

Literature Number: SLUU505 May 2011

Buck PFC Pre-Regulator in Power Factor Correction Applications

1 Introduction

This EVM is to help evaluating UCC29910A buck PFC pre-regulator controller device in Power Factor Correction (PFC) applications especially targeting notebook computer charger area with universal AC input voltages.

2 Description

The EVM is a 100-W buck PFC pre-regulator with universal AC input between 90 V_{AC} and 264 V_{AC} , input frequency between 47 Hz and 63 Hz, and output voltage nominal 84 V_{DC} and maximum load current 1.2 A.

2.1 Typical Applications

- High Efficiency AC-DC Adapters
- Low Profile and High Density Adapters

2.2 Features

- Universal Line Input AC Voltage (between 90 V_{AC} and 264 $V_{AC},$ with frequency range 47 Hz and 63 Hz)
- Regulated Output DC Voltage (84 V_{DC} with maximum 1.2-A load current)
- · Output Voltage Regulation From no Load to Full Load, and From Low Line to High Line
- High Efficiency 96% Peak and 95% at Full Load
- High Power Factor Over 0.9
- Double Sided PCB Layout
- Buck PFC Technology
- Non-Latching Input Under Voltage Protection
- Over Current Protection
- Test Points to Facilitate Device and Topology Evaluation

3 Electrical Performance Specifications

Symbol	Parameter	Condition	MIN	TYP	MAX	UNITS
Input Charact	terstics		1		1	1
V _{IN}	Input Voltage		90	115	264	Vac
f _{AC}	Input Frequency		47		63	Hz
I _{IN}	Input Current	urrent V _{IN} = nom, I _{OUT} = max			1.5	Arms
V _{IN} _UVLO	Input UVLO	I _{OUT} = min to max	-	-	80	Vac
V _{IN} OV	Input OV	I _{OUT} = min to max	265	-	-	Vac
P _F	Power Factor V_{IN} = nom, 50% load		0.9	-	-	N/A
Output Chara	cterstics					
V _{OUT}	Output Voltage ⁽¹⁾	V _{IN} = nom, I _{OUT} = nom	82.3	84	85.7	V
Reg_LN	Line Regulation ⁽²⁾	V_{IN} = min to max, I_{OUT} = nom	-	-	5.0	%
Reg_LD	Load Regulation ⁽²⁾	$V_{IN} = nom, I_{OUT} = min to max$	-	-	5.0	%
$V_{\text{OUT_ripple}}$	Output Voltage Ripple	$V_{IN} = nom, I_{OUT} = max$	-	-	6	Vpp
I _{OUT}	Output Current	V _{IN} = min to max	0	-	1.20	А
IOCP	Output Over V_{IN} = nom, I_{OUT} = I_{OUT} - 5% Current		1.30	-	-	А
Systems Cha	racterstics	L	4			I
f _{SW}	Switching Frequency		-	100	-	kHz
Eff_Peak	Peak Efficiency V_{IN} = nom, I_{OUT} = min to max		-	96	-	%
Eff_FL	Full Load Efficiency			95	-	%
Тор	$ \begin{array}{ c c } \hline Operating \\ Temperature \\ Range \end{array} V_{\text{IN}} = \text{min to max}, \ I_{\text{OUT}} = \text{min to max} \end{array} $		-	25	-	°C

Table 1. UCC29910AEVM-730 Electrical Performance Specifications

(1) Start up is normally with load current not greater than 0.2 A. Start up with no load, or less than 0.2-A load, may make output voltage higher and can be as high as 88 V. Start up with load current greater than 0.2 A may trigger over current protection and may make output voltage in hiccup operation.

⁽²⁾ Load step down to zero may make output voltage higher and can be as high as 90 V.

4 Schematic

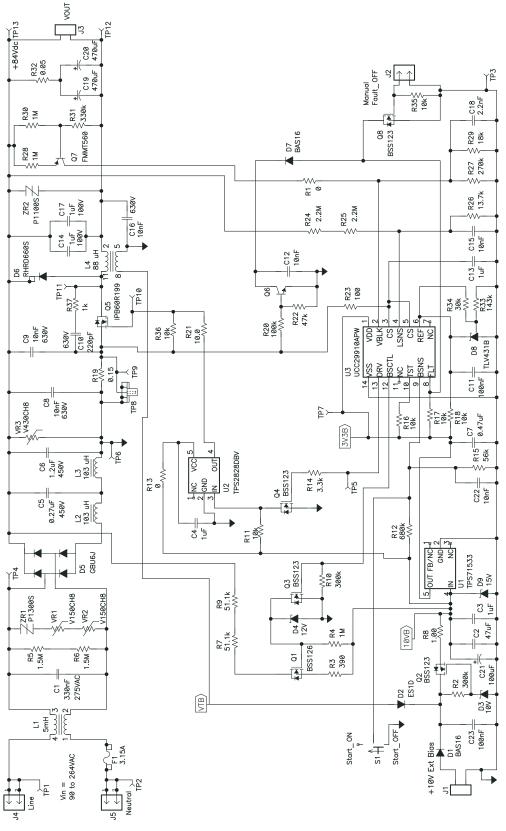


Figure 1. Schematic

4

www.ti.com

5 Test Setup

5.1 Test Equipment

Voltage Source (Main): 90 V_{AC} to 265 V_{AC} , 2.0 A_{AC} , such as Agilent 6813B AC Power Source/Analyzer, or equivalent.

Voltage Source (Bias): 10 $V_{DC}/0.2$ A.

Multimeters: 100 V_{DC} /1.5 A_{DC} four-digit display meters, such as Fluke 45 Dual Display Multimeter, or equivalent.

Output Load: 100 V_{DC} /1.5 A_{DC} load such as TDI RBL488 Electronic Load 100-120-800, or equivalent. Fan: 200 LFM minimum.

Recommended Wire Gauge: AWG #18 for input voltage connection and output load connection.

5.2 Recommended Test Setup

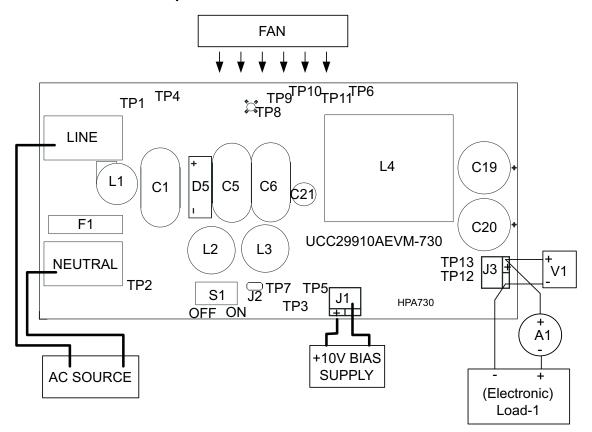


Figure 2. UCC29910AEVM-730 Recommended Test Set Up

Test Setup

5.3 List of Test Points

TEST POINTS	NAME	DESCRIPTION
TP1	LINE input	AC Input voltage LINE connection
TP2	NEUTRAL input	AC input voltage NEUTRAL connection
TP3	GND	Reference ground for signal
TP4	Rectifier Input	Input after common mode choke
TP5	FET Drive	U3 (UCC29910A) Pin 13
TP6	GND	Reference ground for power
TP7	3V3B	3.3-V bias and U3 (UCC29910A) Pin 1
TP8	Current Monitor	Q5 drain current monitoring
TP9	Current Monitor	Q5 drain current monitoring
TP10	Drive	Q5 gate
TP11	Drain	Q5 drain
TP12	VO-	Output voltage negative terminal
TP13	VO+	Output voltage positive terminal
J1	Bias	External 10-V bias
J2	Fault	Manual Fault Input to trigger fault protection from external circuit
J3	Vout	Output power terminal

6 Test Procedure

Set up the EVM per Figure 2.

CAUTION

High voltage and high temperature present when the EVM is in operation!

High voltage present for some time after power down of the EVM. Check output terminals with a voltmeter before handling the EVM!

6.1 Power Factor and Efficiency Measurement Procedure

- 1. Check the switch S1 at ON position. If S1 is not at ON position, switch S1 to the position ON.
- 2. Turn on the ventilation fan and keep the fan in operation during the time of test.
- 3. Set the AC source voltage to 115 V_{AC} and frequency to 60 Hz. But keep the AC source powered off
- 4. Prior to connecting the AC source, set the current to 2.5-A peak and 2.5-A limit. Connecting AC source to LINE and NEUTRAL terminals as shown in Figure 2.
- 5. Connect voltmeter V1 across the J3 as shown in Figure 2.
- 6. Connect ammeter A1 to J3 positive terminal and connect ammeter A1 to Load-1. Then connect Load-1 negative terminal to J3 negative terminal.
- 7. Connect 10-V Bias to J1, turn on 10-V Bias.
- 8. Set Load-1 to constant current mode to sink 0.2 A_{DC} and set Load-1 at 100 V_{DC} input range before turning on the AC source.
- 9. Turn on the AC source.
- 10. Varying the load current from 0.2 A to 1.2 A, along with the load current variation:
 - (a) Read input voltage, input real power, and power factor from the AC source.
 - (b) Read output voltage and output current from V1 and A1.
- 11. Turn off the AC source.
- 12. Set the AC source voltage to 230 V_{AC} and frequency to 50 Hz.
- 13. Repeat step 8 and 10.

NOTE: Start up is normally with load current not greater than 0.2A.

Start up with no load, or less than 0.2-A load, may make output voltage higher and can be as high as 88 V.

Start up with load current greater than 0.2 A may trigger over current protection and may make output voltage in hiccup operation.

Load step down to zero may make output voltage higher and can be as high as 90 V.

6.2 Equipment Shutdown

- 1. Shut down the AC source
- 2. Shut down the 10-V Bias
- 3. Shut down the load
- 4. Shut down the FAN

CAUTION

High voltage may present after power down of the EVM for some time. Check output terminals with a voltmeter before handling the EVM!

www.ti.com

7 Performance Data and Typical Characteristic Curves

7.1 Efficiency at 115 V_{AC} and 230 V_{AC}

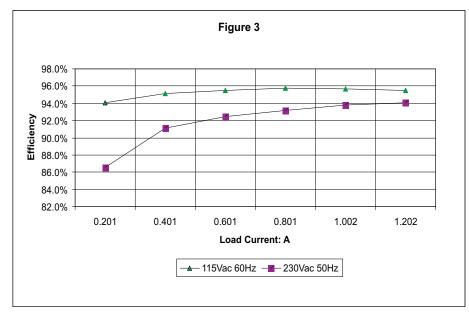


Figure 3. Efficiency with 115 V_{AC} and 230 V_{AC} (Test Points: TP1, TP2, TP12 and TP13)

7.2 Efficiency at Full Load with Respect to Input Voltage

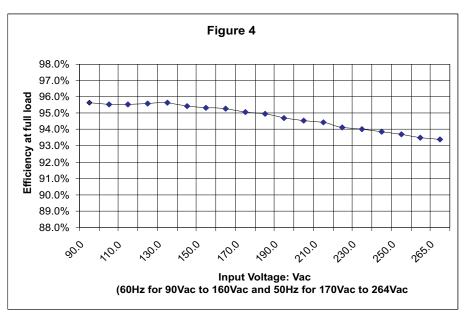


Figure 4. Efficiency at Full Load (Test Points: TP1, TP2, TP12 and TP13)

7.3 Power Factor at 115 V_{AC} and 230 V_{AC}

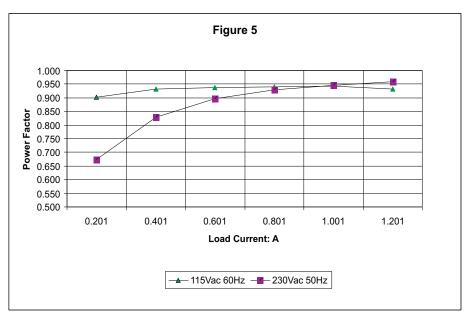


Figure 5. PF with 115 V_{AC} and 230 V_{AC} (Test Points: TP1, TP2, TP12 and TP13)

7.4 Power Factor at Full Load with Respect to Input Voltage

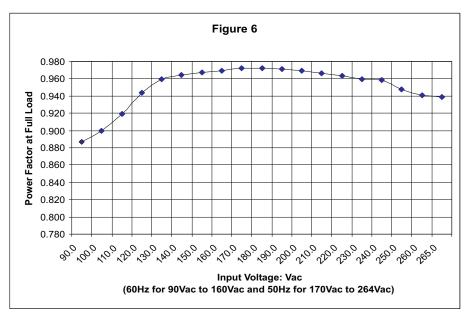


Figure 6. PF at Full Load (Test Points: TP1, TP2, TP12 and TP13)

www.ti.com

7.5 Input Current Harmonic Content (IEC EN61000-3-2 Limits for Class D Equipment)

Figure 7. Harmonic Content with 230Vac Input (Vin = 230Vac at 50Hz, Io = 1.2A Test Points: TP1, TP2, TP12 and TP13)

7.6 Input Current Harmonic Content (JIS61000-3-2 Limits for Class D Equipment)

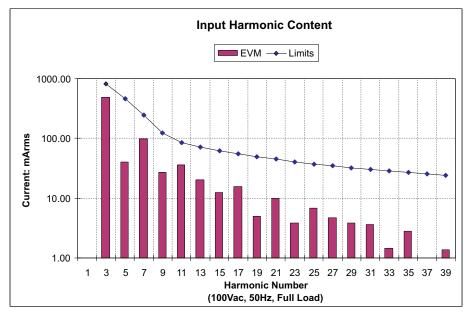


Figure 8. Harmonic Content with 100 V_{AC} Input (V_{IN} = 100 V_{AC} at 50 Hz, I_0 = 1.2 A Test Points: TP1, TP2, TP12 and TP13)

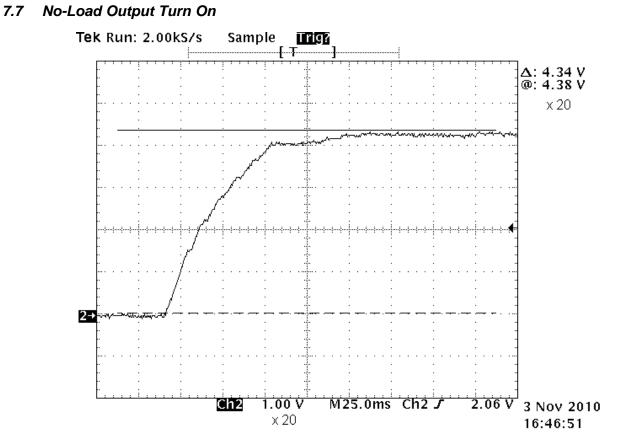


Figure 9. No-Load Turn On (V_{IN} = 230 V_{AC} at 50 Hz, I_0 = 0 A Test Points: TP12 and TP13)

www.ti.com

7.8 Output Voltage Ripple

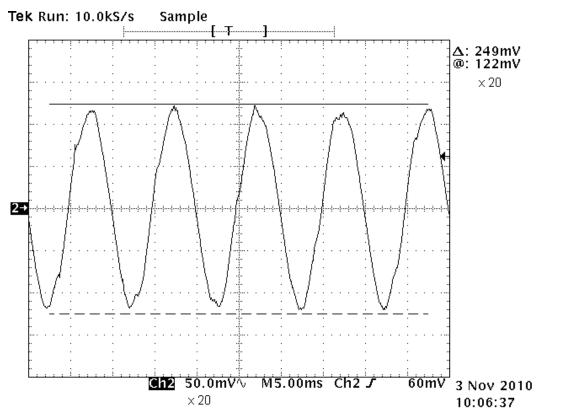


Figure 10. Output Voltage Ripple (V_{IN} = 230 V_{AC} at 50 Hz, I_0 = 1.2 A Test Points: TP12 and TP13)

Copyright © 2011, Texas Instruments Incorporated

7.9 Input Voltage and Current

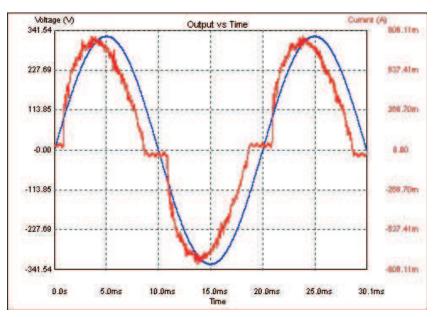


Figure 11. Input Waveforms (V_{IN} = 230 V_{AC} at 50 Hz, I_0 = 1.2 A Test Points: TP1 and TP2)

- 7.10 EMI Performance Achievable on a Full 90-W Adapter Design (reference to SEM1900 topic 4)
 - **NOTE:** This EVM is not designed to meet the EMI standard. A reference design shown in SEM1900 does.

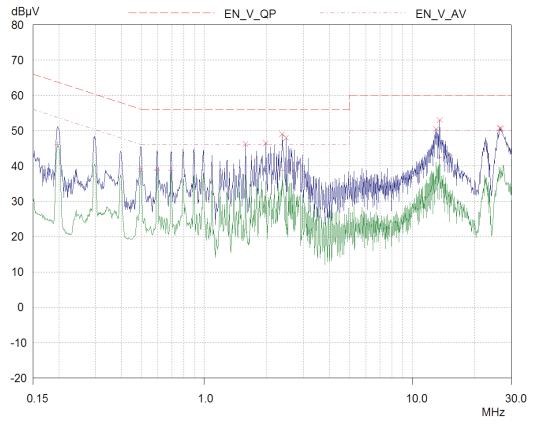


Figure 12. EMI Conducted Emission Test (Vin = 230Vac at 50Hz, Io = 1.2A)

8 EVM Assembly Drawing and PCB layout

The following figures (Figure 13 through Figure 18) show the design of the UCC29910AEVM-730 printed circuit board. PCB dimensions: L x W = 6.1 inch x 3.0 inch, four layers and 2-oz copper on outer layers and 1-oz copper on inner layers.

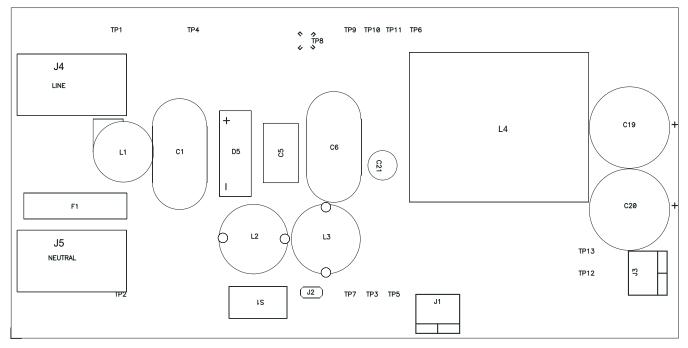


Figure 13. UCC29910AEVM-730 Top Layer Assembly Drawing (top view)

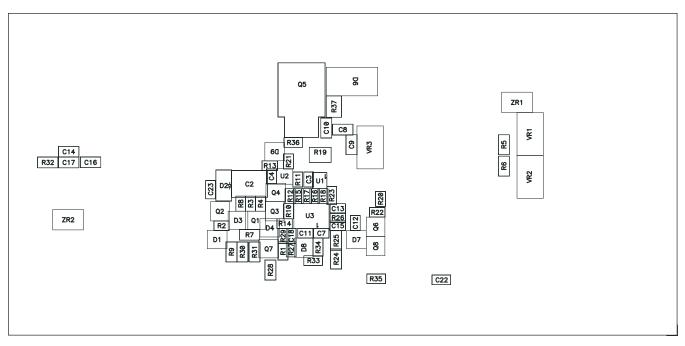


Figure 14. UCC29910AEVM-730 Bottom Assembly Drawing (bottom view)

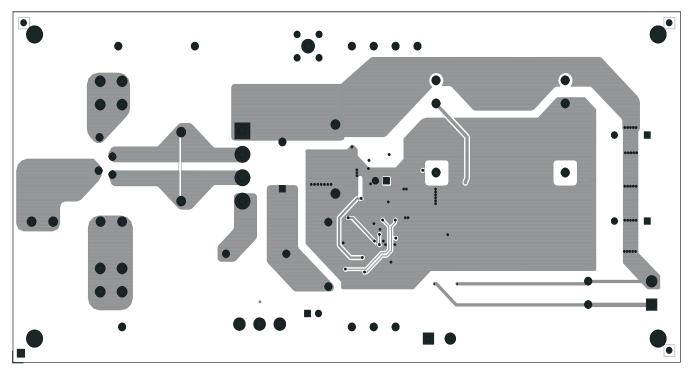


Figure 15. UCC29910AEVM-730 Top Copper (top view)

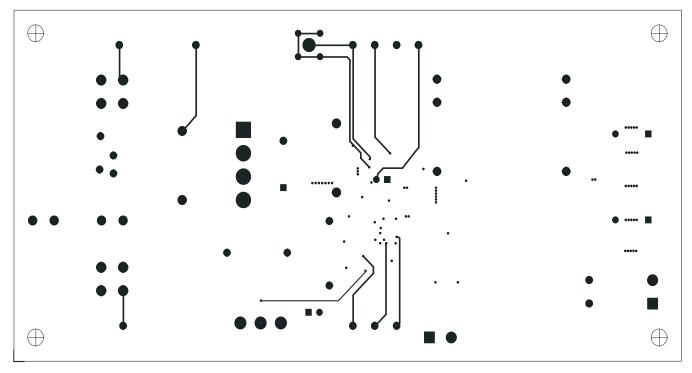


Figure 16. UCC29910AEVM-730 Internal Layer 1 (top view)

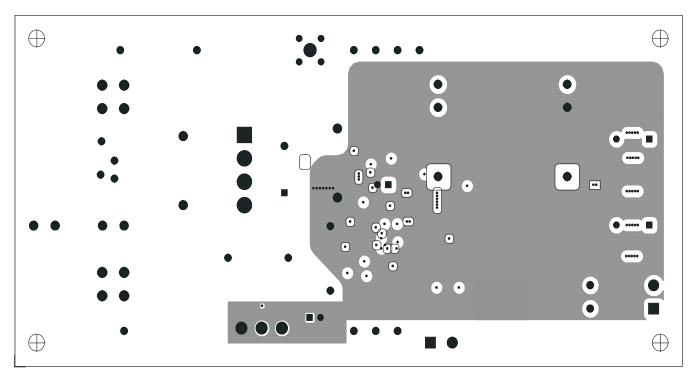


Figure 17. UCC29910AEVM-730 Internal Layer 2 (top view)

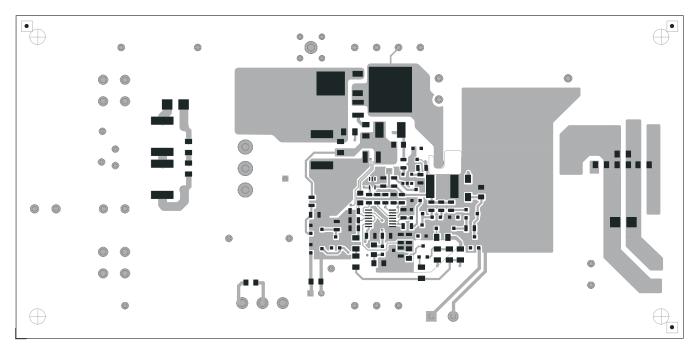


Figure 18. UCC29910AEVM-730 Bottom Copper (top view)

List of Materials

www.ti.com

9 List of Materials

REF DES	QTY	DESCRIPTION	PART NUMBER	MFR
C1	1	Capacitor, metallized polyester film, 275 V_{AC} , 20%, 330 nF	ECQ-U2A334ML	Panasonic
C10	1	Capacitor, ceramic, 630 V, 20%, 1206, 220 pF	std	std
C11	1	Capacitor, ceramic, 16 V, X7R, ±10%, 0805, 100 nF	std	std
C12, C15, C22	3	Capacitor, ceramic, 16 V, X7R, ±10%, 0805, 10 nF	std	std
C14, C17	2	Capacitor, ceramic, 100 V, ±10%, 1206, 1 µF	std	std
C18	1	Capacitor, ceramic, 16 V, X7R, ±10%, 0805, 2.2 nF	std	std
C19, C20	2	Capacitor, aluminum, 100 V, 20%, 470 µF	EEU-FC2A471	Panasonic
C2	1	Capacitor, ceramic, 25 V, X7R, 20%, 47 µF	CKG57NX5R1E476M	TDK
C21	1	Capacitor, aluminum, 16 V, 20%, 100 µF	ECA1CM101	Panasonic
C23	1	Capacitor, ceramic, 50 V, X7R, ±10%, 0805, 100 nF	std	std
C3, C4,C13	3	Capacitor, ceramic, 16 V, X7R, ±10%, 0805, 1 µF	std	std
C5	1	Capacitor, metallized polyproplene film, 450 $V_{\text{DC}},$ 20%, 0.27 μF	ECW-F2W274JAQ	Panasonic
C6	1	Capacitor, metallized polyester film, 450 $V_{\text{DC}},$ 20%, 1.2 μF	ECW-F2W125JA	Panasonic
C7	1	Capacitor, ceramic, 16 V, X7R, ±10%, 0805, 0.47 µF	std	std
C8, C9, C16	3	Capacitor, ceramic, 630 V, 20%, 1206, 10 nF	std	std
D1, D7	2	Diode, switching, 150 mA, 75 V, 350 mW	BAS16	Onsemi
D2	1	Diode, super fast rectifier, 200 V, 1.0 A	ES1D	Fairchild
D3	1	Diode, Zener, 10 V, 20 mA, 225 mW, 5%, 10 V	BZX84C10LT1G	Onsemi
D4	1	Diode, Zener, 12 V, 20 mA, 225 mW, 5%, 12 V	BZX84C12LT1G	Onsemi
D5	1	Diode, bridge, 6 A, 600 V,	GBU6J	Vishay
D6	1	DIODE, hyperfast 6 A, 600 V	RHRD660S	Fairchild
D8	1	Adjustable precision shunt regulator, 0.5%	TLV431BQDBZT	ТІ
D9	1	Diode, Zener, 10 V, 20 mA, 225 mW, 5%, 15 V	BZX84C15LT1G	Onsemi
F1	1	Fuse, 3.15 A, 250 V, Slo-Blo, cartridge, 3.15 A	0213 002.	Littlefuse
J1, J3	2	Terminal block, 2 pin, 15 A, 5.1 mm,	ED500/2DS	OST
J2	1	Header, male 2-pin, 100mil spacing,	PEC02SAAN	Sullins
L1	1	Inductor, ± 3% at 100 kHz, 5 mH	750311982	WE
L2, L3	2	Inductor, ±10% at 100 kHz, 103 µH	750311983	WE
L4	1	Transformer, ±15%, 88 µH	750311885	WE
Q1	1	MOSFET, N-channel, 600 V, 7 mA	BSS126	Infineon
Q2, Q3, Q4, Q8	4	MOSFET, N-channel, 100 V, 0.17 A	BSS123	Fairchild
Q5	1	MOSFET, N-channel, 650 V, 16 A, 0.199 Ω	IPB60R199CP	Infineon
Q6	1	Bipolar, NPN, 40 V _{CEO} , 600 mA, 350 mW	MMBT2222AK	Fairchild
Q7	1	Transistor, PNP, -500 V _{CEO} , -5 V _{EBO} , 50 mA	FMMT560	Zetex

Table 3. The EVM Components List (according to the schematic shown in)

18 Buck PFC Pre-Regulator in Power Factor Correction Applications

REF DES	QTY	DESCRIPTION	PART NUMBER	MFR
R1, R13	2	Resistor, chip, 1/8 W, 1%, 0805, 0 Ω	std	std
R11, R16, R17, R18, R35, R36	6	Resistor, chip, 1/8 W, 1%, 0805, 10 kΩ	std	std
R12	1	Resistor, chip, 1/8 W, 1%, 0805, 680 kΩ	std	std
R14	1	Resistor, chip, 1/8 W, 1%, 0805, 3.3 kΩ	std	std
R15	1	Resistor, chip, 1/8 W, 1%, 0805, 56 kΩ	std	std
R32	1	Resistor, chip, 1/4 W, 1%, 1206, 0.05 Ω	std	std
R19	1	Resistor, chip, 1/2 W, 1%, 1210, 0.15 Ω	std	std
R2, R10	2	Resistor, chip, 1/8 W, 1%, 0805, 300 kΩ	std	std
R20	1	Resistor, chip, 1/8 W, 1%, 0805, 100 kΩ	std	std
R21	1	Resistor, chip, 1/8 W, 1%, 0805, 10 Ω	std	std
R22	1	Resistor, chip, 1/8 W, 1%, 0805, 47 kΩ	std	std
R24, R25	2	Resistor, chip, 1/4 W, 1%, 1206, 2.2 MΩ	std	std
R26	1	Resistor, chip, 1/8 W, 1%, 0805, 13.7 kΩ	std	std
R27	1	Resistor, chip, 1/8 W, 1%, 0805, 270 kΩ	std	std
R28, R30	2	Resistor, chip, 1/4 W, 1%, 1206, 1 MΩ	std	std
R29	1	Resistor, chip, 1/8 W, 1%, 0805, 18 kΩ	std	std
R3	1	Resistor, chip, 1/8 W, 1%, 0805, 390 Ω	std	std
R31	1	Resistor, chip, 1/4 W, 1%, 1206, 330 kΩ	std	std
R33	1	Resistor, chip, 1/8 W, 1%, 0805, 143 kΩ	std	std
R34	1	Resistor, chip, 1/8 W, 1%, 0805, 30 kΩ	std	std
R4	1	Resistor, chip, 1/8 W, 1%, 0805, 1 MΩ	std	std
R5, R6	2	Resistor, chip, 1/4 W, 1%, 1206, 1.5 MΩ	std	std
R7, R9	2	Resistor, chip, 1/4 W, 1%, 1206, 51.1 kΩ	std	std
R8	1	Resistor, chip, 1/8 W, 1%, 0805,	std	std
R37	1	Resistor, chip, 1/2 W,1%, 1210, 1 kΩ	std	std
R23	1	Resistor, chip, 1/8 W,1%, 0805, 100 Ω	std	std
U1	1	50-mA LDO, 3.0 V _o	TPS71533DCKR	TI
U2	1	MOSFET driver, inverting	TPS2828DBV	TI
U3	1	Buck PFC	UCC29910APW	TI
VR1, VR2	2	Varistor, 95 V _{AC}	V150CH8	Littelfuse
VR3	1	Varistor, 369 V _{DC}	V430CH8	Littelfuse
ZR1	1	Sidactor, 160 V _s , 2.2A	P1300SCLRP	Littelfuse
ZR2	1	Sidactor, 130 V _s , 2.2A	P1100SCLRP	Littelfuse

Table 3. The EVM Components List (according to the schematic shown in) (continued)

Evaluation Board/Kit Important Notice

Texas Instruments (TI) provides the enclosed product(s) under the following conditions:

This evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end-product fit for general consumer use. Persons handling the product(s) must have electronics training and observe good engineering practice standards. As such, the goods being provided are not intended to be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety and environmental measures typically found in end products that incorporate such semiconductor components or circuit boards. This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and therefore may not meet the technical requirements of these directives or other related directives.

Should this evaluation board/kit not meet the specifications indicated in the User's Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please contact the TI application engineer or visit www.ti.com/esh.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used.

FCC Warning

This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

EVM Warnings and Restrictions

It is important to operate this EVM within the input voltage range of 90 VAC to 264 VAC and the output voltage range of 83 VDC to 87 V_{DC} .

Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power.

Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.

During normal operation, some circuit components may have case temperatures greater than 50° C. The EVM is designed to operate properly with certain components above 50° C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com	Wireless	www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions	www.ti.com/lprf		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated