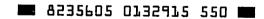


SIPMOS ® Small-Signal Transistor

- P channel
- Enhancement mode
- Logic Level
- V_{GS(th)} = -0.8...-2.0 V



Pin 1	Pin 2	Pin 3	Pin 4
G	D	S	D

Туре	v _{DS}	ь	R _{DS(on)}	Package	Marking
BSP 92	-240 V	-0.2 A	20 Ω	SOT-223	BSP 92
Туре	Ordering	Code	Tape and Re	el Information	***************************************
BSP 92	Q62702-	3653	E6327		

Maximum Ratings

Parameter	Symbol	Values	Unit
Drain source voltage	V _{DS}	-240	v
Drain-gate voltage	V _{DGR}		
$R_{\rm GS}$ = 20 k Ω		-240	
Gate source voltage	V _{GS}	± 20	
Gate-source peak voltage,aperiodic	$V_{ m gs}$	±	
Continuous drain current	I _D		Α
T _A = 35 °C		-0.2	
DC drain current, pulsed	/ _{Dpuls}		
T _A = 25 °C		-0.8	
Power dissipation	P _{tot}		w
T _A = 25 °C		1.7	

Maximum Ratings

Parameter	Symbol	Values	Unit
Chip or operating temperature	7,	-55 ,+ 150	.c
Storage temperature	T _{stg}	-55 + 150	
Thermal resistance, chip to ambient air 1)	R _{thJA}	≤ 72	K/W
Thermal resistance, junction-soldering point 1)	R _{thJS}	≤ 12	
DIN humidity category, DIN 40 040		E	
IEC climatic category, DIN IEC 68-1		55 / 150 / 56	

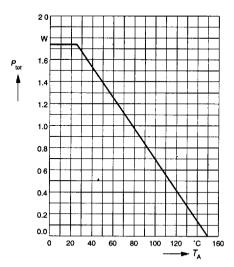
¹⁾ Transistor on epoxy pcb 40 mm x 40 mm x 1,5 mm with 6 cm² copper area for drain connection

Electrical Characteristics, at $T_i = 25$ °C, unless otherwise specified

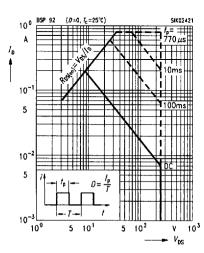
Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Static Characteristics					
Drain- source breakdown voltage	V _{(BR)DSS}				V
$V_{\rm GS}$ = 0 V, $I_{\rm D}$ = -0.25 mA, $T_{\rm j}$ = 25 °C		-240	-	-	
Gate threshold voltage	V _{GS(th)}				
$V_{\text{GS}} = V_{\text{DS}}$, $I_{\text{D}} = -1 \text{ mA}$		-0.8	-1.5	-2	
Zero gate voltage drain current	l _{DSS}				μΑ
$V_{\rm DS}$ = -240 V, $V_{\rm GS}$ = 0 V, $T_{\rm j}$ = 25 °C		-	-0.1	-1	
$V_{\rm DS}$ = -240 V, $V_{\rm GS}$ = 0 V, $T_{\rm j}$ = 125 °C		-	-10	-100	
V_{DS} = -60 V, V_{GS} = 0 V, T_{J} = 25 °C		-	-	-0.2	
Gate-source leakage current	/ _{GSS}				nA
$V_{\rm GS}$ = -20 V, $V_{\rm DS}$ = 0 V		-	-10	-100	
Drain-Source on-state resistance	R _{DS(on)}				Ω
$V_{\rm GS}$ = -10 V, $I_{\rm D}$ = -0.2 A		-	12	20	

Electrical Characteristics, at $T_{\rm j} = 25\,^{\circ}{\rm C}$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Dynamic Characteristics					
Transconductance	g _{fs}				s
$V_{DS} \ge 2 \cdot I_D \cdot R_{DS(on)max}$, $I_D = -0.2 A$		0.06	0.13	-	
Input capacitance	C _{iss}				рF
$V_{GS} = 0 \text{ V}, V_{DS} = -25 \text{ V}, f = 1 \text{ MHz}$		-	95	130	
Output capacitance	Coss]
$V_{GS} = 0 \text{ V}, V_{DS} = -25 \text{ V}, f = 1 \text{ MHz}$		-	20	30	
Reverse transfer capacitance	C _{rss}				
$V_{GS} = 0 \text{ V}, \ V_{DS} = -25 \text{ V}, \ f = 1 \text{ MHz}$		-	10	15	
Turn-on delay time	t _{d(on)}				ns
$V_{\rm DD}$ = -30 V, $V_{\rm GS}$ = -10 V, $I_{\rm D}$ = -0.25 A					
$R_{\rm GS}$ = 50 Ω		-	8	12	
Rise time	t _r			•	
$V_{\rm DD}$ = -30 V, $V_{\rm GS}$ = -10 V, $I_{\rm D}$ = -0.25 A					
$R_{\rm GS}$ = 50 Ω			25	40	
Turn-off delay time	t _{d(off)}				
$V_{\rm DD}$ = -30 V, $V_{\rm GS}$ = -10 V, $I_{\rm D}$ = -0.25 A					
$R_{GS} = 50 \ \Omega$		-	25	33	
Fall time	t _f				
$V_{\rm DD}$ = -30 V, $V_{\rm GS}$ = -10 V, $I_{\rm D}$ = -0.25 A					
$R_{\rm GS}$ = 50 Ω		-	42	55	

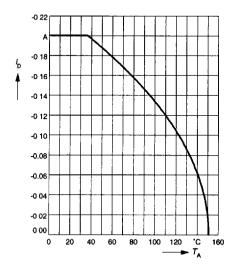

Electrical Characteristics, at $T_{\rm j} = 25^{\circ}{\rm C}$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Reverse Diode					
Inverse diode continuous forward current	Is				Α
T _A = 25 °C		-	-	-0.2	
Inverse diode direct current,pulsed	/ _{SM}				
T _A = 25 °C		-	-	-0.8	
Inverse diode forward voltage	V _{SD}				٧
$V_{GS} = 0 \text{ V}, I_F = -0.4 \text{ A}, T_1 = 25 \text{ °C}$		-	-0.9	-1.2	


Power dissipation

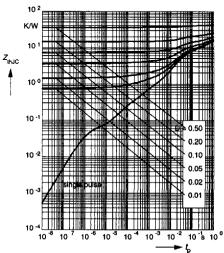
$$P_{\text{tot}} = f(T_{\text{A}})$$

Safe operating area I_{D} = $f(V_{DS})$


parameter : D = 0, $T_C=25^{\circ}C$

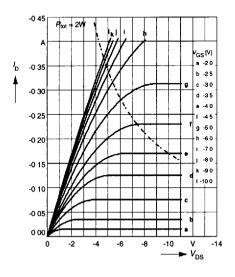
Drain current

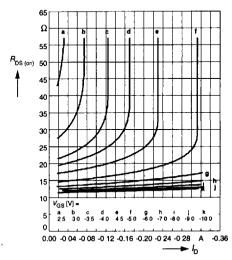
$$I_D = f(T_A)$$


parameter: V_{GS} ≥ -10 V

Transient thermal impedance

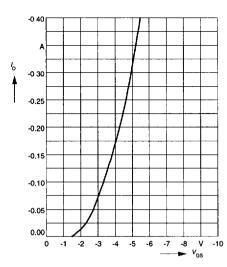
 $Z_{\mathsf{th}\;\mathsf{JA}} = f(t_{\mathsf{p}})$


parameter: $D = t_D / T$


Typ. output characteristics

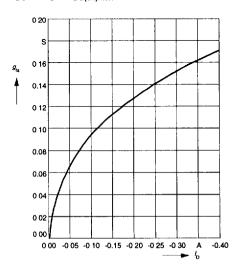
$$I_D = f(V_{DS})$$

parameter: $t_D = 80 \mu s$


Typ. drain-source on-resistance

$$R_{DS \text{ (on)}} = f(I_D)$$

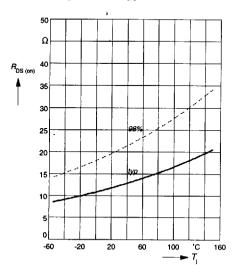
parameter: $I_D = 80 \text{ µs}$, $I_I = 25 \text{ ^*C}$


Typ. transfer characteristics $I_D = f(V_{GS})$

parameter: $t_p = 80 \mu s$ $V_{DS} \ge 2 \times I_D \times R_{DS(on)max}$

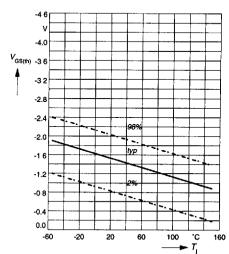
Typ. forward transconductance $g_{ts} = f(I_D)$

parameter: $t_p = 80 \mu s$, $V_{DS} \ge 2 \times I_D \times R_{DS(on)max}$



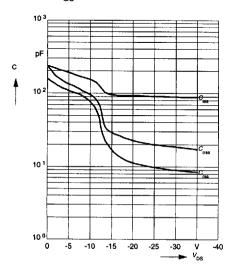
Drain-source on-resistance

 $R_{DS(on)} = f(T_1)$


parameter: $I_D = -0.2 \text{ A}, V_{GS} = -10 \text{ V}$

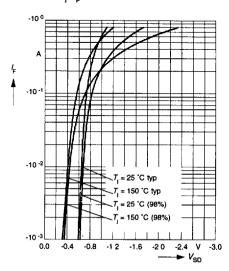
Gate threshold voltage

 $V_{GS(th)} = f(T_I)$


parameter: $V_{GS} = V_{DS}$, $I_{D} = -1$ mA

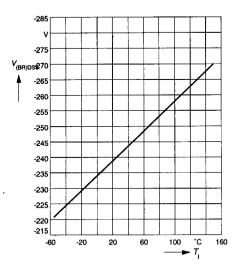
Typ. capacitances

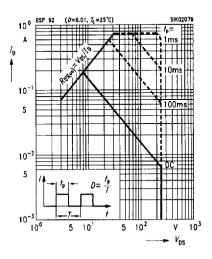
 $C = f(V_{DS})$


parameter: $V_{GS}=0V$, f=1 MHz

Forward characteristics of reverse diode

 $I_{\mathsf{F}} = f(V_{\mathsf{SD}})$


parameter: T_i , $t_p = 80 \mu s$



Drain-source breakdown voltage

 $V_{(BB)DSS} = f(T_i)$

safe operating area I_D =f(V_{DS}) parameter : D = 0.01, T_C =25°C

Gehäusemaßbilder

Package Outlines

(Maße in mm, wenn nicht anders angegeben)

(Dimensions in mm, unless otherwise specified)

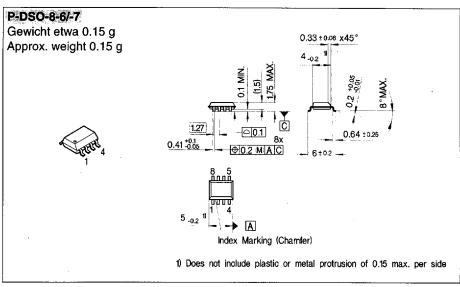
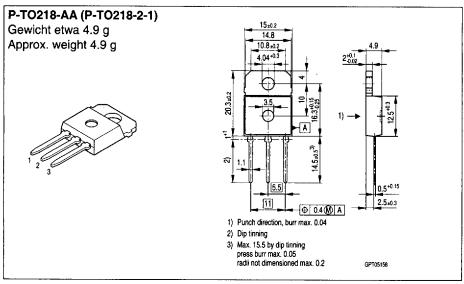



Bild 16

Figure 16

Bild 17

Figure 17

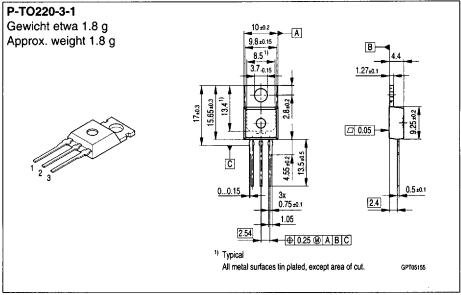


Bild 18

Figure 18

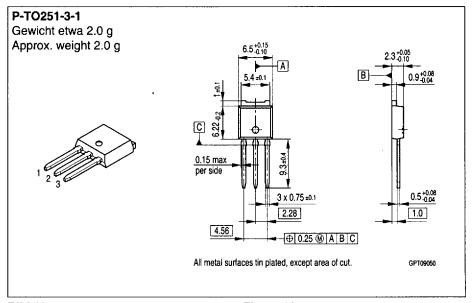


Bild 19

Figure 19

Data Book

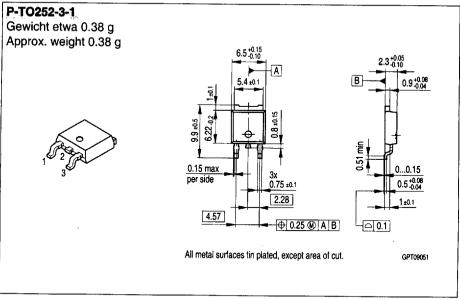


Bild 20

Figure 20

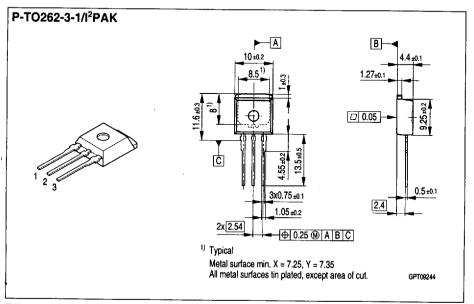


Bild 21

Figure 21

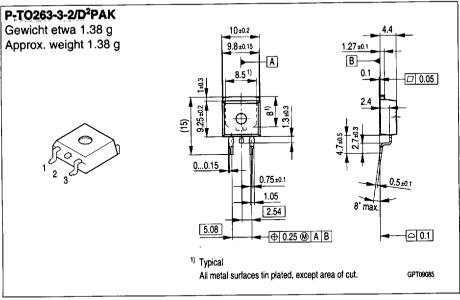


Bild 22

Figure 22

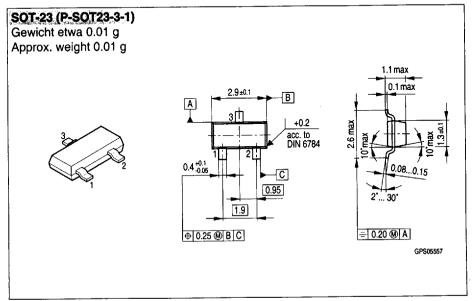


Bild 23

Figure 23

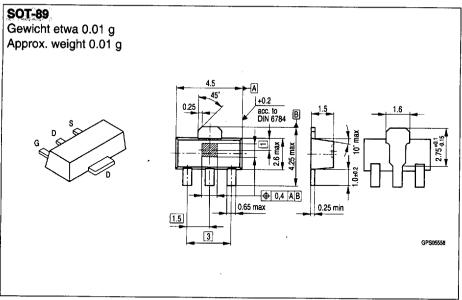


Bild 24

Figure 24

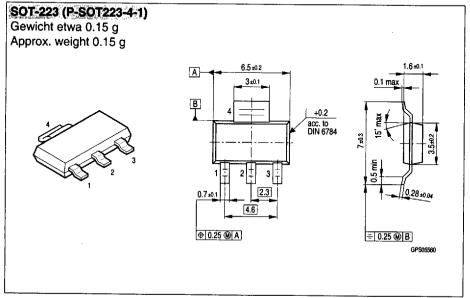


Bild 25

Figure 25

Data Book

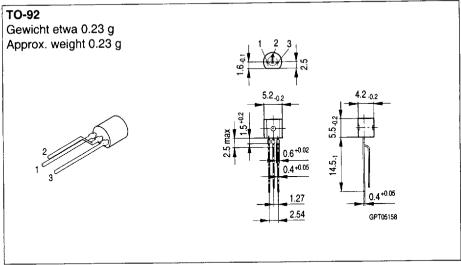


Bild 26

Figure 26

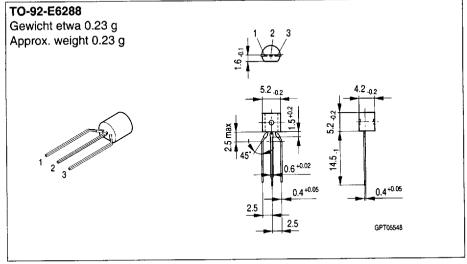


Bild 27

Figure 27

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

SMD = Surface Mounted Device