SKM 600GA176D

SEMITRANSTM 4

Trench IGBT Modules

Target Da	ta
-----------	----

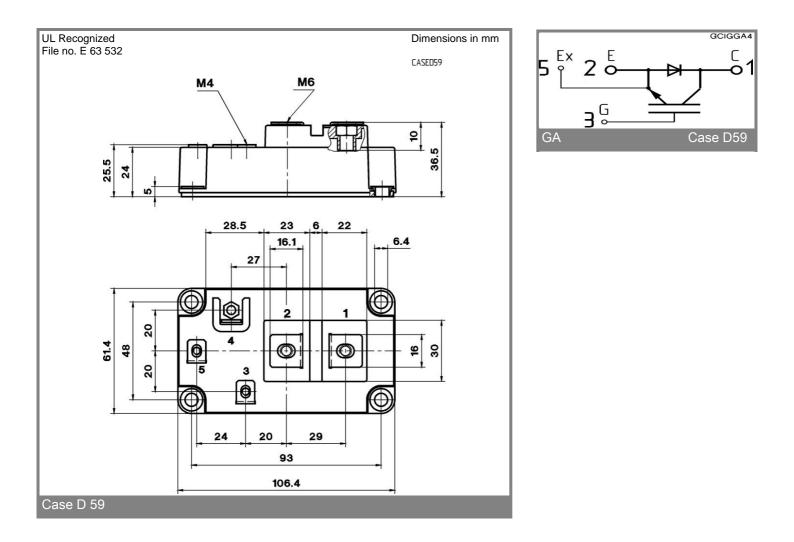
Features

- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C

Typical Applications

- AC inverter drives mains 575 -790 V AC
- Public transport (auxiliary systems)

Remarks


• $I_{DC} \le 500$ A limited for $T_{Terminal} = 100^{\circ}C$

Absolute	e Maximum Ratings	T _{case} = 25°C, unless otherwise specified					
Symbol	Conditions	Values	Units				
IGBT							
V _{CES}		1700	V				
I _C	T _c = 25 (80) °C	660 (470)	А				
ICRM	$t_p = 1 \text{ ms}$	800	А				
V _{GES}		± 20	V				
T _{vj} , (T _{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 +150 (125)	°C				
V _{isol}	AC, 1 min.	4000	V				
Inverse diode							
I _F	T _c = 25 (80) °C	600 (410)	А				
I _{FRM}	$t_p = 1 \text{ ms}$	800	А				
I _{FSM}	t _p = 10 ms; sin.; T _j = 150 °C		А				

Characte	ristics T _{ca}	_{ise} = 25°C	, unless ot	herwise sp	ecified			
Symbol	Conditions	min.	typ.	max.	Units			
IGBT								
V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 16 \text{ mA}$	5,2	5,8	6,4	V			
I _{CES}	V_{GE} = 0, V_{CE} = V_{CES} , T_{j} = 25 () °C		0,2	0,6	mA			
V _{CE(TO)}	$T_{j} = 25$ () °C		· · · /	1,2 (1,1)	V			
r _{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		2,5 (3,9)		mΩ			
V _{CE(sat)}	I_{Cnom} = 400 A, V_{GE} = 15 V, chip level		2 (2,45)	2,45 (2,9)	V			
C _{ies}	under following conditions		28,5		nF			
C _{oes}	V _{GE} = 0, V _{CE} = 25 V, f = 1 MHz		1,5		nF			
C _{res}			1,2		nF			
L _{CE}				20	nH			
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,18 (0,22)		mΩ			
t _{d(on)}	V _{CC} = 900 V, I _{Cnom} = 400 A				ns			
t _r	$R_{Gon} = R_{Goff} = 4 \Omega, T_j = 125 $ °C				ns			
t _{d(off)}	V _{GE} V				ns			
t _f					ns			
$E_{on} \left(E_{off} \right)$			290 (110)		mJ			
Inverse d								
$V_F = V_{EC}$	I _{Fnom} = 400 A; V _{GE} = 0 V; T _j = 25 (125)		1,6 (1,6)	1,9 (1,9)	V			
V _(TO)	T _i = 25 (125) °C		1,1	1,3	V			
r _T	T _j = 25 (125) °C		1,3	1,5	mΩ			
I _{RRM}	I _{Fnom} = 400 A; T _j = 125 () °C				А			
Q _{rr}	di/dt = A/µs				μC			
E _{rr}	V _{GE} = V				mJ			
Thermal characteristics								
R _{th(j-c)}	per IGBT			0,044	K/W			
R _{th(j-c)D}	per Inverse Diode			0,09	K/W			
$R_{th(c-s)}$	per module			0,038	K/W			
	Mechanical data							
Ms	to heatsink M6	3		5	Nm			
M _t	to terminals M6, M4	2,5		5	Nm			
w				330	g			
		1			1			

GA

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.