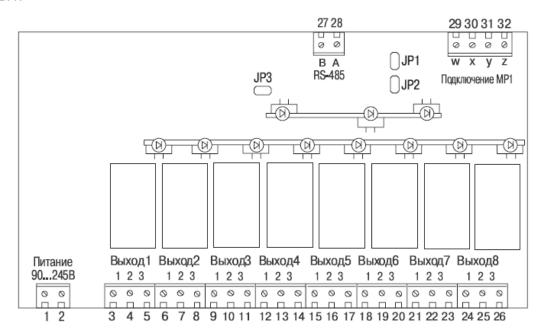


Рис. Б.1

Таблица Б.1

Назначение клемм прибора

Номер клеммы	Назначение	Номер клеммы	Назначение
1	Питание 90245 В	17	Выход 5-3
2	Питание 90245 В	18	Выход 6-1
3	Выход 1-1	19	Выход 6-2
4	Выход 1-2	20	Выход 6-3
5	Выход 1-3	21	Выход 7-1
6	Выход 2-1	22	Выход 7- 2
7	Выход 2-2	23	Выход 7-3
8	Выход 2-3	24	Выход 8-1
9	Выход 3-1	25	Выход 8-2
10	Выход 3-2	26	Выход 8-3
11	Выход 3-3	27	RS-485 (B)
12	Выход 4-1	28	RS-485 (A)
13	Выход 4-2	29	Подключение MP1 (w)
14	Выход 4-3	30	Подключение MP1 (x)
15	Выход 5-1	31	Подключение MP1 (у)
16	Выход 5-2	32	Подключение MP1 (z)

Б.2. Схемы подключения прибора приведены на рис. Б.2 – Б.8.

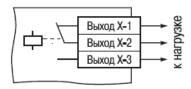


Рис. Б.2. Схема подключения к ВЭ типа Р

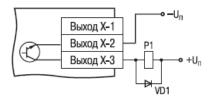


Рис. Б.З. Схема подключения нагрузки к ВЭ типа К

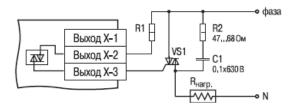


Рис. Б.4. Схема подключения силового симистора к ВЭ типа С

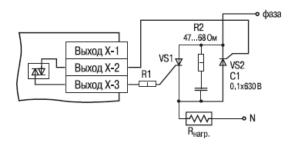


Рис. Б.5. Схема подключения к ВЭ типа С двух тиристоров, подключенных встречно-параллельно

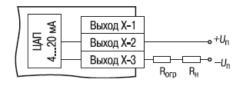


Рис. Б.6. Схема подключения нагрузки к ВЭ типа И

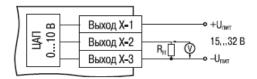


Рис. Б.7. Схема подключения нагрузки к ВЭ типа У

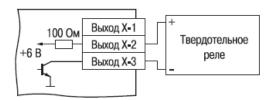


Рис. Б.8. Схема подключения к ВЭ типа Т

Имя	Название	Допустимые	Комментарии	Заводская
параметра	параметра	значения	-	установка
Prot	Протокол обмена	0: OBEH		OBEH
		1: ModBUS-RTU		
		2: ModBus-ASCII		
		3: DCON		
	Папка СЕТЕВ	ЫЕ ВХОДЫ		
SoUr	Базовый адрес источника данных	02047		0
CHAr	Имя параметра источника данных	AZ, 09	4 символа	
			сетевого	
			имени	
t.InC	Наличие модификатора времени	0:Есть		
	в данных	1: Нет		
dAtA	Тип данных	0: S.FL.b		
		Знаковое число		
		с односторон-		
		ней десятичной		
		точкой в двоич-		
		ном виде 1: S.FL.d		
		Знаковое число		
		с односторон-		
		ней десятичной		
		точкой в двоично-		
		десятичном виде 2: d.CLK Часовой формат		
		в двоичном виде 3: b.CLK		
		Часовой формат		
		в двоично-		
		десятичном виде 4: int Нетипизи-		
		рованное целое		
		в двоичном виде 5: d.int Нетипи-		
		зированное		
		целое в двоично-		
		десятичном виде 6: FLt		
		Плавающее		
		в IEEE формате		
		или укороченное		
		(трехбайтовое)		
		плавающее		

Имя	Название	Допустимые	Комментарии	Заводская
параметра	параметра	значения		установка
		7: StrG		
		Строковая		
		переменная		
ALr.t	Аварийный тайм-аут сетевого входа	1600	[c]	30 c
	Папка ПРЕОБРАЗОВАТ	ЕЛИ СИГНАЛА		
F.In	Номер Сетевого Входа	07		0
P.ALr	Сигнал на ПС при аварии	- 100+100		0,0
HLP	Наличие ограничений сигнала	0: Вкл. 1: Выкл.		
P.rES	Максимально допустимая скорость	0100	Задается	0,0
	изменения входного сигнала		в ед./мин	
Pou.H	Верхняя граница диапазона	- 100+100		
Pou.L	Нижняя граница диапазона	-100+100		
CP.t	Способ управления ИМ	0: Линейный 1: ON/OFF	Линейный	
AbS.P	Модуль входного сигнала	0,1		0
HYS.P	Гистерезис		Задается при ON/OFF управлении ИМ	
CP.tL	Тип логики управления ИМ	0: прямая 1: обратная 2: П-образная 3: U-образная	Задается при ON/OFF управлении ИМ	0
nPCP	Общее количество БУИМ типа	0–8		0
	Нагреватель			
nPCO	Общее количество БУИМ	0–8		0
	типа Холодильник			
PC.L.P	Нижний порог сигнала для БУИМ			
	типа Нагреватель			
PC.L.O	Нижний порог сигнала для БУИМ			
	типа Холодильник			
n.ZP	Указатель на БУИМ типа Нагреватель			
n.ZO	Указатель на БУИМ типа Холодильник	l		
	Папка БЛОКИ УПРАВЛЕНИЯ ИСПОЛ	ІНИТЕЛЬНЫМИ	1 МЕХАНИЗМА	МИ
SE.P	Тип ИМ	0: Двухпози-		0
		ционный		
		1: Трехпози-		
		ционный 2: ИМ с		
		аналоговым		
		управлением		

Имя	Название	Допустимые	Комментарии	Заводская
параметра	параметра	значения		установка
PCPH	Верхний порог сигнала управления			
OP	Ссылка №1 на ВЭ Ссылка №2 на ВЭ	07		0
t.L	Минимально допустимая длительность ШИМ-импульса	0 100	[c]	
tHP	Период следования ШИМ-импульсов	1900	[c]	
dLP	Наличие датчика положения задвижки	0,1		
i.dP	Номер СВ для датчика положения	07		0
db.F	Зона нечувствительности	1 20	[%]	0,1
tP.H	Полное время хода задвижки	Не ограничен (≽0)	[c]	
tFP	Время выборки люфта задвижки	0100	[c]	00,0
LSP	Начальное положение задвижки	0100		50
t.L	Минимально допустимая длитель- ность ШИМ-импульса	0 100	[c]	

Таблица В.З

Оперативные параметры протокола ОВЕН

Имя параметра	Формат данных	Название параметра	Индексация	Допустимые значения	Комментарии
r.OE	float 24	Состояние ВЭ МВУ8	по ВЭ	01,0	Считывает / записывает состояние ВЭ. Для дискретных ВЭ задает скважность ШИМ, для аналоговых ВЭ — значение тока или напряжения
r.OE.S	float 24	Состояние ВЭ модуля MP1	по ВЭ	01,0	Аналогичен параметру r.OE, распространяется на блок расширения MP1. Задает скважность ШИМ

Таблица В.4.

Регистры протокола ModBus

Параметр	Ед.	Значение	Тип	п Адрес регистра	
	измер.			(hex)	(dec)
Значение на выходе 1	0,1%	01000	int16	0000	0000
Значение на выходе 2	0,1%	01000	int16	0001	0001

Значение на выходе 8	0,1%	01000	int16	8000	8000
Значение на выходе 9 (МР1)	0,1%	01000	int16	0009	0009

Параметр	Ед.	Значение	Тип	Адрес регистра	
	измер.			(hex)	(dec)
Значение на выходе 10 (МР1)	0,1%	01000	int16	000A	0010
Значение на выходе 16 (МР1)	0,1%	01000	int16	000F	0015
Аварийное значение на выходе 1	0,1 %	01000	int16	0010	0016
Аварийное значение на выходе 2	0,1%	01000	int16	0011	0017
Аварийное значение на выходе 8	0,1%	01000	int16	0018	0024
Аварийное значение на выходе 9 (MP1)	0,1%	01000	int16	0019	0025
Аварийное значение на выходе 16 (MP1)	0,1%	01000	int16	001F	0031
Период ШИМ на выходе 1	1 сек	0900	int16	0020	0032
Период ШИМ на выходе 2	1 сек	0900	int16	0021	0033
Период ШИМ на выходе 8	1 сек	0900	int16	0028	0040
Период ШИМ на выходе 9 (МР1)	1 сек	0900	int16	0029	0041
Период ШИМ на выходе 16 (МР1)	1 сек	0900	int16	002F	0047
Макс. сетевой тайм-аут	1 сек	0600	int16	0030	0048

Примечания.

- 1. Запись в регистры осуществляется командой 16 (10h), чтение командами 4 (04h) или 3 (03h).
- 2. Работа по протоколу ModBus выполняется в режимах ASCII или RTU, в зависимости от значения параметра **Prot**.

Базовый адрес каждого следующего прибора МВУ8 в сети задается по формуле: базовый адрес предыдущего прибора +8. Таким образом, под каждый прибор МВУ8 резервируется 8 сетевых адресов. Это необходимо для индексации при передаче оперативных параметров прибора.

Г.3. Мастер сети

Для организации обмена данными в сети по интерфейсу RS-485 необходим Мастер сети. Основная функция Мастера сети – инициировать обмен данными между Отправителем и Получателем данных.

МВУ8 не является мастером сети, поэтому сеть RS-485 должна содержать мастер сети (например, SCADA-систему, OPC-драйвер, контроллер или регулятор). В качестве мастера сети могут использоваться приборы OBEH TPM151, TPM133, контроллеры OBEH ПЛК т.п.

Для организации обмена данными пользователь составляет для Мастера сети список опроса, включающий до 32 оперативных параметров, относящихся к разным приборам сети. В списке опроса необходимо указать имя и адрес каждого оперативного параметра. Эти сведения, а также тип параметра нужно указать для сетевых входов МВУ8.

ФУНКЦИОНАЛЬНАЯ ПРОВЕРКА И ЮСТИРОВКА ВЭ

Д.1. Функциональная проверка. Общие сведения

Для функциональной поверки ВЭ прибора нужно выполнить описанные ниже действия.

- 1. Подключить МВУ8 к ПК через адаптер RS-485/RS-232, OBEH AC3.
- 2. Для аналоговых ВЭ следует собрать схемы подключения (для ВЭ типа И рис. Д.1, для ВЭ типа У рис. Д.2).
- 3. Запустить программу «Конфигуратор МВУ8». Проверить наличие связи с прибором; при ее отсутствии установить связь (см. п. 4.3).
 - 4. Если МВУ8 сконфигурирован для интеллектуального управления ИМ, следует:
 - считать конфигурацию МВУ8 (см. п. 4.6.4);
 - сохранить конфигурацию в файл (см. п. 4.6.6);
 - отключить проверяемые ВЭ от БУИМ, или инициализировать прибор (см. п. 6.5).
- 5. Перейти в папку **Опрос состояний выходных элементов**, в поле «Значение проверяемых ВЭ» задать значение 0 или 1.
 - 6. Провести функциональную проверку ВЭ, выполнив следующие действия:
- для ВЭ типа Р измерить омметром сопротивление контактов реле в замкнутом и разомкнутом состояниях: в замкнутом состоянии сопротивление не должно превышать 1 Ом, а в разомкнутом должно быть более 2 МОм;
- для ВЭ типа У снять показания прибора Р3003: ВЭ считают выдержавшим проверку, если притоке 20 мА показания вольтметра находятся в пределах 10 \pm 0,05 В и притоке 4 мА 2 \pm 0,05 В;
- для ВЭ типа У снять показания прибора P3003: ВЭ считают выдержавшим проверку, если показания вольтметра находятся в пределах 0.0 ± 0.05 В и 10.0 ± 0.05 В;
- при отрицательных результатах проверки ВЭ типа У и И следует произвести юстировку прибора (см. разд. Д.2).

При отрицательных результатах юстировки, а также при отрицательных результатах функциональной проверки ВЭ типа Р – сдать прибор в ремонт.

7. Восстановить конфигурацию МВУ8 вручную или считав из файла (см. пп. 4.6.2 и 4.6.5).

Д.2. Юстировка ВЭ типа И и У

ВНИМАНИЕ! При юстировке ВЭ типа И или У следует проверить значение параметров POUt этих ВЭ. Параметр должен иметь значение: «аналоговый».

Для юстировки ВЭ типа И и У нужно выполнить следующие действия.

1. Подключить ВЭ типа И (ЦАП «параметр-ток 4..20 мА) по схеме, приведенной на рис. Д.1.

Напряжение источника питания должно лежать в диапазоне 15...28 В.В качестве измерителя напряжения может быть использован прибор для калибровки вольтметров РЗ003, или иной прибор того же класса с разрешающей способностью 0,001 В. На магазине сопротивлений установить сопротивление 500,0 Ом.

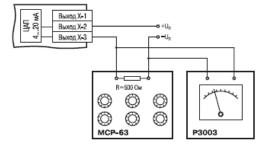


Рис. Д.1

2. Подключить ВЭ типа У (ЦАП «параметр-напряжение 0..10 В) по схеме, приведенной на рис. Д.2

Напряжение источника питания должно находиться в диапазоне 15...28 В. В качестве измерителя напряжения может быть использован прибор для калибровки вольтметров Р3003 или иной прибор того же класса с разрешающей способность 0,001 В.

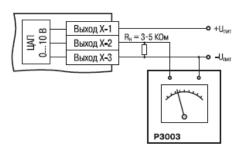


Рис. Д.2

- 3. Подключить прибор к ПК через адаптер интерфейса RS-485.
- 4. Подать питание на прибор.
- 5. Запустить программу «Конфигуратор МВУ8».
- 6. Установить связь с прибором, задав значения сетевых параметров программы.
- 7. Выбрать команду **Прибор** | **Сервис** | **Юстировка**. Откроется диалоговое окно, показанное на рис. Д.З.
- 8. В списке коэффициентов щелкнуть левой кнопкой мыши на коэффициенте **K4** соответствующего ВЭ. При этом в числовом окне отобразится его значение, и все ВЭ, кроме юстируемого, выключатся. Затем, увеличивая илиуменьшая значение коэффициента, добиться, чтобы показания вольтметра равнялись:
 - 2,0 В при юстировке ЦАП 4..20 мА;
 - 0,0 В при юстировке ЦАП 0..10 В.

Рис. Д.3

Комментарий к рис. Д.3: В списке коэффициентов отображаются только коэффициенты для аналоговых ВЭ.

- 9. В списке коэффициентов щелкнуть левой кнопкой мыши на коэффициенте **К20** соответствующего ВЭ. При этом в числовом окне отобразится его значение. Затем, увеличивая или уменьшая значение коэффициента, добиться, чтобы показания вольтметра равнялись:
 - 10,0 В при юстировке ЦАП 4..20 мА;
 - 10,0 B при юстировке ЦАП 0..10 B.
 - 10. Выйти из режима юстировки, нажав кнопку Закончить.
- 11. Для юстировки следующего ВЭ выключить напряжение питания МВУ8 и выполнить действия, описанные в пп. 1 10.

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

№ измене-				Всего листов (стр.)	Дата внесения	Подпись	
ния	измен.	заменен.	новых	аннулир.			
1	2	3	4	5	6	7	8

Сведения о приемке и прода	аже
Прибор МВУ8	заводской номер
, , ,	
COOTBOTCTDVOT BACBONTULIM	
соответствует паспортным д	данным и признан годным к эксплуатации.
Датавыпуска	_
Штамп ОТК	Дата продажи