

MSP430F22x2 Device Erratasheet

1 Current Version

Devices	Rev:	BCL12	CPU19	FLASH24	FLASH27	PORT10	TA12	TA16	TAB22	TB2	TB16	USCI20	USCI21	USCI22	USCI23	USCI24	USCI25	USCI26	USCI27	XOSC5	XOSC8
MSP430F2232	G	~	~	~	~	✓	✓	✓	✓	✓	✓	~	~	~	~	✓	✓	✓	~	✓	~
MSP430F2234	G	✓	✓	✓	✓	✓	✓	✓	~	✓	~	✓	✓	✓	✓	✓	~	~	~	~	✓
MSP430F2252	G	✓	✓	✓	✓	✓	✓	✓	~	✓	~	✓	✓	✓	✓	✓	~	~	~	~	✓
MSP430F2254	G	✓	✓	✓	✓	✓	✓	✓	\checkmark	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	\checkmark
MSP430F2272	G	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
MSP430F2274	G	✓	~	~	~	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	~	✓

Note: See Appendix A for prior revisions.

 $\checkmark\,$ The checkmark means that the issue is present in that revision.

2 Package Markings

DA38

TSSOP (DA), 38 Pin

$\begin{array}{c} \checkmark & \text{YMLLLLS#} \\ \text{M430Fxxxx} \\ O \end{array}$	1	 Year and Month Date Code L = LOT Trace Code = Assembly Site Code = DIE Revision = PIN 1
--	---	---

RHA40

QFN (RHA), 40 Pin

O M430 Fxxxx TI # YMS LLLL <u>G4</u>	YM= Year and Month Date CodeLLLL= LOT Trace CodeS= Assembly Site Code#= DIE Revisiono= PIN 1
---	--

3 Detailed Bug Description

BCL12	Basic Clock Module
Function	Switching RSEL can cause DCO dead time
Description	After switching RSELx bits (located in register BCSCTL1) from a value of >13 to a value of <12 OR from a value of <12 to a value of >13, the resulting clock delivered by the DCO can stop before the new clock frequency is applied. This dead time is approximately 20 μ s. In some instances, the DCO may completely stop, requiring a power cycle.

Workaround

• When switching RSEL from >13 to <12, use an intermediate frequency step. The intermediate RSEL value should be 13.

CURRENT RSEL	TARGET RSEL	RECOMMENDED TRANSITION SEQUENCE
15	14	Switch directly to target RSEL
14 or 15	13	Switch directly to target RSEL
14 or 15	0 to 12	Switch to 13 first, and then to target RSEL (two step sequence)
0 to 13	0 to 12	Switch directly to target RSEL

 When switching RSEL from <12 to >13, ensure that the maximum system frequency is not exceeded during the transition. This can be achieved by clearing the DCO bits first (DCOCTL control register, bits 7–5), then increasing the RSEL value, and finally applying the target frequency DCO bit values. For more details, see the examples in the "TLV Structure" chapter in the MSP430F2xx Family User's Guide (SLAU144).

CPU19	CPU Module
Function	CPUOFF can change register values
Description	If a CPUOFF command is followed by an instruction with an indirect addressed operand (for example, mov @R8, R9, and RET), an unintentional register-read operation can occur during the wakeup of the CPU. If the unintentional read occurs to a read-sensitive register (for example, UCB0RXBUF or TAIV), which changes its value or the value of other registers (IFGs), the bug leads to lost interrupts or wrong register read values.
Workaround	Insert a NOP instruction after each CPUOFF instruction.

TEXAS INSTRUMENTS

www	ti	com	
** ** **	.u.	COIII	

FLASH24	Flash Module					
Function	Write or erase emergency exit can cause failures					
Description	When a flash write or erase is abruptly terminated, any further reliable reads by the flash controller are not ensured. The abrupt termination can be the result of one the following events:					
	 The flash controller clock is configured to be SMCLK sourced by an external crystal. An oscillator fault occurs, thus stopping this clock abruptly. The Emergency Exit bit (EMEX in FCTL3), when set, forces a write or an erase operation to be terminated before normal completion. The Enable Emergency Interrupt Exit bit (EEIEX in FCTL1), when set with GIE = 1, can lead to an interrupt, causing an emergency exit during a flash operation. 					
Workaround	 Do not use SMCLK as the source for the flash controller clock if it is sourced from an external crystal. After setting EMEX = 1, wait for a sufficient amount of time before flash is accessed again. No workaround. Do not use EEIEX bit. 					
FLASH27	Flash Module					
Function	EEI feature can disrupt segment erase					
Description	When a flash segment erase operation is active with EEI feature selected (EEI = 1 in FLCTL1) and GIE = 0, the following can occur: An interrupt event causes the flash erase to be stopped, and the flash controller expects an RETI to resume the erase. Because $GIE = 0$, interrupts are not serviced and RETI never happens.					
Workaround	 Do not set bit EEI = 1 when GIE = 0. or Force an RETI instruction during the erase operation during the check for BUSY=1 (FCLTL3). Example MOV R5, 0(R5) ; Dummy write, erase segment BIT #BUSY, &FCTL3 ; test busy bit JMP SUB_RETI ; Force RETI instruction JNZ LOOP ; loop while BUSY=1 SUB_RETI: PUSH SR RETI 					
PORT10	Digital I/O Module					
Function	Pullup/pulldown resistor selection when module pin function is selected					
Description	When the pullup/pulldown resistor for a certain port pin is enabled ($PxREN.y = 1$) and the module port pin function is selected ($PxSEL.y = 1$), the pullup/pulldown resistor configuration of this pin is controlled by the respective module output signal (Module X OUT) instead of the port output register ($PxOUT.y$).					
Workaround	None. Do not set PxSEL.y and PxREN.y at the same time.					

3

Detailed Bug Description

www.ti.com

TA12	Timer_A Module
Function	Interrupt is lost (slow ACLK)
Description	Timer_A counter is running with slow clock (external TACLK or ACLK) compared to MCLK. The compare mode is selected for the capture/compare channel and the CCRx register is incremented by one with the occurring compare interrupt (if TAR = CCRx).
	Due to the fast MCLK, the CCRx register increment (CCRx = CCRx + 1) happens before the Timer_A counter has incremented again. Therefore, the next compare interrupt should happen at once with the next Timer_A counter increment (if TAR = CCRx + 1). This interrupt is lost.
Workaround	Switch capture/compare mode to capture mode before the CCRx register increment. Switch back to compare mode afterward.
TA16	Timer_A Module
Function	First increment of TAR erroneous when $IDx > 00$
Description	The first increment of TAR after any timer clear event (POR/TACLR) happens immediately following the first positive edge of the selected clock source (INCLK, SMCLK, ACLK, or TACLK). This is independent of the clock input divider settings (ID0, ID1). All following TAR increments are performed correctly with the selected IDx settings.
Workaround	None
TAB22	Timer_A/Timer_B Module
Function	Timer_A/B register modification after Watchdog Timer PUC
Description	Unwanted modification of the Timer_A/B registers TACTL and TAIV can occur when a
	PUC is generated by the Watchdog Timer (WDT) in watchdog mode and any Timer_A/B counter register TACCRx/TBCCRx is incremented/decremented (Timer_A/B does not need to be running).
Workaround	counter register TACCRx/TBCCRx is incremented/decremented (Timer_A/B does not
Workaround	counter register TACCRx/TBCCRx is incremented/decremented (Timer_A/B does not need to be running). Initialize TACTL/TBCTL register after the reset occurs using a MOV instruction (BIS/BIC may not fully initialize the register). TAIV/TBIV is automatically cleared following this
Workaround	counter register TACCRx/TBCCRx is incremented/decremented (Timer_A/B does not need to be running). Initialize TACTL/TBCTL register after the reset occurs using a MOV instruction (BIS/BIC may not fully initialize the register). TAIV/TBIV is automatically cleared following this initialization.
Workaround	counter register TACCRx/TBCCRx is incremented/decremented (Timer_A/B does not need to be running). Initialize TACTL/TBCTL register after the reset occurs using a MOV instruction (BIS/BIC may not fully initialize the register). TAIV/TBIV is automatically cleared following this initialization. Example code: MOV.W #VAL, &TACTL or
Workaround	counter register TACCRx/TBCCRx is incremented/decremented (Timer_A/B does not need to be running). Initialize TACTL/TBCTL register after the reset occurs using a MOV instruction (BIS/BIC may not fully initialize the register). TAIV/TBIV is automatically cleared following this initialization. Example code: MOV.W #VAL, &TACTL Or MOV.W #VAL, &TBCTL
Workaround	counter register TACCRx/TBCCRx is incremented/decremented (Timer_A/B does not need to be running). Initialize TACTL/TBCTL register after the reset occurs using a MOV instruction (BIS/BIC may not fully initialize the register). TAIV/TBIV is automatically cleared following this initialization. Example code: MOV.W #VAL, &TACTL or

www.ti.com	Detailed Bug Description
TB2	Timer_B Module
Function	Interrupt is lost (slow ACLK)
Description	Timer_B counter is running with slow clock (external TBCLK or ACLK) compared to MCLK. The compare mode is selected for the capture/compare channel and the CCRx register is incremented by 1 with the occurring compare interrupt (if TBR = CCRx).
	Due to the fast MCLK, the CCRx register increment (CCRx = CCRx + 1) happens before the Timer_B counter has incremented again. Therefore, the next compare interrupt should happen at once with the next Timer_B counter increment (if TBR = CCRx + 1). This interrupt is lost.
Workaround	Switch capture/compare mode to capture mode before the CCRx register increment. Switch back to compare mode afterward.
TB16	Timer_B Module
Function	First increment of TBR erroneous when IDx > 00
Description	The first increment of TBR after any timer clear event (POR/TBCLR) happens immediately following the first positive edge of the selected clock source (INCLK, SMCLK, ACLK, or TBCLK). This is independent of the clock input divider settings (ID0, ID1). All following TBR increments are performed correctly with the selected IDx settings.
Workaround	None
USCI20	USCI Module
Function	I ² C mode multi-master transmitter issue
Description	When configured for I ² C master-transmitter mode and used in a multi-master environment, the USCI module can cause unpredictable bus behavior if all of the following conditions are true:
	1. Two masters are generating SCL.
	and 2. The slave is stretching the SCL low phase of an ACK period while outputting NACK on SDA.
	 and 3. The slave drives ACK on SDA after the USCI has already released SCL, and then the SCL bus line is released.
	 and The transmit buffer has not been loaded before the other master continues communication by driving SCL low.
	The USCI remains in the SCL high phase until the transmit buffer is written. After the transmit buffer has been written, the USCI interferes with the current bus activity and may cause unpredictable bus behavior.
Workaround	
	 Ensure that slave does not stretch the SCL low phase of an ACK period. or
	 Ensure that the transmit buffer is loaded in time. or
	 Do not use the multi-master transmitter mode.

5

Detailed Bug Description

USCI21	USCI Module
Function	UART IrDA receiver mode
Description	IrDA reception does not function correctly at certain baud rates. This occurs only when the IrDA receive filter via the UCAxIRRCTL register is enabled and the USCI source clock (BRCLK) is higher than 6 MHz.
Workaround	 Set the filter length (UCIRRXFLx in UCAxIRRCTL) to the maximum value 0x3F to achieve proper functionality. Reduce the frequency of the USCI source clock (BRCLK) to the IrDA module to be less than 6 MHz.
USCI22	USCI Module
Function	I ² C master receiver with 10-bit slave addressing
Description	Unexpected behavior of the USCI_B can occur when configured in I ² C master receive mode with 10-bit slave addressing under the following conditions:
	 The USCI sends first byte of slave address, the slave sends an ACK and when second address byte is sent, the slave sends a NACK.
	 Master sends a repeat start condition (if UCTXSTT = 1). The first address byte following the repeated start is acknowledged.
	However, the second address byte is not sent, instead the master incorrectly starts to receive data and sets UCBxRXIFG = 1.
Workaround	Do not use a repeated start condition; instead, set the stop condition UCTXSTP = 1 in the NACK ISR prior to the following start condition (USTXSTT = 1).
USCI23	USCI Module
Function	UART transmit mode with automatic baud rate detection
Description	Erroneous behavior of the USCI_A can occur when configured in UART transmit mode with automatic baud rate detection. During transmission if a "Transmit break" is initiated (UCTXBRK = 1), the USCI_A does not deliver a stop bit of logic high; instead, it sends a logic low during the subsequent synch period.
Workaround	
	 Follow user's guide instructions for transmitting a break/synch field following UCSWRST = 1.
	 or Set UCTXBRK = 1 before an active transmission; that is, check for bit UCBUSY = 0 and then set UCTXBRK = 1.

www.ti.com	Detailed Bug Description
USCI24	USCI Module
Function	Incorrect baud rate information during UART automatic baud rate detection mode
Description	Erroneous behavior of the USCI_A can occur when configured in UART mode with automatic baud rate detection. After automatic baud rate measurement is complete, the UART updates UCAxBR0 and UCAxBR1. Under oversampling mode (UCOS16 = 1), for baud rates that should result in UCAxBRx = 0x0002, the UART incorrectly reports it as UCAxBRx = 0x5555.
Workaround	When break/synch is detected following the automatic baud rate detection, the flag UCBRK flag is set to 1. Check if UCAxBRx = 0x5555 and correct it to 0x0002.
USCI25	USCI Module
Function	TXIFG is not reset when NACK is received in I ² C mode
Description	When the USCI_B module is configured as an I ² C master transmitter, the TXIFG is not reset after a NACK is received if the master is configured to send a restart (UCTXSTT = 1 and UCTXSTP = 0).
Workaround	Reset TXIFG in software within the NACKIFG interrupt service routine.
USCI26	USCI Module
Function	t _{buf} parameter violation in I ² C multi-master mode
Description	In multi-master I ² C systems, the timing parameter t_{buf} (bus free time between a stop condition and the following start) is not ensured to match the I ² C specification of 4.7 µs in standard mode and 1.3 µs in fast mode. If the UCTXSTT bit is set during a running I ² C transaction, the USCI module waits and issues the start condition on bus release, causing the violation to occur.
	NOTE: It is recommended to check if UCBBUSY bit is cleared before setting UCTXSTT = 1.
Workaround	None

7

USCI27	USCI Module								
Function	Timing of USCI I ² C interrupts may cause device reset due to automatic clear of an IFG.								
Description	When certain USCI I ² C interrupt flags (IFG) are set and an automatic flag-clearing event on the I ² C bus occurs, the program counter may become corrupted. This happens only when the IFG is cleared within a critical time window (~6 CPU clock cycles) after a USCI interrupt request occurs and before the interrupt servicing is initiated. The affected interrupts are UCBxTXIFG, UCSTPIFG, UCSTTIFG and UCNACKIFG.								
	The automatic flag-clearing scenarios are described in the following situations:								
	 A pending UCBxTXIFG interrupt request is cleared on the falling SCL clock edge following a NACK. 								
	• A pending UCSTPIFG, UCSTTIFG, or UCNACKIFG interrupt request is cleared by a following Start condition.								
Workaround									
	 Polling the affected flags instead of enabling the interrupts or 								
	 Ensuring the above mentioned flag-clearing events occur after a time delay of 6 CPU clock cycles has elapsed since the interrupt request occurred and was accepted. 								
XOSC5	LFXT1 Module								
Function	LF crystal failures may not be properly detected by the oscillator fault circuitry								
Description	The oscillator fault error detection of the LFXT1 oscillator in low-frequency mode $(XTS = 0)$ may not work reliably, causing a failing crystal to go undetected by the CPU; that is, OFIFG is not set.								
Workaround	None								
XOSC8	LFXT1 Module								
Function	ACLK failure when crystal ESR is below 40 k Ω								
Description	When ACLK is sourced by a low-frequency crystal with an ESR below 40 k Ω , the duty cycle of ACLK may fall below the specification; the OFIFG may become set or, in some instances, ACLK may stop completely.								
Workaround	See the application report <i>XOSC8 Guidance</i> (SLAA423) for information regarding working with this erratum.								

Appendix A Prior Versions

	÷	BCL12	BCL13	CPU14	CPU19	FLASH21	FLASH22	FLASH24	FLASH27	JTAG13	JTAG14	PORT10	TA12	TA16	TAB22	7	TB16	USCI16	USCI20	USCI21
Devices	Rev:	BC	BC	ß	G	Ę	Ę	Ę	Ę	5	5	PO	₽	₽	ΤA	TB2	B	SN	n	SN
	G	✓			~			✓	✓			✓	✓	✓	✓	✓	✓		✓	✓
MSP430F2232	F	✓	✓		~			✓	✓			✓	✓	✓	✓	✓	✓		✓	✓
WISF430F2232	Е	✓	✓	✓	✓		✓	✓	✓		✓	✓	✓	✓	✓	✓	✓	✓	✓	~
	D	✓	✓	✓	~	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	G	✓			~			✓	✓			✓	✓	✓	✓	✓	✓		✓	~
MSP430F2234	F	✓	✓		✓			~	✓			~	~	✓	~	~	~		~	~
WI3F430F2234	Е	✓	✓	~	✓		~	~	✓		~	~	~	✓	~	~	~	✓	~	~
	D	✓	✓	~	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
MSP430F2252 -	G	✓			✓			~	✓			✓	~	✓	✓	~	~		~	~
	F	✓	✓		✓			~	✓			✓	~	✓	~	~	~		~	~
WI3F430F2232	Е	~	~	~	✓		~	~	✓		~	~	~	✓	~	~	~	✓	~	~
	D	~	~	~	✓	~	~	~	✓	~	~	~	~	✓	~	~	~	✓	~	~
	G	✓			~			✓	✓			✓	✓	✓	✓	✓	✓		✓	~
MSP430F2254	F	✓	✓		~			✓	✓			✓	✓	✓	✓	✓	✓		✓	~
10101 4301 2234	Е	~	~	~	✓		~	~	✓		~	~	~	✓	~	~	~	✓	~	~
	D	~	~	~	✓	~	~	~	✓	~	~	~	~	✓	~	~	~	✓	~	~
	G	✓			~			✓	✓			✓	✓	✓	✓	✓	✓		✓	✓
MSP430F2272	F	✓	✓		✓			\checkmark	✓			✓	\checkmark	✓	✓	\checkmark	\checkmark		\checkmark	~
	Е	~	~	✓	✓		~	~	✓		~	~	~	✓	~	~	~	✓	~	~
	D	✓	✓	✓	~	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	G	✓			~			✓	✓			✓	✓	✓	✓	✓	✓		✓	✓
MSP430F2274	F	✓	✓		~			✓	✓			✓	✓	✓	✓	✓	✓		✓	✓
10101 4001 2214	Е	✓	✓	✓	~		✓	✓	✓		✓	✓	✓	✓	✓	✓	✓	✓	✓	<
	D	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

Appendix A

		T	1	1	r	r	r	r	
Devices	Rev:	USCI22	USCI23	USCI24	USCI25	USCI26	USCI27	XOSC5	XOSC8
	G	✓	✓	✓	✓	✓	✓	✓	~
NOD 40050000	F	✓	✓	✓	✓	✓	✓	✓	✓
MSP430F2232	Е	✓	✓	✓	✓	✓	✓	✓	✓
	D	✓	✓	✓	✓	✓	✓	✓	✓
	G	✓	✓	✓	✓	✓	✓	✓	✓
NOD 4005000 4	F	✓	✓	✓	✓	✓	✓	✓	✓
MSP430F2234	Е	✓	✓	✓	✓	✓	✓	✓	✓
	D	✓	✓	✓	✓	✓	✓	✓	✓
	G	✓	✓	✓	✓	✓	✓	✓	✓
NOD 40050050	F	✓	✓	✓	✓	✓	✓	✓	✓
MSP430F2252	Е	\checkmark	✓	✓	✓	✓	✓	✓	~
	D	✓	✓	✓	✓	✓	✓	✓	✓
	G	✓	✓	✓	✓	✓	✓	✓	✓
NOD 40050054	F	\checkmark	✓	✓	✓	✓	✓	✓	~
MSP430F2254	Е	✓	✓	✓	✓	✓	✓	✓	✓
	D	✓	✓	✓	✓	✓	✓	✓	✓
	G	\checkmark	✓	✓	✓	✓	✓	✓	~
MOD 400 500 70	F	✓	✓	✓	✓	✓	✓	✓	✓
MSP430F2272	Е	\checkmark	✓	✓	✓	✓	✓	✓	~
	D	✓	✓	✓	✓	✓	✓	✓	✓
	G	✓	✓	✓	✓	✓	✓	✓	✓
MOD 400 50074	F	✓	✓	✓	✓	✓	✓	✓	✓
MSP430F2274	Е	✓	✓	✓	✓	✓	✓	✓	✓
	D	✓	✓	✓	✓	✓	✓	✓	~

 $\checkmark\,$ The checkmark means that the issue is present in that revision.

A.1 Detailed Bug Description

BCL13	Basic Clock Module						
Function	Exiting reset state with slow V_{cc} rise time						
Description	When subject to very slow V_{cc} rise times, the device may enter a state in which the DCC does not oscillate. No JTAG access or program execution is possible, and the device remains in the reset state until the supply voltage is disconnected.						
Workaround	Apply a V _{cc} power-on ramp \geq 10 V/s under all power-on/power-cycle scenarios.						
FLASH21	Flash Module						
Function	Information memory read data corrupted						
Description	Flash addresses between 0x1080 and 0x10FF (information memory) might not be read correctly. Supply voltages and addressing mode affect the read value.						
Workaround	None						
FLASH22	Flash Module						
Function	Flash controller may prevent correct LPM entry						
Description	When ACLK (or SMCLK) is used as the flash controller clock source and this clock source is deactivated due to a low-power mode entry while a flash erase or write operating is pending, the flash controller keeps ACLK (or SMCLK) active even after the flash operation has been completed. This results in an incorrect LPM entry and increased current consumption. Note that this issue can only occur when the flash operation and the low-power mode entry are initiated from code located in RAM.						
Workaround	Do not enter low-power modes while flash erase or write operations are active. Wait for the operation to complete before entering a low-power mode.						
JTAG13	JTAG Module						
Function	PSA checksum generation fails						
Description	PSA checksum generation gives a wrong result when data_psa is executed during test clock low phase and the last address of flash information memory addresses 0x107E or 0x10FE are part of the calculation.						
Workaround	Calculate PSA sum when test clock is at high level.						

JTAG14	JTAG Module								
Function	Releasing JTAG control can corrupt CPU registers during debug								
Description	During a debug session, on rare occasions, the CPU register contents can be corrupted when JTAG control is released by the debugger. This behavior is exhibited during, but not limited to, the use of the "Use Virtual Breakpoints" and "Force Single Stepping" features in the IAR Embedded Workbench software. This bug does not affect normal device and application operation, such as starting a device out of POR and executing application code.								
	For the bug to occur, both of the following conditions must be true: 1. The CPU (MCLK) is sourced by the DCO. 2. The "External Resistor (Rosc)" feature of the DCO is not used.								
Workaround	Use an external crystal or a digital high-speed clock source connected to the LFXT1 oscillator to source the CPU (MCLK) during a debug session. Alternatively, use the on-chip DCO in the "External Resistor (Rosc)" configuration. Note that, in this case, an external resistor connected to the device Rosc pin is mandatory and that the factory-programmed DCO calibration constants cannot be applied directly.								
USCI16	USCI Module								
Function	UART/IrDA mode lost characters								
Description	 When configured for UART/IrDA mode, the USCI baud rate generator may halt operation under the following conditions: IrDA mode: Repeated invalid start bits on the receive line or 								
	 UART/IrDA modes: Positive pulse on the receive line during break character reception inside the stop-bit time slot (the second stop-bit time slot if UCSPB = 1) with a pulse width that passes the deglitch filter but is shorter than one-half of a bit time. 								
	After halting, additional characters are ignored. Transmit functionality is not affected.								
Workaround	Check the UCBUSY flag status periodically in software. If the flag is set and no character has been received in the expected time, reset the USCI module in software. To reset the USCI module, toggle UCSWRST and reenable the USCI interrupts.								

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications
DSP	dsp.ti.com	Computers and Peripherals	www.ti.com/computers
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps
Interface	interface.ti.com	Energy	www.ti.com/energy
Logic	logic.ti.com	Industrial	www.ti.com/industrial
Power Mgmt	power.ti.com	Medical	www.ti.com/medical
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated