LA5603

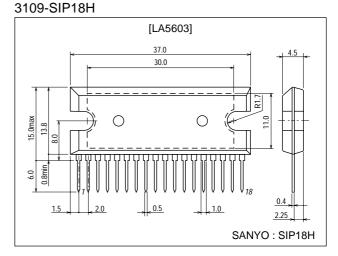
Multifunction, Multiple Voltage Power Supply

Overview

The LA5603 is a multifunction, low dropout voltage, multiple voltage power supply for use in microcomputer controlled audio equipment such as CD players and minicomponent stereo systems.

The LA5603 features a 5.6V, 0.5A supply, a 7.5V, 1.0A supply and a -7.5V, -1.0A supply each with an on/off switch, a 4.8V (I_{OA2}=0.1A, I_{OA1}=0) supply with a reverse current prevention diode and a 5.6V (I_{OA1}=0.1A, I_{OA2}=0) supply enabling it to power both analog and digital components.

The LA5603 incorporates reset, mute and power-on functions for generating signals for the components (s) being powered and an adjustable startup delay function for controlling the sequence in which system components are powered up.


The LA5603 operates from a ± 8.5 to $\pm 16V$ dual supply and is available in 18-pin SIPs.

Features

- Low dropout voltage power supply.
- 5.6V, 0.5A supply with on/off switch.
- 7.5V, 1.0A and -7.5V, -1.0A supplies with on/off switches.
- 4.8V (I_{OA2}=0.1A, I_{OA1}=0) supply with diode to prevent reverse currents.
- 5.6V (I_{OA1}=0.1A, I_{OA2}=0) supply.
- Reset function.
- Mute function.
- Auto power-on function.
- Powers both analog and digital components.
- ± 8.5 to $\pm 16V$ dual supply.
- 18-pin SIP.

Package Dimensions

unit:mm

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges,or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

SANYO Electric Co., Ltd. Semiconductor Company TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{CC} /V _{EE} max		±16	V
QUICK IN input voltage	VQUICK IN		16	V
Allowable power dissipation	Pd max		15	W
Operating temperature	Topr		-20 to +85	°C
Storage temperature	Tstg		-55 to +150	°C

Recommended Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{CC} /V _{EE}		±8.5 to ±16	V
Output current 1	I _{O1}		0 to 500	mA
Output current 2	I _{O2}		0 to 1.0	A
Output current 3	I _{O3}		-1.0 to 0	A
MUTE output current	IMUTE		0 to 10	mA
RES low-level output sink current	IORL		0 to 2	mA
RES high-level output source current	IORH		0 to 200	μA
Auxiliary power total supply output current	IOA1, IOA2	IOA1 ^{+I} OA2	0 to 100	mA

Operating Characteristics

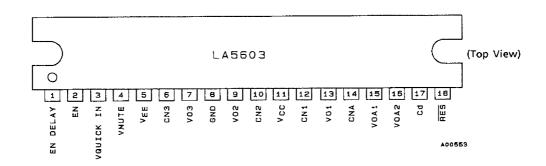
Parameter	Symbol	Conditions	Ratings			Unit
	Cymbol		min	typ	max	
[Main power supply] at Ta=25°C, Tj=25°C, VC	C/VEE=±8.5V, V	OA1=5.6V, VOA2=4.8V, IOA1=100mA, unless otherwis	e noted			
Output voltage	V _{OA1}	I _{OA2} =0 (I _{OA1} =100mA)	5.2	5.6	5.9	V
	V _{OA2}	I _{OA2} =100mA (I _{OA1} =0)	4.2	4.8	5.2	V
Dropout voltage	VDROP			0.6	1.0	V
Line regulation	ΔV OA1 LN	V _{CC} =7 to 12V, I _{OA1} =50mA		10	80	mV
Load regulation	∆VOA1 LD	I _{OA1} =1 to 100mA		20	100	mV
Peak output current	I _{OP}		100	200		mA
Output short-circuit current	losc			10		mA
Output leakage current	IOA LEAK	V _{CC} =0V, V _{OA2} =6V			2	μA
Current drain with positive power supply	I _{QP1}	IO1, IO2, IO3, IOA1 and IMUTE=0A		6.5	19.5	mA
	I _{QP2}	I _{O1} =200mA, I _{O2} =500mA, I _{O3} =0mA, I _{OA1} =100mA, I _{MUTE} =5mA		26	78	mA
	I _{OM1}	IO1, IO2, IO3, IOA1 and IMUTE=0A		-3.2	-9.6	mA
Current drain with negative power supply	I _{OM2}	I _{O1} , I _{O2} , I _{OA1} and I _{MUTE} =0A, I _{O3} =-500mA		-6.3	-19	mA
[Reset] at Ta=25°C, Tj=25°C, VCC/VEE=±8.5	V			•		
Output high-level voltage	VORH	I _{ORH} =200μA	4.47	4.97	5.47	V
Output low-level voltage	VORL	I _{ORL} =2mA, C _d grounded		100	200	mV
Output voltage threshold	V _{RT}	IOA1=5mA, VOA1 detection voltage low	3.7	3.9	4.1	V
Hysteresis voltage	Vhys	I _{OA1} =5mA		100	200	mV
Output delay time	td	C _d =1µF	240	300	360	ms
[5.6V power supply] at Ta=25°C, Tj=25°C, VC	C/VEE=±8.5V, IC	=200mA unless otherwise noted				
Output voltage	V _{O1}		5.1	5.6	5.9	V
Dropout voltage	VDROP			0.6	1.0	V
Line regulation		V _{CC} =8.5 to 16V		20	100	mV
		V _{CC} =9.5 to 16V		20	100	mV
Load regulation		I_0=5 to 500mA		50	150	mV
		I _O =5 to 100mA		20	100	mV
Peak output current	I _{OP}		500	750		mA
Output short-circuit current	losc			80		mA
Output noise voltage	VNO	f=10Hz to 100kHz		70		μV
Output voltage temperature coefficient	ΔV _O /ΔTa	Tj=25 to 85°C		-0.7		mV/°C
Ripple rejection ratio	R _{rej}	f=120Hz, V _{CC} =8.5 to 16V		74		dB
EN high-level output voltage	VENH	Main power source ON	0		0.3	V

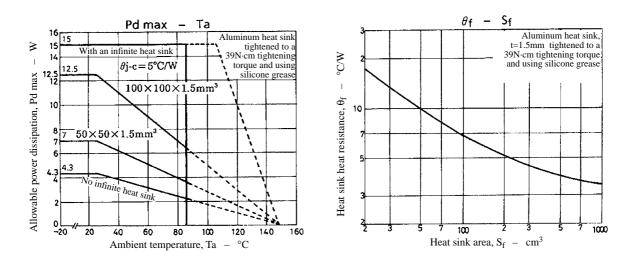
Continued on next page.

Continued from preceding page.

Parameter	Symbol	Conditions		Ratings		
	Symbol		min	typ	max	Unit
[7.5V power supply] at Ta=25°C, Tj=25°C, V	CC/VEE=±8.5V, IC	$=$ 500mA, CO=100 μ F unless otherwise noted				
Output voltage	V _{O2}		7.1	7.5	7.8	V
Dropout voltage	Vadaa			0.6	1.0	V
	VDROP	I _O =300mA		0.4	0.8	V
Line regulation	ΔV_{OLN}	V _{CC} =8.5 to 16V		20	100	mV
Load regulation	ΔV _{OLD}	I _O =5mA to 1A		80	200	mV
Peak output current	I _{OP}	V _{CC} /V _{EE} =±12V	1.0	1.5		A
Output short-circuit current	losc			0.1		A
Output noise voltage	V _{NO}	f=10Hz to 100kHz		70		μVrms
Output voltage temperature coefficient	ΔV _O /ΔTa	Tj=25 to 85°C		-0.5		mV/°C
Ripple rejection ratio	R _{rej}	f=120Hz, V _{CC} =8.5 to 16V		60		dB
[-7.5V power supply] at Ta=25°C, Tj=25°C, V	VCC/VEE=±8.5V,	IO=-500mA, CO=100 μ F unless otherwise noted				
Output voltage	V _{O3}		-7.8	-7.5	-7.1	V
Deserves to select a	\/			0.6	1.0	V
Dropout voltage	VDROP	I _O =-300mA		0.4	0.8	V
Line regulation	ΔV _{OLN}	V _{EE} =-16 to -8.5V		200	300	mV
Load regulation	ΔV _{OLD}	I _O =-1A to -5mA		80	200	mV
Peak output current	I _{OP}	V _{CC} /V _{EE} =±12V		-1.5	-1.0	A
Output short-circuit current	IOSC			-0.3		A
Output noise voltage	V _{NO}	f=10Hz to 100kHz		70		μV
Output voltage temperature coefficient	ΔV _O /ΔTa	Tj=25 to 85°C		+0.5		mV/°C
Ripple rejection ratio	R _{rej}	f=120Hz, V _{CC} =-16 to -8.5V		60		dB
[5.0V power supply with mute] at Ta=25°C, T	ſj=25°C, V _{CC} /V _{EE}	:=±8.5V, IO=–5mA				-
MUTE ON output voltage	VMUTE ON		4.6	5.0	5.4	V
MUTE OFF output voltage	V _{MUTE} OFF	VQUICK IN=5.5V		0.2	0.3	V
QUICK IN high-level input voltage	VQUICK IN H		7.5		VCC	V
QUICK IN low-level input voltage	VQUICK IN L				5.5	V
QUICK IN high-level current	IQUICK IN H	VQUICK IN=7.5V		240	480	μA

Design Notes


When the 5.6 (V_{O1}), 7.5 and -7.5V output are ON, EN is high impedance.


When QUICK IN is HIGH, mute mode is ON. When QUICK IN is LOW, mute mode is OFF.

The output capacitors for V_{O1} , V_{OA1} , and V_{OA2} should be 47µF or greater. The output capacitors for V_{O2} and V_{O3} should be 100µF or greater. The output capacitors and C_d , the startup delay capacitor, should have good temperature stability to prevent oscillations at low temperatures.

Capacitors CN1, CN2, CN3 and CNA suppress noise and improve ripple rejection.

Pin Assignment

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of May, 2001. Specifications and information herein are subject to change without notice.