
SK 120 KQ

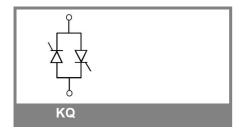
SEMITOP® 2

Antiparallel Thyristor Module

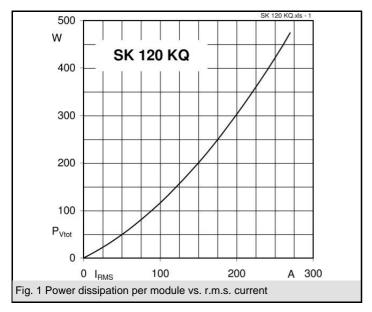
SK 120 KQ

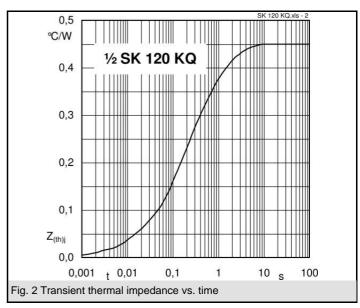
Preliminary Data

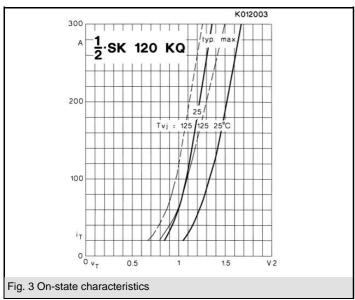
Features

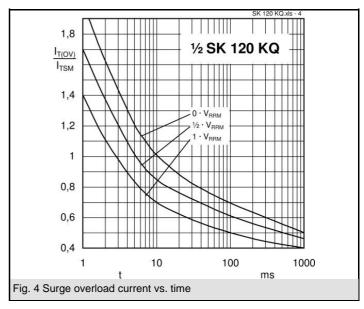

- Compact Design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DBC)
- Glass passived thyristor chips
- Up to 1600V reverse voltage
- UL recognized, file no. E 63 532

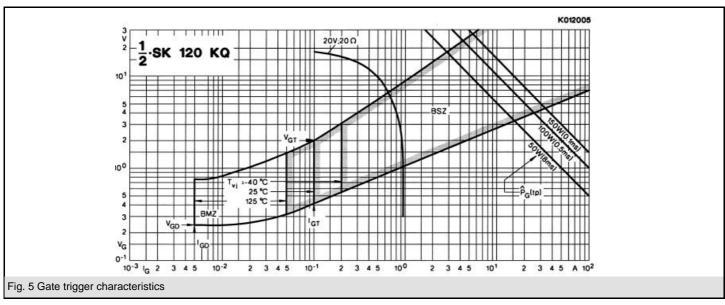
Typical Applications

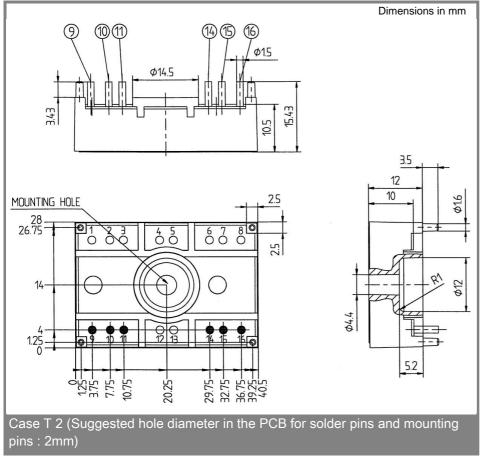

- Soft starters
- Light control (studios, theaters...)
- Temperature control

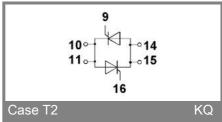

V _{RSM} V	V _{RRM} , V _{DRM} V	I _{RMS} = 134 A (full conduction) (T _s = 85 °C)
900	800	SK 120 KQ 08
1300	1200	SK 120 KQ 12
1700	1600	SK 120 KQ 16


Symbol	Conditions	Values	Units
I _{RMS}	W1C ; sin. 180° ; T _s = 100°C	94	А
	W1C ; sin. 180° ; T _s = 85°C	134	Α
I _{TSM}	T _{vi} = 25 °C ; 10 ms	2000	Α
	T _{vi} = 125 °C ; 10 ms	1800	Α
i²t	T _{vj} = 25 °C ; 8,310 ms	20000	A²s
	T _{vj} = 125 °C ; 8,310 ms	16200	A²s
V _T	$T_{v_i} = 25 ^{\circ}\text{C}, I_T = 300 \text{A}$	max. 1,85	V
$V_{T(TO)}$	T _{vi} = 125 °C	max. 0,9	V
r _T	T _{vi} = 125 °C	max. 3,5	mΩ
$I_{DD};I_{RD}$	$T_{vj} = 25 ^{\circ}\text{C}, V_{RD} = V_{RRM}$	max. 1	mA
	$T_{vj} = 125 ^{\circ}\text{C}, V_{RD} = V_{RRM}$	max. 20	mA
t _{gd}	$T_{vj} = 25 ^{\circ}\text{C}, I_{G} = 1 \text{A}; di_{G}/dt = 1 \text{A/}\mu\text{s}$	1	μs
t_{gr}	$V_D = 0.67 *V_{DRM}$	2	μs
(dv/dt) _{cr}	T _{vi} = 125 °C	1000	V/µs
(di/dt) _{cr}	T _{vi} = 125 °C; f= 5060 Hz	100	A/µs
tq	T _{vi} = 125 °C; typ.	80	μs
I _H	T _{vj} = 25 °C; typ. / max.	100 / 200	mA
I_L	T_{vj} = 25 °C; R _G = 33 Ω; typ. / max.	200 / 500	mA
V _{GT}	$T_{v_i} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 2	V
I_{GT}	T _{vi} = 25 °C; d.c.	min. 100	mA
V_{GD}	T_{vj}^{3} = 125 °C; d.c.	max. 0,25	V
I_{GD}	T _{vj} = 125 °C; d.c.	max. 5	mA
$R_{th(j-s)}$	cont. per thyristor	0,45	K/W
	sin 180° per thyristor	0,47	K/W
$R_{th(j-s)}$	cont. per W1C	0,225	K/W
	sin 180° per W1C	0,235	K/W
T_{vj}		-40 + 125	°C
T _{stg}		-40 +12 5	°C
T _{solder}	terminals, 10s	260	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3000 / 2500	V~
M_s	Mounting torque to heatsink	2,0	Nm
M_t			Nm
а			m/s²
m		19	g
Case	SEMITOP® 2	T 2	




SK 120 KQ





This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.