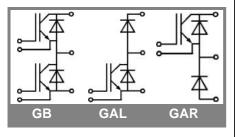
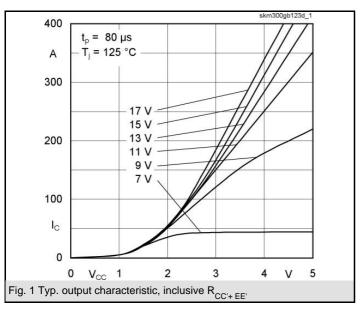


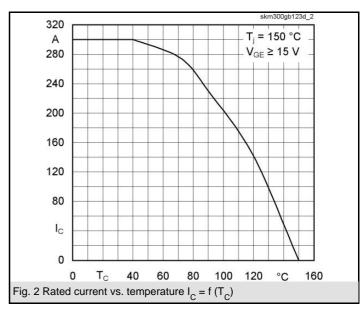
IGBT Modules

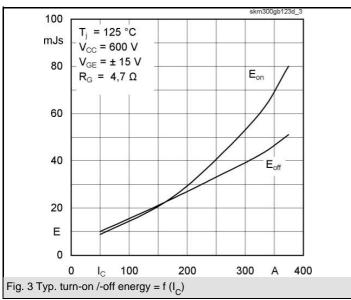

SKM 300GB123D SKM 300GAL123D SKM 300GAR123D

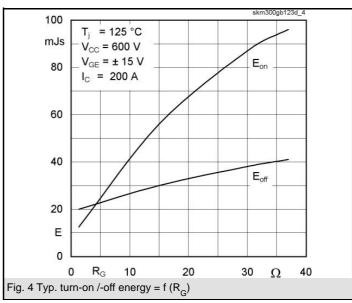
Features

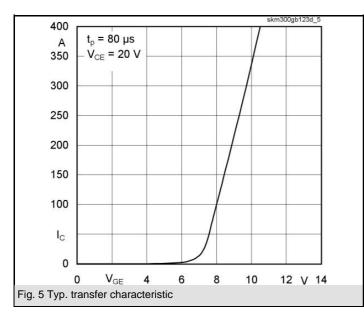
- MOS input (voltage controlled)
- N channel , Homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (12 mm) and creepage distance (20 mm)

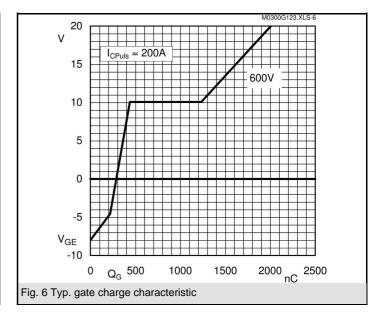

Typical Applications

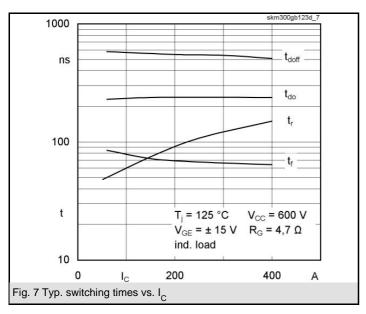

- Switching (not for linear use)
- AC inverter drives
- UPS

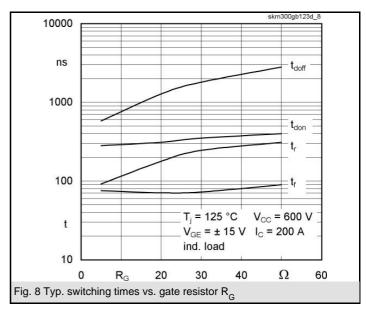


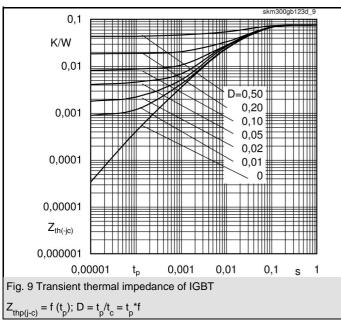

Absolute Maximum Ratings T _c = 25 °C, unless otherwise specified							
Symbol	Conditions	Values	Units				
IGBT							
V_{CES}		1200	V				
I _C	$T_c = 25 (80) ^{\circ}C$	300 (220)	Α				
I _{CRM}	$t_p = 1 \text{ ms}$	400	Α				
V_{GES}		± 20	V				
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C				
V_{isol}	AC, 1 min.	2500	V				
Inverse diode							
I _F	T _c = 25 (80) °C	260 (180)	Α				
I _{FRM}	$t_p = 1 \text{ ms}$	400	Α				
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 ^{\circ}\text{C}$	2200	Α				
Freewheeling diode							
I _F	$T_c = 25 (80) ^{\circ}C$	350 (230)	Α				
I _{FRM}	$t_p = 1 \text{ ms}$	600	Α				
I _{FSM}	$t_p = 10 \text{ ms; sin; } T_j = 150 ^{\circ}\text{C}$	2900	Α				

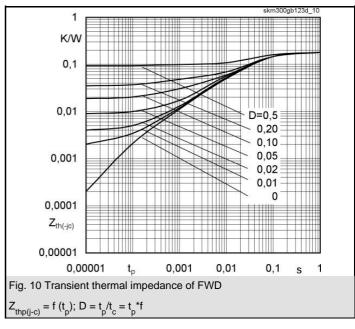

Characteristics		T_c = 25 °C, unless otherwise specified					
Symbol	Conditions	min.	typ.	max.	Units		
IGBT					•		
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 8 \text{ mA}$	4,5	5,5	6,5	V		
I _{CES}	$V_{GE} = 0, V_{CE} = V_{CES}, T_{j} = 25 (125) °C$		0,1	0,3	mA		
$V_{CE(TO)}$	T _j = 25 (125) °C		1,4 (1,6)	1,6 (1,8)	V		
r_{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		5,5 (7,5)	7 (9,5)	mΩ		
$V_{CE(sat)}$	I_{Cnom} = 200 A, V_{GE} = 15 V, chip level		2,5 (3,1)	3 (3,7)	V		
C _{ies}	under following conditions		18	24	nF		
C _{oes}	$V_{GE} = 0$, $V_{CE} = 25 V$, $f = 1 MHz$		2,5	3,2	nF		
C _{res}			1	1,3	nF		
L _{CE}				20	nH		
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,35 (0,5)		mΩ		
t _{d(on)}	V _{CC} = 600 V, I _{Cnom} = 200 A		250	400	ns		
t _r	$R_{Gon} = R_{Goff} = 4.7 \Omega$, $T_j = 125 °C$		90	160	ns		
t _{d(off)}	$V_{GE} = \pm 15 \text{ V}$		550	700	ns		
t _f			70	100	ns		
E _{on} (E _{off})			28 (26)		mJ		
Inverse d							
$V_F = V_{EC}$	I_{Fnom} = 200 A; V_{GE} = 0 V; T_j = 25 (125) $^{\circ}$ C		2 (1,8)	2,5	V		
$V_{(TO)}$	T _i = 25 (125) °C		1,1	1,2	V		
r _T	$T_{j} = 25 (125) ^{\circ}C$		4,5	6,5	mΩ		
I _{RRM}	I_{Fnom} = 200 A; T_j = 125 () °C		190		Α		
Q_{rr}	di/dt = 4000 A/µs		35		μC		
E _{rr}	V _{GE} = 0 V		8,5		mJ		
FWD							
$V_F = V_{EC}$	$I_F = 300 \text{ A}; V_{GE} = 0 \text{ V}, T_j = 25 (125) ^{\circ}\text{C}$		2 (1,8)	2,5	V		
$V_{(TO)}$	$T_j = 25 (125) ^{\circ}C$		1,1	1,2	V		
r _T	$T_j = 25 (125) ^{\circ}C$		3	4,3	mΩ		
I _{RRM}	I _F = 200 A; T _j = 125 () °C		220		A		
Q _{rr}	di/dt = 3500 A/μs		53		μC		
E _{rr}	V _{GE} = 0 V				mJ		
	characteristics				1		
R _{th(j-c)}	per IGBT			0,075	K/W		
R _{th(j-c)D}	per Inverse Diode			0,18	K/W		
R _{th(j-c)FD}	per FWD			0,15	K/W		
R _{th(c-s)}	per module			0,038	K/W		
Mechanical data							
M _s	to heatsink M6	3		5	Nm		
M_t	to terminals M6	2,5		5	Nm		
W				325	g		

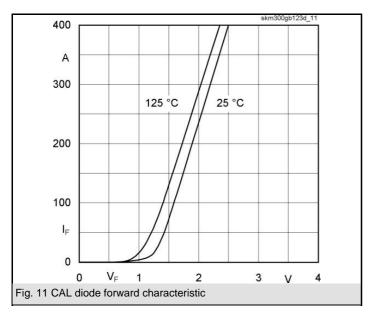


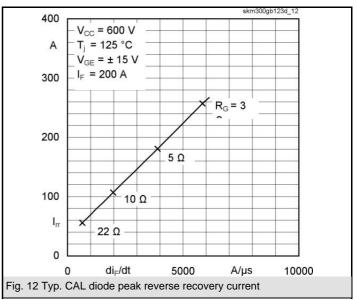


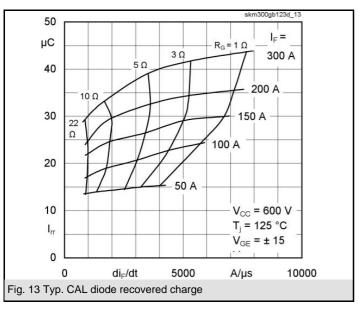


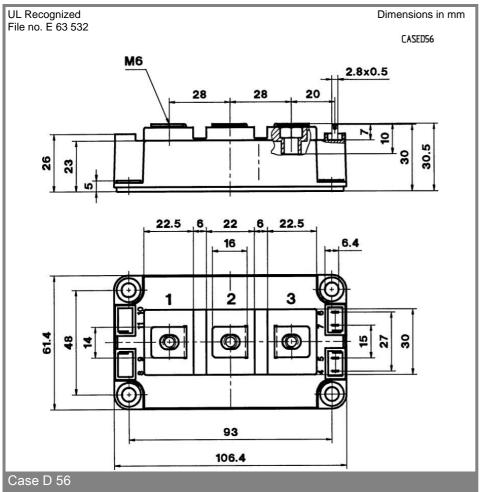


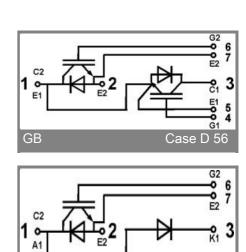


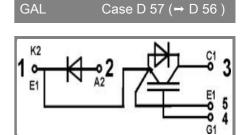












Case D 58 (→ D 56

GAR

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.