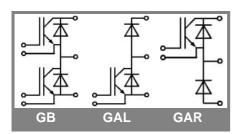
SKM 400GB125D

SEMITRANSTM 3

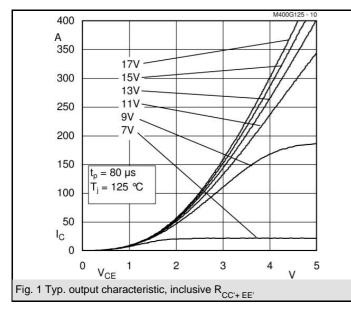
Ultra Fast IGBT Modules

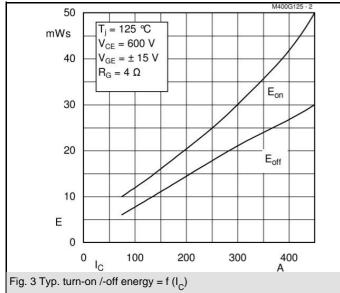
SKM 400GB125D **SKM 400GAL125D SKM 400GAR125D**

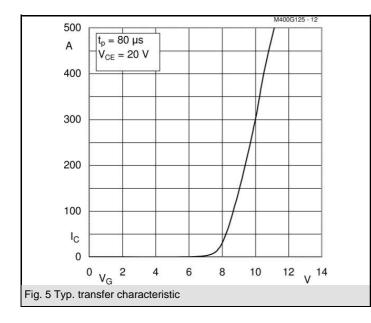
Features

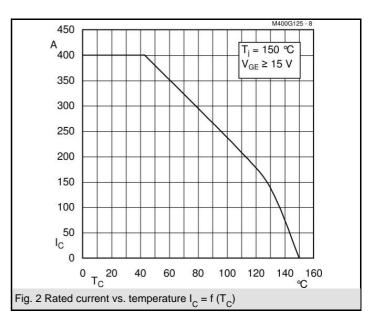

- N channel, homogeneous Si
- Low inductance case
- Short tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom} • Fast & soft inverse CAL diodes
- . Isolated copper baseplate using **DBC Direct Copper Bonding** Technology
- · Large clearance (13 mm) and creepage distances (20 mm)

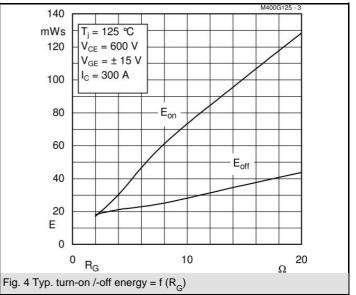
Typical Applications

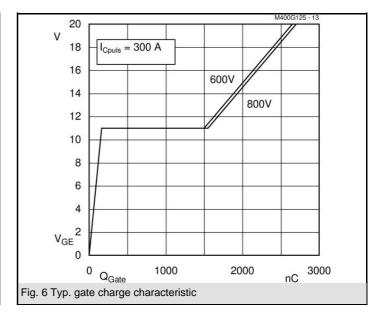

- Switched mode power supplies at f_{sw} >20kHz
- Resonant inverters up to 100 kHz
- Inductive heating
- Electronic welders at f_{sw} > 20 kHz

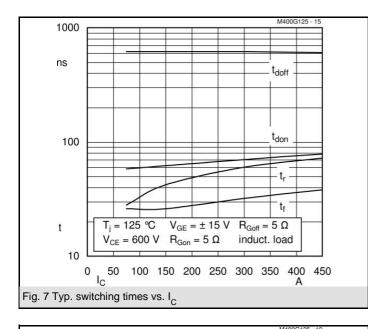

Absolute Maximum Ratings		T_c = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units				
IGBT							
V _{CES}		1200	V				
I _C	T _c = 25 (80) °C	400 (300)	А				
ICRM	T _c = 25 (80) °C, t _p = 1 ms	800 (600)	Α				
V _{GES}		± 20	V				
T _{vj} , (T _{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C				
V _{isol}	AC, 1 min.	4000	V				
Inverse diode							
I _F = - I _C	T _c = 25 (80) °C	390 (260)	Α				
I _{FRM}	T _c = 25 (80) °C, t _p = 1 ms	800 (600)	А				
I _{FSM}	t _p = 10 ms; sin.; T _j = 150 °C	2900	А				

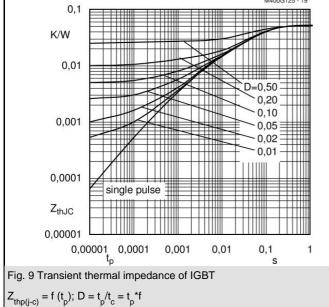

Characte	eristics 7	Γ_{c} = 25 °C, unless otherwise specified				
Symbol	Conditions	min.	typ.	max.	Units	
IGBT						
V _{GE(th)}	$V_{GE} = V_{CE}$, $I_{C} = 12 \text{ mA}$	4,5	5,5	6,5	V	
I _{CES}	V _{GE} = 0, V _{CE} = V _{CES} , T _i = 25 (125) °C		0,15	0,45	mA	
V _{CE(TO)}	T _j = 25 (125) °C		1,4 (1,7)		V	
r _{CE}	V _{GE} = 15 V, T _j = 25 (125) °C				mΩ	
V _{CE(sat)}	I_{C} = 300 A, V_{GE} = 15 V, chip level		3,3	3,85	V	
C _{ies}	under following conditions		22	30	nF	
C _{oes}	V _{GE} = 0, V _{CE} = 25 V, f = 1 MHz		3,3	4	nF	
C _{res}			1,2	1,6	nF	
L _{CE}				20	nH	
$R_{CC'+EE'}$	res., terminal-chip T _c = 25 (125) °C		0,35 (0,5)		mΩ	
t _{d(on)}	V _{CC} = 600 V, I _C = 300 A		70		ns	
t, Ú	$R_{Gon} = R_{Goff} = 2 \Omega, T_i = 125 \text{ °C}$		50		ns	
t _{d(off)}	V _{GE} = ± 15 V		500		ns	
t _f			32		ns	
$E_{on} \left(E_{off} \right)$			17 (18)		mJ	
Inverse	diode					
$V_F = V_{EC}$	I _F = 300 A; V _{GE} = 0 V; T _i = 25 (125) °C		2,2 (2)	2,5	V	
V _(TO)	T _i = 125 () °C			1,2	V	
r _T	T _j = 125 () °C		2,7	3,5	mΩ	
I _{RRM}	I _F = 300 A; T _j = 25 (125) °C		85 (140)		А	
Q _{rr}	di/dt = A/µs		13 (40)		μC	
E _{rr}	V _{GE} = V				mJ	
Thermal	characteristics					
R _{th(j-c)}	per IGBT			0,05	K/W	
R _{th(j-c)D}	per Inverse Diode			0,125	K/W	
R _{th(c-s)}	per module			0,038	K/W	
Mechani	cal data	•				
Ms	to heatsink M6	3		5	Nm	
Mť	to terminals M6				Nm	
w				325	g	

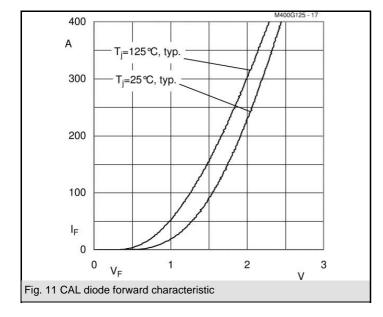



SKM 400GB125D

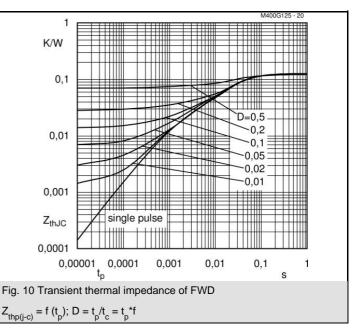


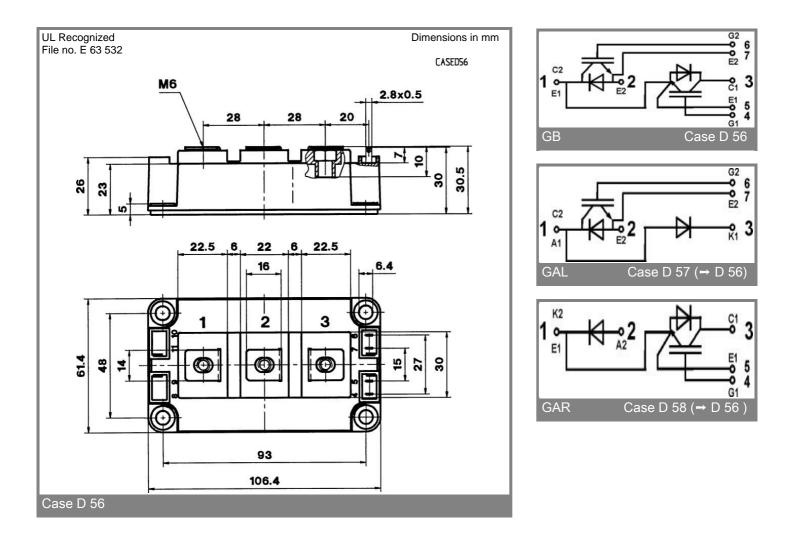









SKM 400GB125D



This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.