
TOSHIBA BI-CMOS INTEGRATED CIRCUIT SILICON MONOLITHIC

TB1238BN

PAL/NTSC 1CHIP (IF + VCD PROCESSOR) IC

TB1238BN is the IF & Video processing IC for PAL/NTSC color TV system. This IC demodulates PAL/NTSC PIF, SIF and composite video signal to R/G/B primary colors and Audio signals. This IC can constitute Multi-Color System by combined with TA1275AZ (SECAM Processor). TB1238BN has the analog R/G/B interface, therefore it is easy to make up PIP system by using this IC. Because of the built-in video and audio switch, TB1238BN can deal with an external channel without extra switch. TB1238BN has an I²C BUS interface. Various controls (Brightness, Color etc.) can be done via two bus lines.

Weight: 5.55g (Typ.)

980910EBA1

The information contained herein is subject to change without notice.

[■] TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

The products described in this document are subject to the foreign exchange and foreign trade laws.

The products described in this document are subject to the foreign exchange and foreign trade laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

FEATURES

IF stage

- Intercarrier Input
- Double Time Constant IF AGC
- Bus Controlled RF AGC
- Bus Controlled PIF VCO
- L-SECAM Demodulation
- PLL SIF Demodulation (For 4.5~6.5MHz multi-SIF, Thank coil-less)

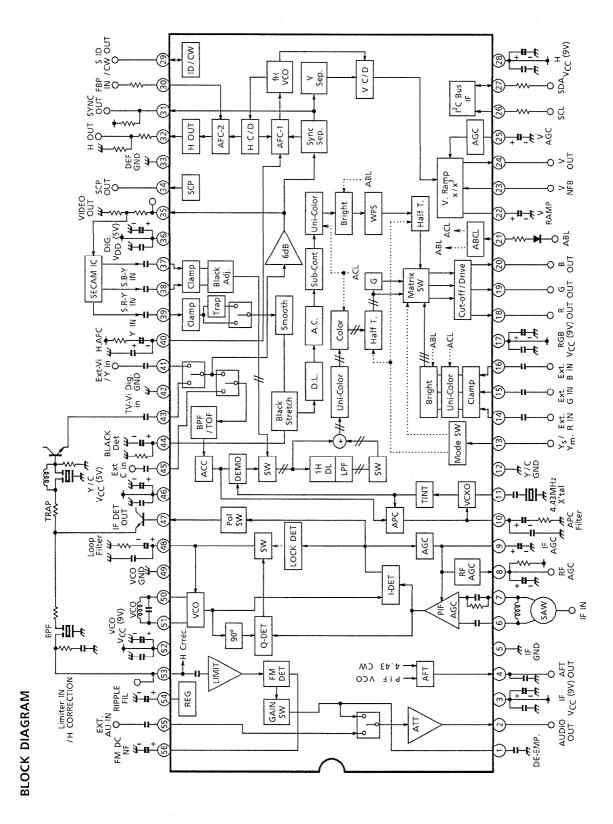
Video stage

- Built-in Video Switch (2 Inputs / 1 Output)
- Built-in Chroma Trap
- Built-in Y Delay Line
- Black Expansion
- DL Type Sharpness Control

Chroma stage

- 1 X'tal for Multi-System (3.58MHz/4.43MHz/M-PAL/N-PAL)
- Built-in 1H DL
- Built-in BPF/TOF
- SECAM R-Y, B-Y Input
- Automatic Color System Detection
- Fsc Continuous Wave Output

Text stage


- Fast Blanking
- Analog R/G/B Interface
- Cut-Off/Drive Adjustment
- ABCL

Deflection stage

- Resonator less H-VCO
- Dual Horizontal AFC
- Horizontal Phase Control
- Vertical Phase & Amplitude Control
- H/V Lock Detection
- Sand Castle Pulse Output (HD + VD + Gate Pulse)
- No Vertical Output Mode

Audio Stage

- Built-in Audio Switch (2 Inputs/1 Output)
- Built-in Audio Attenuator

TB1238BN - 3

TER	TERMINAL INTERFACE			
P N S o	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT/OUTPUT
	De-Emphasis	The terminal to be connected with capacitor for demphasis. 1500pF capacitance realizes $75 \mu s / 50 \mu s$ demphasis (Switched by bus). The output impedance is as follows; PAL: $33 k \Omega$	175, LA AK D. AK D	At PAL 927mVrms
2	Audio Output	The terminal for audio output. FM Det. signal or the signal inputted from Pin 55 is outputted (Switched by bus). And its amplitude is controlled by bus.	© ∀n' 00 S	At ATT Max. 927mVrms

TB1238BN - 4

TB1238BN - 5

INPUT/OUTPUT	Typical Input $90{ m dB}_{\mu}{ m V}$	76~70
INTERFACE CIRCUIT	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	30kΩ 500Ω 30kΩ 500Ω 30kΩ 500Ω
FUNCTION	The terminal for IF signal input. Pin 6 & Pin 7 are the both input poles of a differential amplifier.	The terminal for RF AGC output (Open corrector Output). To get rid of noises, connect a capacitor to this terminal.
PIN PIN NAME	6 IF Input 7 IF Input	8 RF AGC

140000

TB1238BN-7

TB1238BN - 8

INPUT / OUTPUT	100IRE 0.5V _{P-P}		100IRE 2.5Vp-p
INTERFACE CIRCUIT	(19) (19) (19) (19) (10) (10) (10) (10) (10) (10) (10) (10	1.	(18) (19) (19) (19) (19) (19) (19) (19) (19
FUNCTION	The terminal for Analog RGB signals input. Input signals are clamped by charging / discharging coupling capacitors, therefore input with low impedance. 100Ω or less is recommended.	The terminal for V _{CC} of RGB circuit (TEXT circuit). Supply 9V.	The terminals for R signals output. Because of the limit of output current, set the resistance 2.0kΩ or more to GND.
PIN NAME	Analog R Input Analog G Input Analog B Input	RGB V _{CC} (9V)	R Output
N S	41 51	17	6

TB1238BN - 9

TB1238BN -- 10

INPUT / OUTPUT	At Open 6V	5.0
INTERFACE CIRCUIT	2) Skn	(2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4
FUNCTION	The terminal for ABL/ACL control. Control voltage range is 5.5v~6.0v. ABL Gain & ABL start point are selectable by bus.	The terminal to be connected with a capacitor to make V.Ramp signal. V.Ramp amplitude is kept constant by V.AGC function.
PIN NAME	ABCL	V.Ramp
PIN No.	21	22

TB1238BN - 11

TB1238BN - 12

INPUT / OUTPUT		
INTERFACE CIRCUIT		
FUNCTION	The terminal to be connected with a capacitor for V.AGC. V.AGC. amp amplitude constant.	The terminal for input of I ² C bus clock.
PIN PIN NAME	V.AGC	26 SCL

TB1238BN-13

INPUT / OUTPUT	I	5.5 4.0 MIN 1.5ms
INTERFACE CIRCUIT		
FUNCTION	The terminal for input/output of I ² C bus data.	The terminal for V _{CC} of deflection circuit. Supply 9V. For 4V or more, VCXO oscilates and for 5.5V or more, H OUT signal is outputted. Set the raising time between 4V and 5.5V longer than 1.5ms.
PIN PIN NAME	27 SDA	28 H. V _{CC} (9V)

TB1238BN - 14

INPUT / OUTPUT	PAL / NTSC	AFC-2 3.5V
INTERFACE CIRCUIT	©®	AND THE PARTY OF T
FUNCTION	The terminal for PAL/NTSC ID output and SECAM ID input. By sinking 150μA or more from this terminal, this IC turns to be SECAM mode. By sinking 220~380μA from this terminal, this IC gives priority to SECAM mode. And the terminal for chroma sub-carrier frequency, switched by bus (Fixed 4.43MHz/Auto).	The terminal for FBP Input.
N PIN NAME	ID In/Output/ Fsc CW Output) FBP Input
N N	59	30

11000011

TB1238BN - 16

INPUT/OUTPUT		Gp Gp HD 4.1V	2V _{p-p}
INTERFACE CIRCUIT	-	(3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	(3) (3) (3) (4) (5) (7) (7) (8)
FUNCTION	The terminal for GND of deflection circuit.	The terminal for Sand Castle Pulse (VD + HD + Gp) output.	The terminal for Video Switch output. The signal inputted into Pin 41 or 43 is outputted through 6dB AMP.
PIN NAME	DEF GND	SCP Output	Video SW Output
PIN O	33	34	3.5

. Naoccta

FIN NAME FUNCTION The Terminal for VDD Supply 5V. Supply 5V. Supply 5V. The terminal for SECAM B-Y R-Y input: Input signal is clamped by charging deficient input with low impedance. Input signal is clamped by charging discharging coupling capacitor, therefore input with low impedance. Input signal is clamped by charging discharging coupling capacitor, therefore input with low impedance. Input	INPUT/OUTPUT	l		1Vp-p (100 IRE) 2.84V
ш %	INTERFACE CIRCUIT		© 000 NAE	MASZ. S THE TOTAL
	FUNCTION	The Terminal for V _{DD} of digital block. Supply 5V.	The terminal for SECAM B-Y/R-Y input. Input signals are clamped by charging / discharging coupling capacitors, therefore input with low impedance. 100Ω or less is recommended.	The terminal for Υ input. Input signal is clamped by charging/discharging coupling capacitor, therefore input with low impedance. 100Ω or less is recommended. Typical input amplitude is 1.0Vp-p.
N N N N N N N N N N N N N N N N N N N		Dig. V _{DD} (5V)	SECAM B-Y Input SECAM R-Y Input	9 Y Input

TB1238BN - 19

TB1238BN - 20

	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT
<u> </u>	EXT. C Input	The terminal for input of chroma signal from TV's ext. jack. Input through a coupling capacitor.		Burst Amplitude 286mV _{p-p}
)/	Y/C V _{CC} (5V)	The terminal for V _{CC} of Y/C circuit. Supply 5V.	1	
Δ	IF Det. Output	The terminal for output of composite video signal and SIF signal detected in IF circuit. Typical video output amplitude is 2.2V _{p-p} . In order to reduce 920kHz beat, connect a emitter follower to drive audio trap and band-pass-filter.	(3) V 1 V 100S W 1 V 100S	2V _{p-p}

140000

Ċ	
r	
1	
_	
-	
α	
α	
č	
C	

INPUT / OUTPUT		
INTERFACE CIRCUIT	\$\$\text{\$\exittt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exittit{\$\text{\$\e	
FUNCTION	The terminal to be connected with loop filter for IF PLL. This terminal voltage controls the frequency of IF VCO.	The terminal for GND of VCO and SIF circuit. In order to realize good PIF Det. performance for low IF input, please separate VCO GND wiring from IF GND (Pin
PIN PIN NAME	48 Loop Filter	49 VCO GND

INPUT/OUTPUT		1
INTERFACE CIRCUIT	(3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	
FUNCTION	The terminal to be connected with a tank coil for IF VCO. IF VCO frequency is controlled by bus. For 27pF ext. capacitance, frequency variable range is	The terminal for V _{CC} of IF V _{CO} and SIF. Supply 9V. In order to prevent leakage through V _{CC} , inserting traps for IF carrier and f _H is recommended.
N PIN NAME	000	52 VCO V _{CC} (9V)
N S	51	52

B1238BN - 23

TB1238BN - 24

into SW	
out into SW SW SW SW to ut	(4)
The terminal for input of audio signal from TV's ext. jack. Input through a coupling capacitor. The signal inputted into this terminal is outputted from Pin 2 after passing audio SW and attenuator. Input impedance is 70k.Ω. The terminal for FM DC Negative Feedback and AGC Filter for L-SECAW. Connect a capacitor to stabilize audio output	
No.	

TB1238BN - 25

BUS CONTROL MAP

Write mode

Slave address: 88HEX

SUB	D ₇	Da	D-	D.	Da	Da	D.	Dn	PRESET	DATA	
ADDRESS	D ₇ MSB	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀ LSB	MSB	LSB	
00	Au Gain	WPS		Uni-Color (TV)						0000	
01	Mute			Bright	ness (TV /	TEXT)			0100	0000	
02	Mute			Color			1100	0000			
03	V AGC				TINT				0100	0000	
04	AF-G	Vi Pol			Sharp	oness			0010	0000	
05	BPF / TOF SW	C-Trap	Au SW	Au SW Video SW Half Tone ABL Gain					0000	0000	
06	C	olor Syste	m	CW SW Sub-Contrast					0000	1000	
07				R Cut Off						0000	
08			G Cut Off			G Cut Off					
09		B Cut Off				B Cut Off					
0A	*			G Drive Gain						0000	
0B	AFT M			В	Drive Gai	n			0100	0000	
0C	Ver	tical Posit	ion		Horiz	ontal Pos	ition		0001	0000	
0D	B.B.			-	Audio ATT	•			0000	0000	
0E	V-F	req			RF A	AGC			0000	0000	
0F	AFC	Gain			Vertica	al Size			0010	0000	
10		V Lin	earity			VS Cor	rection		1000	1000	
11				PIF VCO				(Fix 0)	1000	0000	
12	S	ECAM R-Y	' Black Ac	dj	S	ECAM B-Y	' Black Ac	lj	1000	1000	
13	N-Com	BLK		RGB Contrast				0000	0000		
14	*	H-STP	F ID	Self Adj. ID SW ABL Start Point			0000	0000			
15				TEST N	MODE				0000	0000	
16	0	SE Adj		IF Freq.		AFT ON	BGP P	Ym enb	0000	0000	
17						Т	EST MOD	E	0000	0000	

Read mode

Slave address: 89HEX

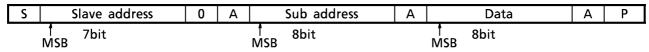
7 MSB	6	5	4	3	2	2 1	
POR	IF Lock	H Lock	IF Level	V Frq.	Color System		
Y-IN	RGB OUT	H-OUT	V-OUT	31/38	V Lock	k AFT	

BUS CONTROL CONTENTS

Write mode

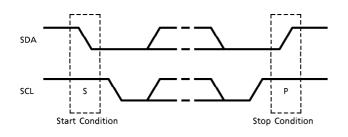
CHARACTERISTIC	DESCRIPTION	PRESET
Au Gain (Audio Gain SW)	0 : 50kHz 1 : 25kHz (X2 on 4.5MHz mode)	50kHz
WPS (White Peak Suppressor)	0 : ON 1 : OFF	ON
Uni-Color	Min : - 11.6dB~Cen : 6.6dB~Max : 11.6dB	- 11.6dB
Mute (Mute Mode)	00 : Normal 01 : Y-Mute 10 : RGB Out-Cut Off DC 11 : RGB Out-Cut Off DC + VP Out Hi (Service mode)	Y-Mute
Brightness	Min: 1.9V~Cen: 2.6V~Max: 3.4V (Pedestal Level)	2.6V
Color	Min: -20dB or less~Cen: 0dB~Max: 8.15dB	0dB
V-AGC (Vertical AGC Speed)	0 : Normal 1 : ×3	Normal
TINT	Min : −38°~Cen : 0°~Max : 38°	0°
AF-G (AF Gain SW)	0 : 50μs (5.5/6.0/6.5MHz) 1 : 75μs (4.5MHz)	$50 \mu s$
Vi POL (Video Polarity)	0 : Normal 1 : Reverse (For L-SECAM)	Normal
Sharpness	Min: -11dB~Cen: 5dB~Max: 12dB	0dB
BPF/TOF SW	0 : BPF 1 : TOF	BPF
C-Trap (Chroma Trap)	0 : OFF 1 : ON	OFF
AU SW (Audio SW)	0 : TV	TV
Video SW	00 : TV 01 : EXT. 10 : TV Y/C 11 : EXT Y/C	TV
Half Tone	0 : OFF 1 : ON	OFF
ABL Gain	00 : -0.74V	- 0.74V
Color System	000 : Auto1…443PAL/358NTSC (/SECAM)/443NTSC 001 : Auto2…358NTSC/M-PAL/N-PAL 010 : Fixed 443PAL	Auto1
CW SW	0 : Auto 1 : 4.43MHz	Auto
Sub-Contrast	Min : -3.5dB~Cen : 0dB~Max : 2.3dB	0dB
RGB Cut Off	Min : -0.65V~Cen : 0V~Max : 0.65V	±0V
G/B Drive	Min : -5.5dB~Cen : 0dB~Max : 3.5dB	– 5dB
AFT M (AFT Mute)	0 : Normal 1 : Mute	Normal
Vertical Position	000: 0H 111: 7H Delay/Pulse Width: 8H	0Н
Horizontal Position	Min : -3μ s~Cen : 0μ s~Max : 3μ s	0 <i>μ</i> s
B.B. (Blue Back)	0 : OFF 1 : 50IRE	OFF
Audio ATT	Min: -85dB~Cen: -15dB~Max: 0dB	Min
V-Freq (Vertical Frequency)	00 : Auto 01 : 60Hz 10 : 263H Fixed 11 : 313H Fixed	Auto
RF AGC	000000 : IF Mute Min : $65 ext{dB} \mu ext{V} \sim ext{Max } 100 ext{dB} \mu ext{V}$	IF Mute
AFC Gain	00 : Normal 01 : 1/3 10 : ×3 at VBLK 11 : AFC Off	Normal
Vertical Size	Min : -40%~Cen : 0%~Max : 40%	0%

CHARACTERISTIC	DESCRIPTION	PRESET
V Linearity	Upper Side; Min: 16%~Cen: 0%~Max: -14% Lower Side; Min: -20%~Cen: 0%~Max: 17.5%	0%
V-S Correction	Upper Side; Min: 12%~Cen: 0%~Max: -12% Lower Side; Min: 15%~Cen: 0%~Max: -15%	0%
PIF VCO (PIF VCO f ₀ Adj.)	Min : -2MHz~Cen : 0MHz~Max : 2MHz	0MHz
SECAM R-Y Black Adj	Min : -176mV~Cen : 0mV ~Max : 154mV (At R Output)	0mV
SECAM B-Y Black Adj	Min: -280mV~Cen: 0mV~ Max: 245mV (At B Output)	0mV
N-Com (NTSC Comb SW)	0 : ON 1 : OFF	ON
BLK (Blanking SW)	0 : BLK ON 1 : BLK OFF	ON
RGB Contrast	Min: -6.0dB~Cen: 9.4dB~Max: 14.0dB	- 6.0dB
H-STP (H-Out Stop)	0 : Normal 1 (& Mute data ; 11) : H-Out Stop & Low RGB Output	Normal
FID (Forced ID ON)	0 : Normal 1 : Killer OFF on Fixed System (This function doesn't work on Auto1 & Auto2 Mode.)	Normal
Self Adj. (AFT Output SW for Self Adj.)	00: AFT 01: Blue 10: Red 11: RF AGC×1/2	AFT
ID SW (ID Sensitivity Switching)	0 : Normal Mode 1 : Low Mode (This function works on only for NTSC Mode)	Normal
ABL Start Point	00 : -0.01V 01 : -0.11V 10 : -0.3V 11 : -0.45V	- 0.01V
TEST (TEST MODE)	For factory-TEST. Leave these bits preset data.	00HEX
SE Adj.	0 : Normal 1 : SECAM Black Level Alignment Mode 18pin : R-Y 20pin : B-Y	0
IF Freq.	000 : 58.75MHz	000
AFT ON	0 : Normal 1 : AFT-MUTE OFF	0
BGP P	0 : Normal 1 : 1.5μ s	0
Ym enb	0: 0~0.8V TV more than 0.8V OSD 1: 0~0.8V TV 0.8~2.4V Half Tone more than 2.4V OSD	0

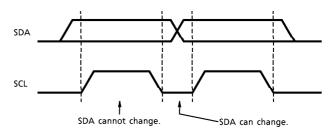

Read mode

CHARACTERISTIC	DESCRIPTION
POR (Power On Resection)	0 : Normal 1 : Resister Preset
IF Lock (IF Lock Detection)	0 : Lock Out 1 : Lock In
H-Lock (Horizontal Lock Detection)	0 : Lock Out 1 : Lock In
IF Level (IF AGC Gain Detection)	0 : High IF AGC Gain 1 : Low IF AGC Gain
V Frq (Vertical Frequency)	0 : 50Hz
Color System	000 : B/W 001 : 4.43PAL 010 : M-PAL 011 : N-PAL 100 : 3.58NTSC 101 : 4.43NTSC 110 : SECAM 111 : N/A
Y-IN (For Self-Diagnostic)	0 : No Signal 1 : OK
RGB Output (For Self-Diagnostic)	0 : No Signal 1 : OK
H-OUT (For Self-Diagnostic)	0 : No Signal 1 : OK
V-OUT (For Self-Diagnostic)	0 : No Signal 1 : OK
V-Lock (Vertical Lock Detection)	0 : Lock Out 1 : Lock In
AFT (AFT Lock Detection)	00 : Lock Out 01 : High Freq. 10 : Low Freq. 11 : Lock In
31/38 Recognition	0 : TB1231N

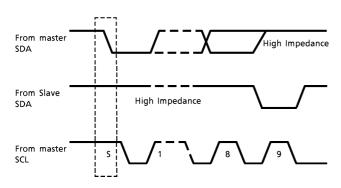
I²C BUS CONTROLLED FORMAT SUMMARY


Bus controlled format of TB1238N is based on I²C Bus Control format of Philips.

Data transfer format



S : Start Condition P : Stop Condition A : Acknowledge


(1) Start and stop condition

(2) Bit transfer

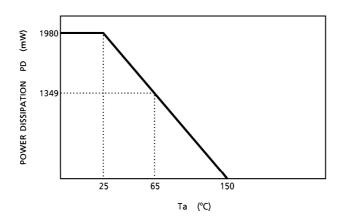
(3) Acknowledge

(4) Slave address

A ₆	A ₅	A4	Α3	A ₂	Α1	A ₀	R/W
1	0	0	0	1	0	0	0

Purchase of TOSHIBA I^2C components conveys a license under the Philips I^2C Patent Rights to use these components in an I^2C system, provided that the system conforms to the I^2C Standard Specification as defined by Philips.

MAXIMUM RATINGS (Ta = 25°C)


CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage (9V V _{CC})	V _C Cmax ₉	12	V
Supply Voltage (5V V _{CC})	V _C Cmax ₅	8	٧
Power Dissipation	PD _{max}	1980 (*)	mW
Input Terminal Voltage	V _{in}	GND - 0.3~V _{CC} + 0.3	٧
Operating Temperature	T _{opr}	- 20~65	°C
Storage Temperature	T _{stg}	- 55∼150	°C

(*) When using this device at above Ta = 25°C, the power dissipation decreases by 15.9mV per 1°C rise.

This IC is not proof enough against a strong E-M field by CRT which may cause function errors and / or poor characteristics.

Keeping the distance from CRT to the IC longer than 20cm, or if cannot, placing shield metal over the IC, is recommended in an application.

Ta-PD CURVE

ELECTRICAL CHARACTERISTICS

DC CHARACTERISTICS

Pin voltage

PIN No.	PIN NAME	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
1	De-Emphasis	٧1	_	_	4.5	5.0	5.5	V
2	Audio Output	V ₂	_	_	3.0	3.6	4.2	٧
3	IF V _{CC}	V ₃	_	Supply 9V	_	9.0	_	٧
4	AFT Output	٧4	_	_	2.0	2.5	3.0	٧
7	IF Input	V ₇	_	_	2.1	2.7	3.3	٧
10	APC Filter	V ₁₀	_	_	1.8	2.5	3.2	٧
11	X'tal	V ₁₁	_	-	37	4.0	4.3	٧
13	Ys	V ₁₃	_	-	_	0.17	0.4	٧
14	Analog R Input	V ₁₄	_	-	1.8	2.5	3.2	٧
15	Analog G Input	V ₁₅	_	_	1.8	2.5	3.2	٧
16	Analog B Input	V ₁₆	_	_	1.8	2.5	3.2	V
17	RGB V _{CC}	V ₁₇	_	Supply 9V	_	9.0	_	٧
18	R Output	V ₁₈	_	_	2.30	2.65	3.00	V
19	G Output	V ₁₉	_	_	2.30	2.65	3.00	V
20	B Output	V ₂₀	_	_	2.30	2.65	3.00	V
21	ABCL	V ₂₁	_	_	5.70	6.05	6.30	V
26	SCL	V ₂₆	_	_	4.5	5.0	5.5	V
27	SDA	V ₂₇	_	_	4.5	5.0	5.5	٧
28	H.V _{CC}	V ₂₆	_	Supply 9V	_	9.0	_	V
29	ID In/Output/Fsc CW Output	V ₂₉	_	_	1.40	1.75	2.00	٧
35	Video SW Output	V ₃₅	_	_	1.90	2.15	2.50	٧
36	Digital V _{DD}	V ₃₆	_	Supply 5V	_	5.0	_	V
37	SECAM B-Y Input	V ₃₇	_	_	2.3	2.5	2.7	V
38	SECAM R-Y Input	V ₃₈	_	_	2.3	2.5	2.7	٧
39	Y Input	V ₃₉	_	_	2.5	2.8	3.2	٧
40	H.AFC	V ₄₀	_	_	6.0	6.8	7.5	٧
41	Ext. Video / Y Input	V ₄₁	_	Video SW : 01	2.7	3.0	3.4	٧
43	TV Video Input	V ₄₃	_	Video SW : 00	2.7	3.0	3.4	V
44	Black Detection	V ₄₄		_	2.00	2.25	2.60	٧
45	Ext. C Input	V ₄₅	_	_	2.7	3.0	3.4	٧
46	Y/C VCC	V46		Supply 5V	-	5.0	-	٧
47	PIF Det. Output	V ₄₇	—	_	4.8	5.3	5.8	٧
48	Loop Filter	V ₄₈		_	4.1	4.6	5.1	٧

PIN No.	PIN NAME	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
50	PIF VCO	V ₅₀	_	_	7.4	8.0	8.6	V
51	PIF VCO	V ₅₁	_	_	7.4	8.0	8.6	V
52	vco v _{cc}	V ₅₂	_	Supply 9V	_	9.0	_	V
53	Limiter Input / Curre Correction	V ₅₃	_		3.9	4.5	5.1	V
54	Ripple Filter	V ₅₄	_		5.2	5.9	6.6	V
55	Ext. Audio Input	V ₅₅	_	_	3.8	4.4	5.0	V

Current dissipation

PIN No.	PIN NAME	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
3	IF V _{CC}	lCC3	_	Supply 9V	8.5	15	19	mΑ
17	RGB V _{CC}	l _{CC17}	_	Supply 9V	8.5	12	14	mA
28	H.V _{CC}	lCC26	_	Supply 9V	12	16	22	mA
36	Digital V _{CC}	I _{CC36}	_	Supply 5V	7	12	15	mA
46	Y/C VCC	lCC46	_	Supply 5V	45	65	76	mA
52	VCO V _{CC}	l _{CC52}		Supply 9V	15.5	23	29	mA

RECOMMENDED OPERATING POWER SUPPLY VOLTAGE

PIN No.	PIN NAME	MIN.	TYP.	MAX.	UNIT	NOTE
3	IF V _{CC}	8.5	9	9.5	V	_
17	RGB V _{CC}	8.5	9	9.5	٧	_
28	H.V _{CC}	8.5	9	9.5	V	_
36	Digital V _{CC}	4.5	5	5.5	V	_
46	Y/C V _{CC}	4.5	5	5.5	٧	_
52	vco v _{cc}	8.5	9	9.5	V	

AC CHARACTERISTIC PIF stage (Unless otherwise specified, $V_{CC} = 9V$ (3, 17, 28 & 52pin) / 5V (36 & 46pin), $Ta = 25^{\circ}C$)

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
DIE Dot Output	87.5%	V _{DET875}	_	P ₁	2.0	2.2	2.4	V _{p-p}
PIF Det. Output Level	L-SECAM	V _{DETLS}			2.0	2.2	2.4	
Level	110%	V _{DET110}			2.0	2.5	3.0	
PIF Input	MIN.	EPIFINMIN			_	37	_	۷۷. طام
Sensitivity	MAX.	EPIFINMAX	 	P ₂	100	107	_	dB μ V
IF AGC Range		^{∆E} IFAGC			65	70	_	dB
PIF Det. Sync. Tip	o Level	VSYNC		D-	2.6	2.9	3.2	V
L-SECAM White	Peak Level	V _{LSW}		P ₃	4.6	4.9	5.2	V
Output Level				D	4.8	5.2	5.6	v
for No Input	L-SECAM	VNOIFLS		P ₄	2.2	2.6	3]
Differential Gain		DG		D-	_	2	5	%
Differential Phase		DP		P ₅	_	2	5	٥
PIF Output Freq. Response		FR _{DET}	_	P ₆	5	7	_	MHz
S/N		S / N _{PIF}		P ₇	52	55	_	dB
Intermodulation		¹ 107	_	P8	42	45	_	dB
IF AGC Voltage	MAX.	VIFAGCMAX	_	Pg	7.3	7.5	_	V
IF AGC Voltage	MIN.	VFAGCMIN			_	3.8	_	
R _F AGC	MAX.	VRFAGCMAX		D	_	9	_	V
Voltage	MIN.	VRFAGCMIN		P ₁₀	_	0.2	0.5]
RF AGC Control	Range	∆ E _{RFAGC}	_	P ₁₁	35	_	_	dB
AFT Center Volta	age	VAFTCEN	_	P ₁₂	_	2.5	_	٧
AET Valtage	MAX.	VAFTMAX			4.4	4.8	5.2	V
AFT Voltage	MIN.	VAFTMIN		P ₁₃	_	0.2	0.5	
AFT Sensitivity		μ AFT	_	P ₁₄	_	40	_	kHz/V
<u> </u>		β IFVCO	_	P ₁₅	_	2.5	_	MHz/V
PIF VCO Pull-In	High	FPIFINH			1	1.5	_	MU-
Range	Low	FPIFINL		P ₁₆	1	1.5	_	MHz

SIF & audio stage (Unless otherwise specified, $V_{CC} = 9V$ (3, 17, 28 & 52pin) / 5V (36 & 46pin), $Ta = 25^{\circ}C$)

								•
CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
FM Det. Output Level	5.5MHz / P	V _{AUAC5P}	-	S ₁	695	927	1236	mV _{rms}
	4.5MHz / P	VAUAC4P			649	927	1324	
Level	4.5MHz / N	VAUAC4N			350	500	700	
Audio	5.5MHz / P	DAUDIOP	_	C -	_	0.3	1	%
Distortion	4.5MHz / N	D _{AUDIO} N		S ₂	_	0.3	1	/ %
Audio S/N	5.5MHz / P	S/N _{SIF} P		s ₃	55	60	_	dB
Audio 3/N	4.5MHz / N	S/N _{SIF} N	_		52	58	_	
AMR		AMR	_	S ₄	50	60	_	dB
Limiting Sensitivi	ty	ELIM	_	S ₅	_	35	_	$dB\muV$
Band Width	High	F _{AUH5P}	_	s ₆	6.7	8.7	_	- - MHz -
(5.5MHz / PAL)	Low	F _{AUL5P}			_	3.8	5.4	
Band Width	High	F _{AUH4N}		C _	4.9	6.4	_	
(4.5MHz/NTSC)	Low	FAUL4N	-	S ₇	_	2.8	4	
Attenuator	MAX.	GATTMAX			_	0	_	dB
Gain	CEN.	GATTCEN	—	S ₈	_	- 15	_	
	MIN.	GATTMIN			_	- 85	- 75	
Offset between TV/Ext		VAUOFFSET		Sg	- 30	0	30	mV
DC Change by Volume		ΔV_{VOLDC}	_	S ₁₀	_	_	100	mV

Video stage (Unless otherwise specified, $V_{CC} = 9V$ (3, 17, 28 & 52pin)/5V (36 & 46pin), $Ta = 25^{\circ}C$)

	1		· · · · · · · · · · · · · · · · · · ·				
CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
TV Input Dynamic Range	DR _{TV}			1.2	1.4	_	V _{p-p}
External Input Dynamic	DB		V ₁	1.2	1.4		
Range	DR _{EXT}			1.2	1.4		V _{p-p}
TV Mode Gain	GTV		\/o	5.2	6.0	6.4	dB
External Mode Gain	G _{EXT}		V ₂	5.2	6.0	6.4	dB
AV SW Cross-Talk	CT _{SWTE}] _ [\/a	_	- 55	- 50	dB
AV 3VV Closs-Talk	CTSWET		V ₃	_	- 55	- 50	dB
Y Input Dynamic Range	DRY	_	V ₄	1.1	1.3	_	V _{p-p}
Y Input Pedestal Clamp	Vy.c. p		V ₅	2.5	2.7	2.9	V
Voltage	VYCLP		v 5	2.5	2.7	2.9	\ \ \
Y Delay Time	tYDEL	_	V ₆	500	550	600	ns
	VBRTMAX		V ₇	3.0	3.4	3.7	V
Brightness Chara.	VBRTCEN			2.3	2.6	2.8	
	VBRTMIN			1.6	1.9	2.1	
Brightness Data Sensitivity	∆V _{BRT}			9.4	13.6	16.3	mV / bit
	GUCYMAX		V ₈	10.2	11.6	13.2	dB
Uni-Color Chara. for Y	GUCYCEN			5.1	6.6	8.3	
	GUCYMIN			- 9.1	- 6.9	- 5.2	
Sub-Contrast Chara.	GSCONMAX	_	Vg	1.8	2.3	2.8	dB
Sub-Contrast Chara.	GSCONMIN			- 3.0	- 3.5	- 4.0	
Sharpness Peaking Frequency	F _{SHP}	_	V ₁₀	3.0	3.3	3.6	MHz
Sharmana Cantual	GSHMAX			7.0	12.0	15.0	dB
Sharpness Control Characteristics	GSHCEN] —	V ₁₁	2.0	5.0	7.0	
Characteristics	GSHMIN			- 14.0	- 11.0	- 8.0	
Y Frequency Response	FRY	_	V ₁₂	5.5	_	_	MHz
Black Expansion AMP Gain	G _{BLEX}			1.2	1.4	1.6	
Black Expansion Start Point	V _{BLEX}]-	V ₁₃	0.79	0.96	1.14	V
Black Peak Detection Level	V _{BLPD}		V ₁₄	- 50	0	50	mV
WPS Level	VWPS		V ₁₅	2.5	2.8	3.2	V _{p-p}
Characa Taon Calis	G _{TRAP} 358		-	_	_	- 20	dB
Chrome Trap Gain	G _{TRAP} 443	1 —	V ₁₆	_	_	- 20	dB
Half Tone Chara. for Y	G _{HTY}	_	V ₁₇	- 6.9	- 6.0	- 5.1	dB
			• •				

Chroma stage (Unless otherwise specified, V_{CC} = 9V (3, 17, 28 & 52pin) / 5V (36 & 46pin), Ta = 25°C)

r	, , ,	_	(5) 11) 15 & 51511,751		. ,,	1	, <u> </u>
CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
	V _{ACCL}			_	20	30	
ACC Chara.	VACCH	-	C ₁	600	_	_	mV _{p-p}
	F ₀ T443			_	5.13	_	MHz
TOF Chara. (4.43MHz)	Q _{T443}			_	2.0	_	_
	F _{0B443}			_	4.43	_	MHz
BPF Chara. (4.43MHz)	Q _{B443}	-		_	2.0	_	_
	F ₀ T358	-	C ₂		4.28	_	MHz
TOF Chara. (3.58MHz)	Q _{T358}	1			2.0	_	_
	F _{0B358}	-		_	3.58	_	MHz
BPF Chara. (3.58MHz)	Q _{B358}				2.0	_	_
C Delay Time	†CDEL			550	600	650	ns
Delay Time Difference between Y/C	Δt _Y /C	_	C ₃	- 60	0	60	ns
Calar Chara	GCOLMAX		C -	6.93	8.15	9.37	d۵
Color Chara.	GCOLMIN	_	C ₄	_	_	- 20	dB
Uni-Color Chara. for C	GUCCMIN	_	C ₅	- 21.5	- 18.8	- 16.0	dB
Tint Chara (4.420411-)	$\Delta \theta$ 443MAX		C ₆	30	38	46	deg
Tint Chara. (4.43MHz)	Δ θ 443 ΜΙΝ	1		- 46	- 38	- 30	
Tint Chara (2 ESNALL)	$\Delta \theta$ 358MAX			30	38	46	deg
Tint Chara. (3.58MHz)	Δ θ358MIN			- 46	- 38	- 30	
Polotico Amplitudo (PAI)	V _{PR} / _B		C ₇	0.45	0.55	0.65	
Relative Amplitude (PAL)	V _{PG/B}			0.30	0.36	0.42	
Dolotico Amenistrado (NITSC)	V _{PR} /B			0.6	0.7	0.8	- I
Relative Amplitude (NTSC)	V _{PG} /B			0.25	0.31	0.37	
Dalati a Blassa (DAI)	θ_{PR-B}			85	90	95	.1
Relative Phase (PAL)	θ PG-B		•	230	236	242	deg
Dalati a Diagra (NITCC)	θ_{PR-B}	 	C ₈	86	91	96	.1
Relative Phase (NTSC)	$\theta_{ extsf{PG-B}}$			232	240	245	deg
ADC Dull by Danger (4 42NALL)	F4APCP+			350	500	_	11-
APC Pull-In Range (4.43MHz)	F4APCP -			350	500	_	Hz
ADC 11-1-1 Days vs. /4 420411-)	F4APCH+			350	500	_	11-
APC Hold Range (4.43MHz)	F4APCH –		•	350	500	_	Hz
4 D C D H L D (2 FORML)	F3APCP+	-	Cg	350	500	_	
APC Pull-In Range (3.58MHz)	F3APCP –			350	500	_	Hz
(2.50.41.)	F3APCH+			350	500	_	Hz
APC Hold Range (3.58MHz)	F3APCH –			350	500	_	
APC Control Sensitivity (4.43MHz)	β443		C ₁₀	0.8	1.0	1.2	Hz/mV
APC Control Sensitivity (3.58MHz)	β 358		~10	0.7	0.9	1.1	Hz/mV

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
PAL ID Sensitivity	VPALIDON			1.0	3.0	5.0	m\/
(Normal Mode)	VPALIDOFF			1.0	3.0	5.0	пп∨р-р
NTSC ID Sensitivity	VNTIDON		Caa	0.4	8.0	1.2	m\/
(Normal Mode)	VNTIDOFF		C ₁₁	0.4	0.8	1.2	ш р-р
NTSC ID Sensitivity	VNTIDLON			2	4	6	m\/
(Low Mode)	VNTIDLOFF			2	4	6	шир-р
ID Output Level	V_{IDH}		C.,	2.9	3.2	3.5	V
Output Level	V _{IDL}	_	C ₁₂	1.5	1.8	2.1	mV _{p-p} mV _{p-p} v μA μA V _{p-p}
SECAM ID Det. Current	ISECAM		C ₁₃	50	70	150	μA
SECAM ID Det. Current (Strong)	ISECAM-S		C ₁₄	220	300	380	μΑ
fsc Continuous Wave Output Level	VcW	_	C ₁₅	0.35	0.50	0.70	V _{p-p}
Sub-Carrier Remain on RGB	V_{SCR}			0	20	40	
Output	v_{SCG}	_	C ₁₆	0	20	40	mV _{p-p}
Catput	V_{SCB}			0	20	40	
Half Tone Chara. for C	GHTC		C ₁₇	- 6.9	- 6.0	- 5.1	dB
	f ₀₃	_		- 200	0	200	
Eroorup Eroguanay	f ₀₄	_	Cao	- 200	0	200	Hz
Freerun Frequency	foM	_	C ₁₈	- 200	0	200	
	fon	_		- 200	0	200	

Text stage (Unless otherwise specified, $V_{CC} = 9V$ (3, 17, 28 & 52pin) / 5V (36 & 46pin), $Ta = 25^{\circ}C$)

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
V-BLK Pulse Output Level		V _{VBLK}		Ŧ	0.5	1.0	1.5	V
H-BLK Pulse Output Lev	el	VHBLK		Т1	0.5	1.0	1.5	V
RGB Output Black Leve (OIRE DC)		V _{BLACK}	_	Т2	2.35	2.60	2.85	V
RGB Output White Leve (100IRE AC)	el	VWHITE	_	Т3	_	2.50	_	V _{p-p}
Cut-Off Voltage Variabl	e	∆V _{CUT+}		T .	0.58	0.65	0.72	V
Range		∆V _{CUT} –	-	Т4	- 0.72	- 0.65	- 0.58	V
Drive Control Variable I		G _{DR} +		т	3.0	3.5	4.0	dB
Drive Control Variable i	varige	G _{DR} _	-	T ₅	- 6.0	- 5.5	- 5.0	uв
ADCL Control Voltono D		VABCLH			5.9	6.0	6.1	V
ABCL Control Voltage R	ange	VABCLL	l — I	Т6	5.4	5.5	5.6	V
ACL Gain		G _{ACL}			- 16.5	- 15	- 13.5	dB
		V _{ABLP1}			- 0.06	- 0.01	0.04	
ADI Daint		V _{ABLP2}		T _	- 0.16	-0.11	- 0.06	.,
ABL Point		V _{ABLP3}] — [T ₇	- 0.35	- 0.30	- 0.25	V
		V _{ABLP4}			- 0.47	- 0.42	- 0.37	
		V _{ABLG1}			- 0.17	-0.12	- 0.07	
ADL Coin		V _{ABLG2}		T	- 0.42	- 0.37	- 0.32	V
ABL Gain		V _{ABLG3}		Т8	- 0.69	- 0.64	- 0.59	
		V _{ABLG4}			- 0.79	- 0.74	- 0.69	
Analog RGB Dynamic R	ange	DR _{TX}	_	Т9	0.5	_	_	V _{p-p}
Analan DCD Canturet	MAX.	GTXCMAX			0.85	1.00	1.20	V _{p-p}
Analog RGB Contrast Control Characteristic	CEN.	GTXCCEN	1 —	T ₁₀	0.50	0.59	0.71	
Control Characteristic	MIN.	GTXCMIN			0.08	0.10	0.12	
Analan DCD Drinktness	MAX.	VTXBRMAX			3.0	3.4	3.7	
Analog RGB Brightness Control Characteristic	CEN.	VTXBRCEN	1 —	T ₁₁	2.3	2.6	2.8	V
Control Characteristic	MIN.	VTXBRMIN			1.6	1.9	2.1	
Analog RGB Mode Swit Level	ching	V _{YS}	_	T ₁₂	0.6	0.8	1.0	V
		$ auR_{YS}$			<u> </u>	25	100	
Analog RGB Mode Tran	sfer	tPRYS	1	-	_	30	100	
Characteristic		τ FYS		T ₁₃	_	10	100	ns
		tPFYS	1		_	25	100	
Cross Talk from Analog RGB to TV		CT _{TX-TV}	_	T ₁₄	_	- 55	- 50	dB
Cross Talk from TV to Analog RGB		CT _{TV-TX}	_	T ₁₅	_	- 55	- 50	dB

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
RGB Output	R	V _{ROUT}			1.0	1.2	1.4	
Amplitude	G	V _{GOUT}	 	T ₁₉	0.45	0.60	0.75	V_{p-p}
Amphitude	В	V _{BOUT}			2.0	2.2	2.4	
		VSECBMAX			210	245	280	
CECAM Black Lovel Adi		_			_	_	_	mV
SECAM Black Level Adj. Chara.		VSECRMAX			133	154	175	
Chara.		VSECBMIN	—	T ₂₀	- 320	- 280	- 240	mV
		VSECRMIN			- 200	- 176	- 152	mv
SECAM Black Level Adj.	Data	△V _{SECB}			30	35	40	mV
Sensitivity		△VSECR		19	22	25	mv	
SECAM Black Level		G _{BS}		- 2.4	- 0.5	1.1	dB	
Alignment Mode Gain		G _{RS}		T ₂₁	- 2.4	- 0.5		1.1
SECAM Black Level Alignment Mode Analog RGC Mode SW Level								
		V _{YSS}	-	T ₂₂	0.6	0.8	1.0	V
Half Tone Mode SW Le		V _{YM1}	$\left - \right $	T ₂₃	0.6	0.8	1.0	
Half Tone→Analog RGE Mode SW Level	}	V _{YM2}			2.2	2.4	2.6	V
		τ RYM1			_	25	100	
Half Tone Mode Transf	er	tPRYM1			_	30	100	
Characteristic		τFYM1	—		_	10	100	ns
		tPFYM1		т	_	25	100	
		auRYM2		T ₂₄	_	25	100	
Half Tone→Analog RGB	3	tPR _{YM2}			_	30	100	ns
Mode Transfer Characte	Mode Transfer Characteristic				_	10	100	113
		tPFYM2	1		_	25	100	
RGB Output Voltage Ax Difference		∆V _{bct}	_	T ₂₅	_	0	40	mV
RGB Output Amplitude Difference	Axes	∆Va	_	T ₂₆	_	0	10	mV

1H DL stage (Unless otherwise specified, $V_{CC} = 9V$ (3, 17, 28 & 52pin)/5V (36 & 46pin), $T_a = 25^{\circ}C$)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
1H DL Dynamic Range	DR _{BDR}		Pin 37~Pin 20	0.8	1.2	_	<
(Direct)	DR _{RDR}]	Pin 38~Pin 18	0.8	1.2	_	V
1H DL Dynamic Range	DR _{BDL}		Pin 37~Pin 20	0.8	1.2	_	<
(Delay)	DR _{RDL}	I —	Pin 38~Pin 18	0.8	1.2	_	V
1H DL Dynamic Range	DR _{BDRDL}		Pin 37~Pin 20	0.9	1.2	_	V
(Direct + Delay)		1 -	Pin 38~Pin 18	0.9	1.2	_	V
Frequency Response (Direct)	FR _{BDR}		At 700kHz	- 3.0	- 2.0	0.5	dB
	FR _{RDR}	1 -	At 700kHz	- 3.0	- 2.0	0.5	
Frequency Response (Delay)	FR _{BDL}		At 700kHz	-8.2	- 6.5	- 4.3	dB
l	FR _{RDL}	I —	At 700kHz	- 8.2	- 6.5	- 4.3	ив
AC Gain (Direct)	G _{BDR}		Pin 37~Pin 20	- 2.0	- 0.5	2.0	dB
AC Gain (Direct)	G _{RDR}] _	Pin 38~Pin 18	- 2.0	- 0.5	2.0	uв
AC Gain (Delay)	G _{BDL}		Pin 37~Pin 20	- 2.4	- 0.5	1.1	dB
AC Gain (Delay)	G _{RDL}	1 -	Pin 38~Pin 18	- 2.4	- 0.5	1.1	uв
Direct-Delay AC Gain	△G _{BDR} /DL		G _{BDR} -G _{BDL}	- 1.0	0.0	1.0	dB
Difference	∆G _{RDR} /DL]	G _{RDR} -G _{RDL}	- 1.0	0.0	1.0	uв
14 Dalay Time	T _{BDL}		Pin 37~Pin 20	63.7	64.0	64.4	_
1H Delay Time	T _{RDL}	1 -	Pin 38~Pin 18	63.7	64.0	64.4	μ s

DEF stage (Unless otherwise specified, $V_{CC} = 9V$ (3, 17, 28 & 52pin)/5V (36 & 46pin), $Ta = 25^{\circ}C$)

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
AFC Inactive Period	50Hz 60Hz	T ₅₀ AFCOFF	_	D ₁	_	309-8 262-10		Н
H-OUT Start Voltage	100	VHON	_	D ₂	5.5			V
H-OUT Pulse Duty		W _{HOUT}	_	D ₃	38.5	40.5	42.5	%
H-OUT Freq. on AFC St Mode	ор	FHAFCOFF	_	D ₄	15.585	15.734	15.885	kHz
Horizontal Free-Run Frequency	50Hz 60Hz	FH50FR FH60FR	_	D ₅		15.625 15.734		kHz
Horizontal Freq. Variable Range	MAX.	FHMAX FHMIN	_	D ₆	16.500	16.700 15.000	16.900	kHz
Horizontal Freq. Contro Sensitivity		β HAFC	_	D ₇	2.0			Hz/mV
Horizontal Pull-In Rang	e	F _{HPH} F _{HPL}	_	D ₈	500 500	_		Hz
H-OUT Voltage		V _{HOUTH} V _{HOUTL}	_	Dg	4.0 —	4.4 0.15	4.8 0.30	V
Horizontal Freq. Depen on V _C C	dence	△FHVCC	_	D ₁₀	- 20	0	20	Hz/V
FBP Phase H-Sync. Phase		PH _{FBP}	_	D ₁₁	2.3 0.2	2.5 0.3	2.7 0.4	μs
Horizontal Position Var Range	iable	△PHHPOS	_	D ₁₂	5.5	6.0	6.5	μs
AFC-2 Pulse Threshold	Level	V _{AFC2}		D ₁₃	3.3	3.5	3.7	.,
H-BLK Pulse Threshold	Level	VHBLK	-	D ₁₄	0.8	1.1	1.4	V
Black Peak Det. Stop Po (H)	eriod	PH _{BPDET} W _{BPDET}	_	D ₁₅	7.5 13.0	8.0 13.5	8.5 14.0	μs
Clamp Pulse Start Phase Clamp Pulse Width	9	PH _{CP} W _{CP}	_	D ₁₆	2.8 5.6	3.0 5.8	3.2 6.0	μs
Gate Pulse Start Phase Gate Pulse Width		PH _{GP} W _{GP}	_	D ₁₇	2.7 1.8	2.9 2.0	3.1 2.2	μς
Sync. Output Low Leve		V _{SYNCL}	—	D ₁₈	0.0	0.3	0.5	V
Vertical Oscillation Star Voltage	t	V _{VON}		D ₁₉	4.7	5.0	5.3	٧
Vertical Free-Run Frequency	Auto 60Hz	FVAUFR FV60FR	_	D ₂₀	40 48	45 53	50 58	Hz
Gate Pulse V-Masking Period	50Hz 60Hz	T _{50GPM}	_	D ₂₁	_	308-9 261-10	_	Н
V.Ramp DC on Service		VNOVRAMP		D ₂₂	3.0	3.2	3.4	V
Vertical Pull-In Range (FVPAUL FVPAUH			_	224.5 353	_	u
Vertical Pull-In Range (60Hz)	FVP60L FVP60H	_	D ₂₃	_	224.5 297		Н

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Vertical Period on Fixed	k	TV313		D ₂₄	_	313	_	Н
Mode		TV263			_	263	_	
V-BLK Start Phase	50Hz	PH ₅₀ VBLK			44	46	48	
V-BLK Start Phase	60Hz	PH60VBLK		D	44	46	48	μ s
V-BLK Width	50Hz	W ₅₀ VBLK	_	D ₂₅	_	23	_	
V-BLK WIGHT	60Hz	W ₆₀ VBLK			_	21	_	Н
Picture Mute Period	50Hz	W _{50PM}		<u> </u>	_	304-29	_	Н
Picture Mute Period	60Hz	W _{60PM}		D ₂₆	_	257-28	_	П П
	•	VSCPH			7.70	8.00	8.30	
Sand Castle Pulse Level		VSCPM	1 —	D ₂₇	4.00	4.30	4.60	V
		VSCPL			2.25	2.55	2.85	
Vertical Ramp Amplitud	de	VVRAMP	_	D ₂₈	1.50	1.67	1.83	V _{p-p}
Vertical AMP Gain		GVAMP			22	25	28	dB
Vertical AMP Max. Out	put					23	20	ив
Level		VVOMAX] —	D ₂₉	2.5	3.0	3.5	V
Vertical AMP Min. Output		V _{VOMIN}				0.0	0.3	v
Level		- VOIVIIIV				0.0	0.5	V
Vertical AMP Min. Output Current		IVOMAX	_	D ₃₀	11	14	17	mA
Vertical NFB Amplitude		V _{NFB}			1.50	1.67	1.83	V _{p-p}
Vertical Amplitude Vari	able	△VVRAMPH] —	D ₃₁	36	40	44	
Range		△VVRAMPL			- 44	- 40	- 36	%
		∆V _{LIN1+}			- 17	- 14	- 11	
Vertical Linearity Variab	ole	∆V _{LIN1} –			13	16	19	- %
Range		∆V _{LIN2 +}	1 —	D ₃₂	14.5	17.5	20.5	
		∆V _{LIN2} –			- 23	- 20	– 17	
		ΔV _{S1+}			- 14	- 12	- 10	
Vertical S Correction Va	ariable	ΔV _{S1} –		_	10	12	14	%
Range		∆V _{S2 +}	_	D ₃₃	- 18	- 15	- 12	
3		ΔV _{S2} _			12	15	18	
V ACC Cumant		IVAGCH			440	550	660	μΑ
V-AGC Current		IVAGCL	1 —	D ₃₄	100	120	140	μΑ
Vertical Guard Voltage		V _{VG}	 _	D ₃₅	1.80	2.00	2.20	΄ν
BGP Phase		∆BGP	<u> </u>	D ₃₆	1.45	1.50	1.55	μs

TOSHIBA TB1238BN

TEST CONDITION PIF stage (Unless otherwise specified, $V_{CC} = 9V$ (3, 17, 28 & 52pin) / 5V (36 & 46pin), $Ta = 25^{\circ}C$)

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
P1	PIF Det. Output Level /VDET875 /VDETLS /VDET110	RF AGC: except 0 PIF VCO: adjust V _i Pol: 0/1 Others: Preset	 (1) Input a 38.9MHz, 90dBμV, 87.5% modulated while signal into Pin 6. (2) Adjust PIF VCO so that the AFT voltage is 2.5V. (3) Measure the amplitude of PIF det. output at Pin 47 (V_i Pol : 0), that is "V_{DET875}". (4) Input a 38.9MHz, 90dBμV, 87.5% modulated L-SECAM white signal into Pin 6. (5) Measure the amplitude of PIF det. output at Pin 47 (V_i Pol : 1), that is "V_{DETLS}". (6) Input a 38.9MHz, 90dBμV, 110% modulated white signal into Pin 6. (7) Measure the amplitude of PIF det. output at Pin 47 (V_i Pol : 0), that is "V_{DET110}".
P2	PIF Input Sensitivity / EPIFINMIN / EPIFINMAX	RF AGC : except 0 PIF VCO : adjust	 (1) Input a 38.9MHz, 90dB μV, 87.5% modulated white signal into Pin 6. (2) Adjust PIF VCO so that the AFT voltage is 2.5V. (3) Decreasing the IF input level, measure the input level at which PIF det. output amplitude turns to be -3dB against VDET875 that is "EPIFINMIN".
	IF AGC Range /∆E _{IF} AGC	Others : Preset	 (4) Increasing the IF input level, measure the input level at which PIF det. output amplitude turns to be -0.5dB against VDET875 that is "EPIFINMAX". (5) Calculate; "ΔΕΙFAGC" = ΕΡΙΓΙΝΜΑΧ - ΕΡΙΓΙΝΜΙΝ
P3	PIF Det. Sync. Tip Level /VSYNC	RF AGC : except 0 PIF VCO : adjust	 (1) Input a 38.9MHz, 90dB μV, non-modulation signal into Pin 6. (2) Adjust PIF VCO so that the AFT voltage is 2.5V.
, r ₃	L-SECAM White Peak Level / V _{LSW}	V _i Pol : 0/1 Others : Preset	 (3) Measure the DC level at Pin 47 (V_i Pol : 0), that is "V_{SYNC}". (4) Measure the DC level at Pin 47 (V_i Pol : 1), that is "V_{LSW}".

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
P4	Output Level for No Input /VNOIF /VNOIFLS	RF AGC : except 0 V _i Pol : 0/1 Others : Preset	 (1) Connect Pin 6/7 to GND. (2) Supply 3.0V to Pin 9. (3) Measure the DC level at Pin 47 (V_i Pol: 0), that is "V_{NOIF}". (4) Measure the DC level at Pin 47 (V_i Pol: 1), that is "V_{NOIFLS}".
P5	Differential Gain /DG Differential Phase /DP	RF AGC : except 0 PIF VCO : adjust Others : Preset	 (1) Input a 38.9MHz, 90dBμV, 87.5% modulated video signal into Pin 6. (2) Adjust PIF VCO so that the AFT voltage is 2.5V. (3) Measure "DG" & "DP" for Pin 47 output.
P6	PIF Output Freq. Response /FRDET	RF AGC : except 0 PIF VCO : adjust Others : Preset	 (1) Input a 38.9MHz, 90dBμV, 87.5% modulated sweep video signal into Pin 6. (2) Adjust PIF VCO so that the AFT voltage is 2.5V. (3) Measure the Pin 9 DC level and fix it on that value. (4) For PIF det. output signal, measure the frequency at which the amplitude (Without sync) turns to be -3dB against the one for 10kHz, that is "FRDET"
P7	S/N /S/NPIF	RF AGC : except 0 PIF VCO : adjust Others : Preset	 (1) Input a 38.9MHz, 90dBµV, non-modulation signal into Pin 6. (2) Adjust PIF VCO so that the AFT voltage is 2.5V. (3) Measure the amplitude of PIF det. output, that is V_N. (4) Calculate; "S/NPIF" = 20*ℓog (VDET875/V_N)
P8	Intermodulation / 1107	RF AGC : except 0 PIF VCO : adjust Others : Preset	 (1) Input a signal composed of following 3 signals into Pin 6; 38.9MHz/90dBμV, 34.47MHz/84dBμV 33.4MHz/84dBμV (2) Adjust PIF VCO so that the AFT voltage is 2.5V. (3) Adjust Pin 9 voltage so that the bottom of PIF det. output is equal to V_{SYNC}. (4) Measure the 1.07MHz level against the 4.43MHz level (=0dB), that is "I₁₀₇"

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
Р9	IF AGC Voltage / VIFAGCMAX / VIFAGCMIN	RF AGC : except 0 PIF VCO : adjust Others : Preset	 (1) Connect Pin 6/7 to GND. (2) Measure the Pin 9 voltage, that is "VIFAGCMAX". (3) Input a 38.9MHz, 107dBμV, non-modulation signal into Pin 6. (4) Adjust PIF VCO so that the AFT voltage is 2.5V. (5) Measure the Pin 9 voltage, that is "VIFAGCMIN".
P10	RF AGC Voltage /VRFAGCMIN /VRFAGCMAX	RF AGC : adjust PIF VCO : adjust Others : Preset	 (1) Input a 38.9MHz, 90dB μV, non-modulation signal into Pin 6. (2) Adjust PIF VCO so that the AFT voltage is 2.5V. (3) Adjust RF AGC so that the Pin 9 voltage is 4.5V. (4) Increase the IF input level to 107dB μV. (5) Measure the Pin 8 voltage, that is "VRFAGCMIN" (6) Connect Pin 6/7 to GND. (7) Measure the Pin 8 voltage, that is "VRFAGCMAX"
P11	RF AGC Control Range /∆ERFAGC	RF AGC: 1/63 PIF VCO: adjust Others: Preset	 (1) Input a 38.9MHz, 90dB μV, non-modulation signal into Pin 6. (2) Adjust PIF VCO so that the AFT voltage is 2.5V. (3) Set RF AGC to 1. (4) Decreasing the IF input level, measure the input level at which the Pin 8 voltage is 4.5V, that is ERFAGCMIN. (5) Set RF AGC to 63. (6) Increasing the IF input level, measure the input level at which the Pin 8 voltage is 4.5V, that is ERFAGCMAX. (7) Calculate; ΔERFAGC" = ERFAGCMAX - ERFAGCMIN
P12	AFT Center Voltage /VAFTCEN	RF AGC : except 0 Others : Preset	 (1) Connect Pin 6 / 7 to GND. (2) Supply 3V to Pin 9. (3) Measure the Pin 4 voltage, that is "VAFTCEN".

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
P13	AFT Voltage /VAFTMAX /VAFTMIN	RF AGC: except 0 PIF VCO: adjust Others: Preset	 (1) Input a 38.9MHz, 90dBμV, 87.5% modulated video signal into Pin 6. (2) Adjust PIF VCO so that the AFT voltage is 2.5V. (3) Input a 37.9MHz, 90dBμV, 87.5% modulated video signal into Pin 6. (4) Measure the Pin 4 voltage, that is "VAFTMAX" (5) Input a 39.9MHz, 90dBμV, 87.5% modulated video signal into Pin 6. (6) Measure the Pin 4 voltage, that is "VAFTMIN"
P14	AFT Sensitivity / μΑFT	RF AGC : except 0 PIF VCO : adjust Others : Preset	 (1) Input a 38.9MHz, 90dB μV, non-modulation signal into Pin 6. (2) Adjust PIF VCO so that the AFT voltage is 2.5V. (3) When changing the input frequency to ±20kHz, measure the change of Pin 4 voltage, that is ΔV_{AFT}. (4) Calculate; "μ_{AFT}" = 40 / ΔV_{AFT}
P15	PIF VCO Control Sensitivity β IFVCO	RF AGC: except 0 PIF VCO: adjust Others: Preset	 (1) Input a 38.9MHz, 90dB μV, non-modulation signal into Pin 6. (2) Adjust PIF VCO so that the AFT voltage is 2.5V. (3) Measure the Pin 48 voltage, that is VLOOP389. (4) Input a 38.7MHz, 90dB μV, non-modulation signal into Pin 6. (5) Measure the Pin 48 voltage, that is VLOOP387. (6) Calculate; "βIFVCO" = 0.2 / (VLOOP387 - VLOOP389)
P16	PIF VCO Pull-In Range / FPIFINH / FPIFINL	RF AGC: except 0 PIF VCO: adjust Others: Preset	 (1) Input a 45MHz, 90dBμV, 87.5% modulated video signal into Pin 6. (2) Adjust PIF VCO so that the AFT voltage is 2.5V. (3) Dcreasing the input frequency, measure the frequency at which detected video signal appears on Pin 47, that is "FPIFINH" (4) Input a 30MHz, 90dBμV, 87.5% modulated video signal into Pin 6. (5) Increasing the input frequency, measure the frequency at which detected video signal appears on Pin 47, that is "FPIFINL"

SIF & audio stage (Unless otherwise specified, $V_{CC} = 9V$ (3, 17, 28 & 52pin) / 5V (36 & 46pin), $Ta = 25^{\circ}C$)

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
S 1	FM Det. Output Level /VAUAC5P /VAUAC4P /VAUAC4N	Audio ATT: 127 Au Gain: 0/1 AF-G: 0/1 Others: Preset	 Input a 5.5MHz, 90dBμV FM signal (Modulate 400Hz with 50kHz deviation) into Pin 53. Measure the output amplitude at Pin 2, that is "VAUAC5P". (Au Gain: 0, AF-G: 0) Input a 4.5MHz, 90dBμV FM signal (Modulate 400Hz with 50kHz deviation) into Pin 53. Measure the output amplitude at Pin 2, that is "VAUAC4P". (Au Gain: 0, AF-G: 0) Input a 4.5MHz, 90dBμV FM signal (Modulate 400Hz with 25kHz deviation) into Pin 53. Measure the output amplitude at Pin 2, that is "VAUAC4N". (Au Gain: 1, AF-G: 1)
S 2	Audio Distortion /DAUDIO	Audio ATT : 127 Others : Preset	 (1) Input a 5.5MHz, 90dB μV FM signal (Modulate 400Hz with 50kHz deviation) into Pin 53. (2) Measure the distortion of Pin 2 output, that is "DAUDIOP". (3) Input a 4.5MHz, 90dB μV FM signal (Modulate 400Hz with 25kHz deviation) into Pin 53. (4) Measure the distortion of Pin 2 output, that is "DAUDION".
S 3	Audio S/N /S/N _{SIF}	Audio ATT: 127 Others: Preset	 (1) Input a 5.5MHz, 90dBμV non-modulation signal into Pin 53. (2) Measure the output amplitude at Pin 2, that is VNOAUACP. (3) Calculate; "S/NSIFP" = 20*ℓog (VAUAC5P/VNOAUACP) (4) Input a 4.5MHz, 90dBμV non-modulation signal into Pin 53. (5) Measure the output amplitude at Pin 2, that is VNOAUACN. (6) Calculate; "S/NSIFN" = 20*ℓog (VAUAC5P/VNOAUACN)

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
S4	AMR / AMR	Audio ATT: 127 Others: Preset	 (1) Input a 5.5MHz, 90dBµV AM signal (Modulate 400Hz with 30%) into Pin 53. (2) Measure the output amplitude at Pin 2, that is VAMAU. (3) Calculate; "AMR" = 20*ℓog (VAUAC5P/VAMAU)
\$5	Limiting Sensitivity /ELIM	Audio ATT : 127 Others : Preset	 (1) Input a 5.5MHz, 90dBμV FM signal (Modulate 400Hz with 50kHz deviation) into Pin 53. (2) Decreasing the input level, measure the input level at which Pin 2 output amplitude turns to be -3dB against V_{AUAC5P}, that is "E_{LIM}".
\$6	Band Width (5.5MHz/PAL) /FAUH5P /FAUL5P	Audio ATT: 127 Others: Preset	 (1) Input a 5.5MHz, 90dBμV FM signal (Modulate 400Hz with 50kHz deviation) into Pin 53. (2) Increasing the input frequency, measure the frequency at which Pin 2 output turns to be – 3dB against V_{AUAC5P}, that is "F_{AUH5P}". (2) Decreasing the input frequency, measure the frequency at which Pin 2 output turns to be – 3dB against V_{AUAC5P}, that is "F_{AUL5P}".
\$7	Band Width (4.5MHz/NTSC) /FAUH4N /FAUL4N	Audio ATT: 127 Au Gain: 1 AF-G: 1 Others: Preset	 (1) Input a 4.5MHz, 90dBμV FM signal (Modulate 400Hz with 25kHz deviation) into Pin 53. (2) Increasing the input frequency, measure the frequency at which Pin 2 output turns to be – 3dB against V_{AUAC4N}, that is "F_{AUH4N}". (3) Decreasing the input frequency, measure the frequency at which Pin 2 output turns to be – 3dB against V_{AUAC4N}, that is "F_{AUL4N}".

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
\$8	Attenuator Gain / GATTMAX / GATTCEN / GATTMIN	Audio ATT: 0/64/127 Au SW: 1 Others: Preset	 (1) Input a 1MHz, 500mV_{rms} signal into Pin 55. (2) Set Audio ATT to 0/64/127 and measure the Pin 2 output amplitude for each bus data, that is V_{ATTMAX}/V_{ATTCEN}/V_{ATTMIN}. (3) Calculate; "G_{ATTMAX}" = 20*ℓog (V_{ATTMAX}/500) "G_{ATTCEN}" = 20*ℓog (V_{ATTCEN}/500) "G_{ATTMIN}" = 20*ℓog (V_{ATTMIN}/500)
\$9	Offset between TV / Ext. / VAUOFFSET	Audio ATT: 127 Au SW: 0/1 Others: Preset	 (1) Input a 5.5MHz, 90dB μV non-modulation signal into Pin 53. (2) Connect Pin 55 to GND via a 4.7 μF capacitor. (3) Switching Au SW to 0/1 and measure the change of Pin 2 DC level, that is "VAUOFFSET".
\$10	DC Change by Volume / \(\DV \) VOLDC	Audio ATT: 0/127 Au SW: 1 Others: Preset	 (1) Connect Pin 55 to GND via a 4.7μF capacitor. (2) Switching Audio ATT to 0/127 and measure the change of Pin 2 DC level, that is "ΔVVOLDC".

Video stage (Unless otherwise specified, $V_{CC} = 9V$ (3, 17, 28 & 52pin) / 5V (36 & 46pin), $Ta = 25^{\circ}C$)

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
V1	TV Input Dynamic Range / DR _{TV} External Input Dynamic Range / DR _{EXT}	Video SW : 00/01 Others : Preset	 (1) Input a white signal with sync into Pin 41 & 43. (2) Increasing the input amplitude, measure the amplitude (Include sync) at which the Pin 35 output is clipped, that is "DR_{TV}" (Video SW: 00) / "DR_{EXT}" (Video SW: 01)
V2	TV Mode Gain /GTV	Video SW : 00/01	 (1) Input a 1V_{p-p}, white signal with sync into Pin 41 & 43. (2) Set Video SW to 00 and measure the gain
,	Ext. Mode Gain / G _{EXT}	Others : Preset	between Pin 43 and Pin 35, that is "G _{TV} " (3) Set Video SW to 01 and measure the gain between Pin 41 and Pin 35, that is "G _{EXT} "
V3	AV SW Cross-Talk /CTSWTE /CTSWET	Video SW: 00/01 Others: Preset	 (1) Input a PAL red signal with sync into Pin 43 and connect Pin 41 to GND via a 1μF capacitor. (2) Set Video SW 01, measure the amplitude of 4.43MHz signal at Pin 35 and calculate the cross-talk, that is "CT_{SWTE}". (3) Input a red signal into Pin 41 and connect Pin 43 to GND via a 1μF capacitor. (4) Set Video SW 00, measure the amplitude of 4.43MHz signal at Pin 35 and calculate the cross-talk, that is "CT_{SWET}".
V4	Y Input Dynamic Range / DRγ	Uni-Color: 32 Brightness: 0 Color: 0 Others: Preset	 (1) Input a white signal with sync into Pin 43 & 39. (2) Increasing the Pin 39 input amplitude, measure the amplitude (include sync) at which the Pin 18 output is clipped, that is "DRy".
V5	Y Input Pedestal Clamp Voltage /VYCLP	All : Preset	 (1) Input a composite sync signal into Pin 43. (2) Connect Pin 39 to GND via a 1μF capacitor. (3) Measure the DC Voltage at Pin 39, that is "VYCLP".
V6	Y Delay Time /tyDEL	Uni-Color: 63 Color: 0 Others: Preset	(1) Input a 2T pulse with sync into Pin 43 & 39.(2) Observe the Pin 18 output, measure the delay time between Pin 39 and Pin 18, that is "tyDEL".

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
V7	Brightness Characteristics / VBRTMAX / VBRTCEN / VBRTMIN Brightness Data Sensitivity / Δ VBRT	Brightness: 0/64/127 Color: 0 Others: Preset	 (1) Input a 0IRE black signal with sync into Pin 43 & 39. (2) Measure the DC level of picture period at Pin 18 for Brightness: 127/64/0, that is "VBRTMAX"/"VBRTCEN"/"VBRTMIN". (3) Calculate; "△VBRT" = (VBRTMAX - VBRTMIN)/127
V8	Uni-Color Characteristics for Y / GUCYMAX / GUCYCEN / GUCYMIN	Uni-Color: 0/32/63 Color: 0 Others: Preset	 (1) Input a 50IRE (0.357V) white signal with sync into Pin 43 & 39. (2) Measure the output picture amplitude at Pin 18 for Uni-Color 63/32/0, that is VUCYMAX/VUCYCEN\VUCYMIN. (3) Calculate; "GUCYMAX" = 20*ℓog (VUCYMAX/0.357) "GUCYCEN" = 20*ℓog (VUCYCEN/0.357) "GUCYMIN" = 20*ℓog (VUCYMIN/0.357)
V9	Sub-Contrast Characteristics / GSCONMAX / GSCONMIN	Sub-Contrast: 0/8/15 Uni-Color: 63 Color: 0 Others: Preset	 (1) Input a 50IRE white signal with sync into Pin 43 & 39. (2) Measure the output picture amplitude at Pin 18 for Sub-Contrast 15/8/0, that is VSCONMAX/VSCONCEN/VSCONMIN- (3) Calculate; "GSCONMAX" = 20*ℓog (VSCONMAX/VSCONCEN) "GSCONMIN" = 20*ℓog (VSCONMIN/VSCONCEN)
V10	Sharpness Peaking Frequency /FSHP	Sharpness: 63 Uni-Color: 63 Color: 0 Others: Preset	 (1) Input a 0.5V_{p-p} sweep signal with sync into Pin 43 & 39. (2) Measure the frequency at which the Pin 18 output amplitude is Max., that is "F_{SHP}".
V11	Sharpness Control Characteristics / GSHMAX / GSHCEN / GSHMIN	Sharpness: 0/32/63 Uni-Color: 63 Color: 0 Others: Preset	 (1) Input a 0.5V_{p-p} sweep signal with sync into Pin 43 & 39. (2) Measure the output picture amplitude for 100kHz at Pin 18, that is VSH100k. (3) Measure the output picture amplitude for FSHP when Sharpness is max., center and min., that is VSHMAX, VSHCEN and VSHMIN. (4) Calculate; "GSHMAX" = 20*ℓog (VSHMAX/VSH100k) "GSHCEN" = 20*ℓog (VSHCEN/VSH100k) "GSHMIN"20*ℓog (VSHMIN/VSH100k)

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
V12	Y Frequency Response /FR _Y	Uni-Color: 63 Sharpness: Adjust Color: 0 Others: Preset	 (1) Input a 0.5V_{p-p} sweep signal with sync into Pin 43 & 39. (2) Adjust Sharpness so that the output amplitude for F_{SHP} equals V_{SH100k}. (3) Measure the frequency at which the output amplitude is 3dB down against V_{SH100k}, which is "FR_Y".
V13	Black Expansion Start Point /VBLEX	Uni-Color : 63 - Color : 0 Others : Preset	 (1) Input a 100IRE ramp signal with sync into Pin 43 & 39. (2) Supply 2.4V/2.0V to Pin 44 and observe the Pin 18 output. (3) Measure "V_{BLEX}" and "G_{BLEX}".
VIS	Black Expansion AMP Gain / GBLEX		Pin 44 : 2.4V Pin 44 : 2.0V GBLEX : Ratio of slope below VBLEX VBLEX
V14	Black Peak Detection Level / \(\Delta \text{VBLPD} \)	Others : Preset	 (1) Input a composite sync signal into Pin 43. (2) Increasing the Pin 39 DC level, measure the level at which the Pin 44 voltage drops down, that is V_{BLPD}. (3) Calculate; "ΔV_{BLPD}" = V_{BLPD} – V39
V15	WPS Level / V _{WPS}	Uni-Color: 63 Brightness: 127 Color: 0 Others: Preset	(1) Input a 100IRE ramp signal with sync into Pin 43 & 39.(2) Measure the amplitude from cut-off level to peak (At which output signal is clipped), that is "VWPS".
V16	Chroma Trap Gain /GTRAP 358, GTRAP 443	C-Trap : 0/1 Uni-Color : 63 Color : 0 Others : Preset	 (1) Input a 0.5V_{p-p}, 3.58MHz signal with sync into Pin 43 & 39. (2) Measure the 3.58MHz amplitude at Pin 18 for Chroma Trap : 1/0, that is V_{TRAPON}/V_{TRAPOFF}. (3) Calculate ; "G_{TRAP358}" = 20*ℓog (V_{TRAPON}/V_{TRAPOFF}) (4) Input a 0.5V_{p-p}, 4.43MHz signal with sync into Pin 43 & 39. (5) Measure the 4.43MHz amplitude at Pin 18 for Chroma Trap : 1/0, that is V_{TRAPON}/V_{TRAPOFF}. (6) Calculate ; "G_{TRAP443}" = 20*ℓog (V_{TRAPON}/V_{TRAPOFF})

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
V17	Half Tone Characteristics for Y / G _{HTY}	Half Tone · 0/1	 (1) Input a 100IRE white signal with sync into Pin 43 & 39. (2) Measure the output picture amplitude at Pin 18 for Half Tone: 1/0, that is VHTYON/VHTYOFF. (3) Calculate; "GHTY" = 20*ℓog (VHTYON/VHTYOFF)

TOSHIBA

Chrome stage (Unless otherwise specified, $V_{CC} = 9V$ (3, 17, 28 & 52pin) / 5V (36 & 46pin), $Ta = 25^{\circ}C$)

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
C1	ACC Characteristics /VACCH /VACCL	Mute : 01 Uni-Color : 63 Others : Preset	 (1) Input a 4.43MHz PAL rainbow color-bar (300mV_{p-p}, burst : chroma = 1 : 1) with sync into Pin 43. (2) Changing the amplitude of burst and chroma, measure the input amplitude at which Pin 20 output amplitude is + 1dB / - 1dB against the one for 300mVp-p input, that is "VACCH" / "VACCL".
C2	TOF Characteristics (4.43MHz) /F0T443 /QT443 BPF Characteristics (4.43MHz) /F0B443 /QB443 TOF Characteristics (3.58MHz) /F0T358 /QT358 BPF Characteristics (3.58MHz) /F0B358 /QB358	TEST : 01000111 C-BPF : 0/1 Color : 010/101 System Others : Preset	 (1) Set C-BPF to 1 and Color System to 010. (2) Input a sweep signal into Pin 43. (3) Observe the frequency response at Pin 18 and measure the Peaking Frequency/Q of chroma filter, that is "F₀T₄43"/"Q_T443". (4) Set C-BPF to 0 and Color System to 010 and repeat (2) & (3), that is "F₀B₄43"/"Q_B443". (5) Set C-BPF to 1 and Color System to 101 and repeat (2) & (3), that is "F₀T₃58"/"Q_T358". (6) Set C-BPF to 0 and Color System to 101 and repeat (2) & (3), that is "F₀B₃58"/"Q_B358".
C3	C Delay Time /tCDEL Delay Time Difference between Y/C /Δty/C	Mute : 01 Uni-Color : 63 Others : Preset	 (1) Input a 4.43MHz, PAL rainbow color-bar (300mV_{p-p}, burst : chroma = 1 : 1) with sync into Pin 43. (2) Observe the Pin 18 output, measure the delay time between Pin 43 and Pin 18, that is "t_{CDEL}". (3) Calculate; "∆t_Y/C" = t_{YDEL} - t_{CDEL}
C4	Color Characteristics / GCOLMAX / GCOLMIN	Color : 0/64/127 Mute : 01 Uni-Color : 63 Others : Preset	 (1) Input a 4.43MHz PAL rainbow color-bar (300mV_{p-p}, burst : chroma = 1 : 1) with sync into Pin 43. (2) Measure the Pin 18 amplitude for Color 127 /64/0, that is V_{COLMAX}/V_{COLCEN}/V_{COLMIN}. (3) Calculate ; "GCOLMAX" = 20*ℓog (V_{COLMAX}/V_{COLCEN}) "GCOLMIN" = 20*ℓog (V_{COLMIN}/V_{COLCEN})

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
C5	Uni-Color Characteristics for C / GUCC	Uni-Color: 0/63 Mute: 01 Others: Preset	 (1) Input a 4.43MHz, PAL rainbow color-bar (300mV_{p-p}, burst: chroma = 1: 1) with sync into Pin 43. (2) Measure the Pin 18 amplitude for Uni-Color 63/0, that is VUCCMAX and VUCCMIN. (3) Calculate; "GUCC" = 20*ℓog (VUCCMIN/VUCCMAX)
66	Tint Characteristics (3.58MHz) $/\Delta$ θ 358MAX $/\Delta$ θ 358MIN	Tint : 0/64/127 Mute : 01 Uni-Color : 63 Others : Preset	 (1) Input a 3.58MHz NTSC rainbow color-bar (286mV_{p-p}, burst : chroma = 1 : 1) with sync into Pin 43. (2) Set Tint to 64 and adjust the burst phase so that the 6th bar of Pin 20 output is maximum, that is θ358CEN. (3) Change Tint to 127/0 and adjust the burst phase so that the 6th bar of Pin 20 output is maximum, that is θ358MAX/θ358MIN.
C6	Tint Characteristics (4.43MHz) $/\Delta$ θ 443MAX $/\Delta$ θ 443MIN		(4) Calculate ; $"\Delta \ \theta \ 358 \text{MAX}" = -(\theta \ 358 \text{MAX} - \theta \ 358 \text{CEN})$ $"\Delta \ \theta \ 358 \text{MIN}" = -(\theta \ 358 \text{MIN} - \theta \ 358 \text{CEN})$ (5) Input a 4.43 MHz NTSC rainbow color-bar (286 mV _{p-p} , burst : chroma = 1 : 1) with sync into Pin 43 and repeat (2) & (3), that is $\theta \ 443 \text{CEN} / \theta \ 443 \text{MAX} / \theta \ 443 \text{MIN}.$ (6) Calculate ; $"\Delta \ \theta \ 443 \text{MAX}" = -(\theta \ 443 \text{MAX} - \theta \ 443 \text{CEN})$ $"\Delta \ \theta \ 443 \text{MIN}" = -(\theta \ 443 \text{MIN} - \theta \ 443 \text{CEN})$
67	Relative Amplitude (PAL) /VPR/B /VPG/B	Mute : 01 - Uni-Color : 63 Others : Preset	 (1) Input a 4.43MHz, PAL rainbow color-bar (300mV_{p-p}, burst : chroma = 1 : 1) with sync into Pin 43. (2) Measure the amplitude of Pin 18 / 19 / 20 output, that is "VPROUT" / "VPGOUT" / "VPBOUT" (3) Calculate ; "VPR / B" = VPROUT / VPBOUT
C7	Relative Amplitude (NTSC) /VNR/B /VNG/B		"VPG/B" = VPGOUT/VPBOUT (4) Input a 3.58MHz NTSC rainbow color-bar (286mV _{p-p} , burst : chroma = 1 : 1) with sync into Pin 43, then repeat (2), that is VNROUT/VNGOUT/VNBOUT- (5) Calculate; "VNR/B" = VNROUT/VNBOUT "VNG/B" = VNGOUT/VNBOUT

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
	Relative Phase (PAL) / θ PR-B / θ PG-B	Mute : 01	 (1) Input a 4.43MHz PAL rainbow color-bar (300mV_{p-p}, burst : chroma = 1 : 1) with sync into Pin 43. (2) Observe the Pin 18 / 19 / 20 output, measure the R / G / B modulation angle (θ_{PR} / θ_{PG} / θ_{PB}) accoeding following figure and equality.
C8	Relative Phase (NTSC) / θ NR-B / θ NG-B	Uni-Color: 63 Others: Preset	For θ_{PR} ; Peak: 3rd bar, $\theta_{0R} = 90$ For θ_{PG} ; Peak (Negative): 4th bar, $\theta_{0G} = 240$ For θ_{PB} ; Peak: 6th bar, $\theta_{0B} = 0$ (3) Calculate; " θ_{PR-B} " = $\theta_{PR} - \theta_{PB}$ " θ_{PG-B} " = $\theta_{PG} - \theta_{PB}$ (4) Input a 3.58MHz NTSC rainbow color-bar (286mV _{p-p} , burst: chroma = 1:1) with syncinto Pin 43, then repeat (2), that is θ_{NR} / θ_{NG} / θ_{NB} . (5) Calculate; " θ_{NR-B} " = $\theta_{NR} - \theta_{NB}$ " θ_{NG-B} " = θ_{NG} = θ_{NB}

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
	APC Pull-In Range (4.43MHz) /ΔF4APCP + /ΔF4APCP –		 (1) Input a 4.43MHz PAL rainbow color-bar (300mV_{p-p}, burst : chroma = 1 : 1) with sync into Pin 43. (2) Set Color System to 010 (443PAL). (3) For higher frequency than 4.43MHz, measure the burst frequency at which Pin 29 DC level changes from low to high/
60	APC Hold Range (4.43MHz) $/\Delta$ F4APCH + $/\Delta$ F4APCH –	Color System :	from high to low, that is F ₄ ΔPCP + / F4ΔPCH + · (4) For lower frequency than 4.43MHz, repeat (2), that is F ₄ ΔPCP - /F ₄ ΔPCH - · (5) Calculate; "ΔF ₄ ΔPCP + " = F ₄ ΔPCP + - 4433619 "ΔF ₄ ΔPCP - " = 4433619 - F ₄ ΔPCP - "
C9	APC Pull-In Range (3.58MHz) $/\Delta$ F3APCP + $/\Delta$ F3APCP –	O10 / 101 Others : Preset	 "ΔF4APCH + " = F4APCH + - 4433619 "ΔF4APCH - " = 4433619 - F4APCH - (6) Input a 3.58MHz NTSC rainbow color-bar (286mV_{p-p}, burst : chroma = 1 : 1) with sync into Pin 43. (7) Set Color System to 101 (358NTSC). (8) For higher frequency than 3.58MHz, repeat (2), that is F3APCP + /F3APCH + .
	APC Hold Range (3.58MHz) / Δ F3APCH + / Δ F3APCH –		(9) For lower frequency than 3.58MHz, repeat (2), that is F3APCP - /F3APCH - · (10) Calculate; "ΔF3APCP + " = F3APCP + - 3579545 "ΔF3APCP - " = 3579545 - F3APCP - "ΔF3APCH + " = F3APCH + - 3579545 "ΔF3APCH - " = 3579545 - F3APCH -

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
	APC Control Sensitivity (4.43MHz) $/\beta$ 443	Color System:	 (1) Connect Pin 43 to GND via a 1μF capacitor. (2) Set Color System to 010 (443PAL). (3) Adjust Pin 10 voltage so that the Pin 29 output frequency is 4.433619MHz, that is V4APCCEN. (4) Measure the Pin 29 output frequency when Pin 10 voltage is V4APCCEN + 100mV / V4APCCEN - 100mV, that is F4APC + / F4APC (5) Calculate;
C10	APC Control Sensitivity (3.58MHz) $/\beta$ 358	Others : Preset	 "β443" = (F4APC + -F4APC -)/200 (6) Set Color System to 101 (358NTSC). (7) Adjust Pin 10 voltage so that the Pin 29 output frequency is 3.579545MHz, that is V3APCCEN. (8) Measure the Pin 29 output frequency when Pin 10 voltage is V3APCCEN + 100mV/V3APCCEN - 100mV, that is F3APC + /F3APC (9) Calculate; "β358" = (F3APC + -F3APC -)/200
C11	PAL ID Sensitivity (Normal Mode) / VPALIDON / VPALIDOFF PAL ID Sensitivity (Low Mode) / VPALIDLON / VPALIDLOFF NTSC ID Sensitivity (Normal Mode) / VNTIDON / VNTIDOFF NTSC ID Sensitivity (Low Mode) / VNTIDOFF / VNTIDLON / VNTIDLON / VNTIDLON	ID SW : 0/1 Color System : 010/101 Mute : 01 Uni-Color : 63 Others : Preset	 (1) Set ID SW to 0. (2) Set Color System to 010 (443PAL). (3) Input a 4.43MHz PAL rainbow color-bar (300mV_{p-p}, burst: chroma = 1: 1) with sync into Pin 43. (4) Measure the burst amplitude at which Pin 29 DC level changes from low to high / from high to low, that is "VPALIDON" / "VPALIDOFF". (5) Set Color System to 101 (358NTSC). (6) Input a 3.58MHz NTSC rainbow color-bar (286mV_{p-p}, burst: chroma = 1: 1) with sync into Pin 43, and repeat (3), that is "VNTIDON" / "VNTIDOFF". (7) Set ID SW to 1, repeat (2) ~ (6), that is "VPALIDLON", "VPALIDLOFF".
C12	ID Output Level /VIDH /VIDL	All : Preset	 (1) Input a 4.43MHz PAL color-bar (300mV_{p-p}, burst: chroma = 1:1) with sync into Pin 43. (2) Measure the center DC level of Pin 29 output, that is "V_{IDH}". (3) Connect Pin 43 to GND via a 1μF capacitor and repeat (2), that is "V_{IDL}".

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
C13	SECAM ID Det. Current / ISECAM	All : Preset	 (1) Input a 4.43MHz NTSC color-bar with sync into Pin 43. (2) Connect Pin 37/38 to GND via a 0.1μF capacitor. (3) Pulling the current out of Pin 29, measure the current at which a demodulated output signal disappears at Pin 20, that is "ISECAM".
C14	SECAM ID Det. Current (Strong) / ISECAM-S	All : Preset	 (1) Input a PAL color-bar with sync into Pin 43. (2) Connect Pin 37 / 38 to GND via a 0.1μF capacitor. (3) Pulling the current out of Pin 29, measure the current at which a demodulated output signal disappears at Pin 20, that is "ISECAM-S".
C15	fsc Continuous Wave Output Level /V _{CW}	CW SW : 1 Others : Preset	Measure the amplitude of Pin 29 output, that is "V _{CW} ".
C16	Sub-Carrier Remain on RGB Output /VSCR /VSCG /VSCB	Mute : 01 Uni-Color : 63 Others : Preset	 (1) Input a 4.43MHz PAL rainbow color-bar (300mV_{p-p}, burst : chroma = 1 : 1) with sync into Pin 43. (2) Measure the amplitude of 4.43MHz signal at Pin 18/19/20, that is "V_{SCR}"/"V_{SCG}"/"V_{SCG}"/"
C17	Half Tone Characteristics for C / GHTC	Half Tone : 1 Mute : 01 Uni-Color : 63 Others : Preset	 (1) Input a 4.43MHz PAL rainbow color-bar (300mV_{p-p}, burst : chroma = 1 : 1) with sync into Pin 43. (2) Set Half Tone to 1 and measure the amplitude of Pin 20 output, that is V_{PBHTC}. (3) Calculate ; "G_{HTC}" = 20*ℓog (V_{PBHTC}/V_{PBOUT})
C18	Freerun Frequency /f03 /f04 /f0M /f0N	Color system : 101/010/ 011/100 Others : Preset	(1) Measure the output frequency at the Pin 29 for the mode of the color system: 3.58NTSC (101) / 4.43PAL (010) / M-PAL (011) / N-PAL (100), that is / f ₀₃ / f ₀₄ / f _{0M} / f _{0N} .

TOSHIBA TB1238BN

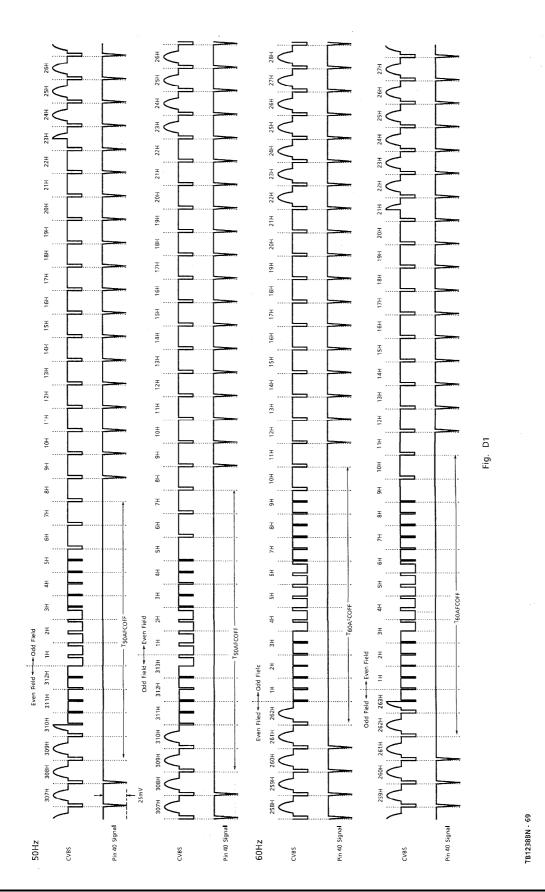
Text stage (Unless otherwise specified, $V_{CC} = 9V$ (3, 17, 28 & 52pin)/5V (36 & 46pin), $Ta = 25^{\circ}C$)

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
T1	V-BLK Pulse Output Level /VVBLK H-BLK Pulse Output Level /VHBLK	- All : Preset	 (1) Input a composite sync signal into Pin 43. (2) Measure the DC level of V/H blanking period at Pin 20, that is "VVBLK" / "VHBLK".
T2	RGB Output Black Level (0IRE DC) /VBLACK	Color : 0 Others : Preset	(1) Input a 0IRE Y signal with sync into Pin 43 & 39.(2) Measure the DC level of picture period at Pin 20, that is "VBLACK".
Т3	RGB Output White Level (100IRE AC) /VWHITE	Uni-Color: 63 Color: 0 Others: Preset	(1) Input a 100IRE Y signal with sync into Pin 43 & 39.(2) Measure the amplitude from 0 to 100IRE at Pin 20, that is "VWHITE".
Т4	Cut-Off Voltage Variable Range / \(\Delta \V \cur \) + / \(\Delta \V \cur \) -	B Cut Off: 0/255 Color: 0 Others: Preset	 (1) Input a OIRE Y signal with sync into Pin 43 & 39. (2) Measure the DC level of picture period at Pin 20 for B Cut-off: 255/0, that is VCUTMAX/VCUTMIN. (3) Calculate; "ΔVCUT + " = VCUTMAX - VBLACK "ΔVCUT - " = VCUTMIN - VBLACK
Т5	Drive Control Variable Range / G _{DR} + / G _{DR} –	B Drive : 0 / 127 Uni-Color : 63 Color : 0 Others : Preset	 (1) Input a 100IRE Y signal with sync into Pin 43 & 39. (2) Measure the amplitude from 0 to 100IRE at Pin20 for B drive 127/0, that is VDRMAX/VDRMIN. (3) Calculate; "GDR + " = 20*ℓog (VDRMAX/VWHITE) "GDR - " = 20*ℓog (VDRMIN/VWHITE)
Т6	ABCL Control Voltage Range /VABCLH /VABCLL ACL Gain /GACL	ABL Gain: 11 Uni-Color: 63 Color: 0 Others: Preset	 (1) Input a 100IRE Y signal with sync into Pin 43 & 39. (2) Decreasing the Pin 21 voltage, measure the voltage at which Pin 20 output begins / stops decreasing, that is VABCLH" / "VABCLL". (3) Measure the minimum amplitude of Pin 20 output, that is VACLMIN. (4) Calculate; "GACL" = 20*ℓog (VACLMIN / VWHITE)

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
T7	ABL Start Point /VABLP0 /VABLP1 /VABLP2 /VABLP3	ABL Start Point: 00/01/10/11 ABL Gain: 11 Uni-Color: 63 Color: 0 Others: Preset	 (1) Input a OIRE Y signal with sync into Pin 43 & 39. (2) For ABL Point 00/01/10/11, decreasing the Pin 21 voltage, measure the voltage the voltage at which Pin 20 output begins decreasing, that is VABL1/VABL2/VABL3/VABL4. (3) Calculate; "VABLP0" = VABL1 - VABCLH "VABLP1" = VABL2 - VABCLH "VABLP2" = VABL3 - VABCLH "VABLP3" = VABL4 - VABCLH
Т8	ABL Gain /VABLG0 /VABLG1 /VABLG2 /VABLG3	ABL Gain: 00/01/10/11 Uni-Color: 63 Color: 0 Others: Preset	 (1) Input a OIRE Y signal with sync into Pin 43 & 39. (2) For ABL Gain 00/01/10/11, measure the DC level of picture period at Pin 20 when Pin 21 voltage is VABCLL, that is VABL5/VABL6/VABL7/VABL8. (3) Calculate; "VABLG0" = VABL5 - VBLACK "VABLG1" = VABL6 - VBLACK "VABLG2" = VABL7 - VBLACK "VABLG3" = VABL8 - VBLACK
Т9	Analog RGB Dynamic Range / DR _{TX}	RGB Contrast : 32 Others : Preset	(1) Input a composite sync signal into Pin 43. (2) Supply 2V to Pin 13. (3) Input a signal of following figure into Pin 16. PIN 43 PIN 16 (4) Increasing the amplitude of Pin 16 input, measure the amplitude at which the Pin 20 amplitude stops increasing, that is "DRTX".

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
T10	Analog RGB Contrast Control Characteristic / GTXCMAX / GTXCEN / GTXCMIN	RGB Contrast : 32 Others : Preset	 (1) Input a composite sync signal into Pin 43. (2) Supply 2V to Pin 13. (3) Input a signal of NOTE: To figure into Pin 16. (4) For RGB Contrast 63/32/0, measure the amplitude of Pin 20 output, that is VTXCMAX/VTXCCEN/VTXCMIN. (5) Calculate; "GTXCMAX" = 20*ℓog (VTXCMAX/0.2) "GTXCCEN" = 20*ℓog (VTXCCEN/0.2) "GTXCMIN" = 20*ℓog (VTXCMIN/0.2)
T11	Analog RGB Brightness Control Characteristic / VTXBRMAX / VTXBRCEN / VTXBRMIN	Brightness: 0/64/127 Others: Preset	 (1) Supply 2V to Pin 13. (2) Connect Pin 16 to GND via a 0.1μF capacitor. (3) For Brightness 127/64/0, measure the DC level of picture period at Pin 20, that is "VTXBRMAX" / "VTXBRCEN" / "VTXBRMIN".
T12	Analog RGB Mode Switching Level /Vys	RGB Contrast : 32 Others : Preset	 (1) Input a composite sync signal into Pin 43. (2) Input a signal of NOTE: To figure into Pin 16. (3) Increasing the Pin 13 voltage, measure the voltage at which the signal inputted into Pin 16 appears at Pin 20, that is "Vγς".
T13	Analog RGB Mode Transfer Characteristic / \tauRys / tPRys / \tauFys / tPFys	All : Preset	 (1) Input a 50IRE Y signal with sync into Pin 43 & 39. (2) Connect Pin 16 to GND via a 0.1μF capacitor. (3) According to following figure, measure the Analog RGB Mode Transfer Characteristic

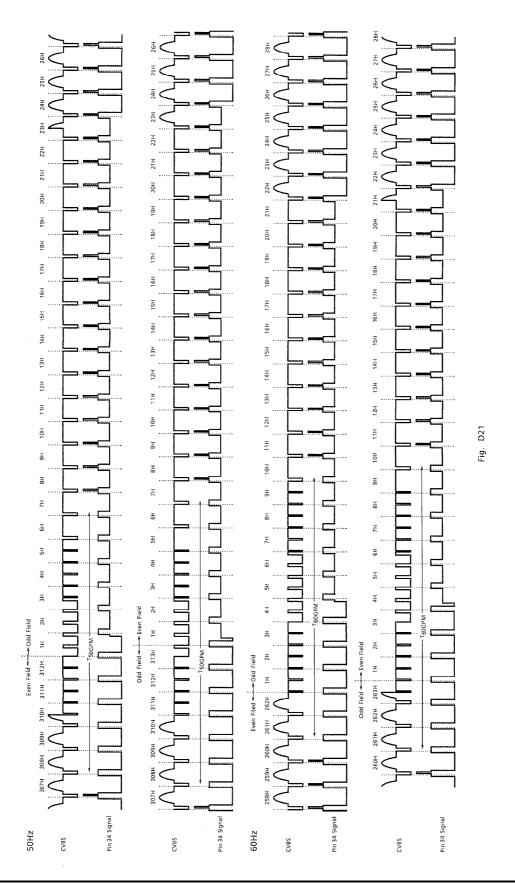
NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
T14	Cross Talk from Analog RGB to TV /CT _{TX-TV}	Uni-Color : 63 RGB Contrast : 63 Others : Preset	 (1) Input a composite sync signal into Pin 43. (2) Connect Pin 39 to GND via a 1μF capacitor. (3) Input a signal of following figure into Pin 16. Pin 43 4MHz 1H 0.5V_{p-p} (4) Measure the amplitude of 4MHz signal at Pin 20, that is V_{TX-TV}. (5) Calculate; "CT_{TX-TV}" = 20*ℓog (V_{TX-TV}/0.5)
T15	Cross Talk from TV to Analog RGB /CT _{TV-TX}	Uni-Color : 63 RGB Contrast : 63 Others : Preset	 (1) Input a 4MHz, 0.5V_{p-p} Y signal with sync into Pin 43 & 39. (2) Connect Pin 16 to GND via a 0.1μF capacitor. (3) Supply 2V to Pin 13. (4) Measure the amplitude of 4MHz signal at Pin 20, that is V_{TV-TX}. (5) Calculate; "CT_{TV-TX}" = 20*ℓog (V_{TV-TX}/0.5)
T19	RGB OUTPUT AMPLITUDE /VROUT /VGOUT /VBOUT	Mute : 01 Uni-Color : 63 Others : Preset	 (1) Input a 4.43MHz, PAL rainbow color-bar (300mV_{p-p}, burst : chroma = 1 : 1) with sync into pin 43. (2) Measure the amplitude of pin 18/19/20 output, that is "/V_{ROUT}/V_{GOUT}/V_{BOUT}".
Т20	SECAM Black Level Adj. Characteristics / VSECBMAX / VSECRMAX / VSECBMIN / VSECRMIN SECAM Black Level Adj. Data Sensitivity / Δ VSECB / Δ VSECR	Color System : 111 B-Y Black Adj : 0/8/15 R-Y Black Adj : 0/8/15	 (1) Connect Pin 29 to GND via a 5.1kΩ resistor. (2) For B-Y/R-Y Black Adj.: 8, measure the DC level of picture period at Pin 20/18, that is VSECBCEN/VSECRCEN. (3) For B-Y Black Adj.: 0/15, measure the DC level change of picture period against VSECBCEN at Pin 20, that is "VSECBMIN"/"VSECBMAX". (4) For R-Y Black Adj.: 0/15, measure the DC level change of picture period against VSECRCEN at Pin 18, that is "VSECRMIN"/"VSECRMAX". (5) Calculate; "ΔVSECBMAX" (VSECBMIN)/16 "ΔVSECR" = (VSECBMAX - VSECBMIN)/16

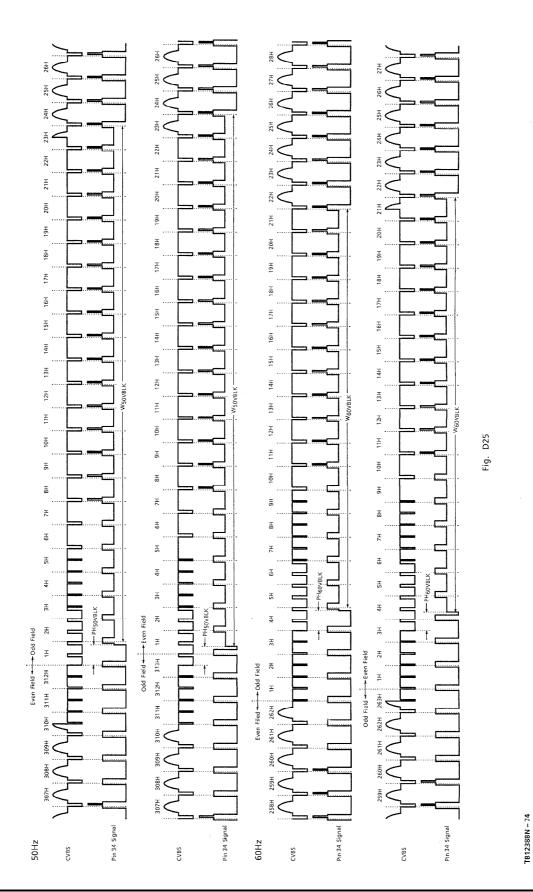

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
T21	SECAM Black level alignment mode gain / G _{BS} / G _{RS}	SE Adj : 1 Mute : 00 Color System : 111 Others : Preset	 (1) Input a sin wave (0.3V_{p-p}, 100kHz) without sync into Pin 43. (2) Measure the amplitude of Pin 18 / 20 output, that is V_{ROUTS} / V_{BOUTS}. (3) Calcurate; "G_{RS}" = 20*ℓog (V_{ROUTS} / 0.3) "G_{BS}" = 20*ℓog (V_{BOUTS} / 0.3)
T22	SECAM Black level alignment mode Analog RGB mode SW level / VYSS	RGB Contrast : 32 SE Adj : 1 Color System : 111 Others : Preset	 (1) Input a composite sync signal into Pin 43. (2) Input a signal of Note: T9 figure into Pin 16. (3) Increasing the Pin 13 voltage, measure the voltage at which the signal inputted into Pin 16 appears at Pin 20, that is "VYSS".
Т23	Half tone mode SW level /VYM1 Half tone ↔ Analog RGB mode SW level /VYM2	Half tone : 0 RGB Contrast : 32 Ym enb : 1 Others : Preset	 (1) Input a composite sync signal into Pin 43. (2) Increasing the Pin 13 voltage, measure the voltage at which the picture portion amplitude at Pin 20 starts changing, that is "VYM1". (3) Input a signal of Note: T9 figure into Pin 16. (4) Increasing the Pin 13 voltage further, measure the voltage at which the signal inputted into Pin 16 appears at Pin 20, that is "VYM2".
T24	Half tone mode transfer characteristic / \tauRYM1 / tPRYM1 / tPFYM1 Half tone \((\to Analog)\) RGB mode transfer characteristic / \tauRYM2 / tPRYM2 / tPFYM2 / tPFYM2	Half tone : 0 Ym enb : 1 Others : Preset	(1) Input a 50IRE Y signal with sync into pin 43 & 39, a signal as the figure below into Pin 13. (2) Connect Pin 16 to GND via a 0.1 µF capacitor. (3) According to following figure, measure the Half tone Mode transfer characteristic / Half tone ↔ Analog RGB mode transfer characteristic. PIN 13 Input Signal into Pin 13 Input Signal at Pin 18 tPRYM1 (tPRYM2) 100% 100% 7RYM1 (tPRYM2) (TRYM1) (TRYM2) (TRYM1) (TRYM2) (TRYM1) (TRYM2) (TRYM1) (TRYM2) (TRYM2) (TRYM1) (TRYM2) (TRYM2)

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
T25	RGB output voltage Axes difference / ΔV bct	Brightness : 32 Uni-color : 63 Color : 0 Others : Preset	 (1) Input a 0IRE black signal with sync into Pin 43 & 39. (2) Measure the DC level of picture period at Pin 18/19/20. (3) Find maximum axes difference, that is "ΔVbct".
T26	RGB output amplitude Axes difference / ΔV_a	Mute : 00	 (1) Input a sin wave (0.3V_{p-p}, setup = 0.3V) with sync into Pin 43 & 39. (2) Measure the amplitude of Pin 18/19/20 output. (3) Find maximum axes difference, that is "ΔVa".

DEF stage (Unless otherwise specified, $V_{CC} = 9V$ (3, 17, 28 & 52pin)/5V (36 & 46pin), $Ta = 25^{\circ}C$)

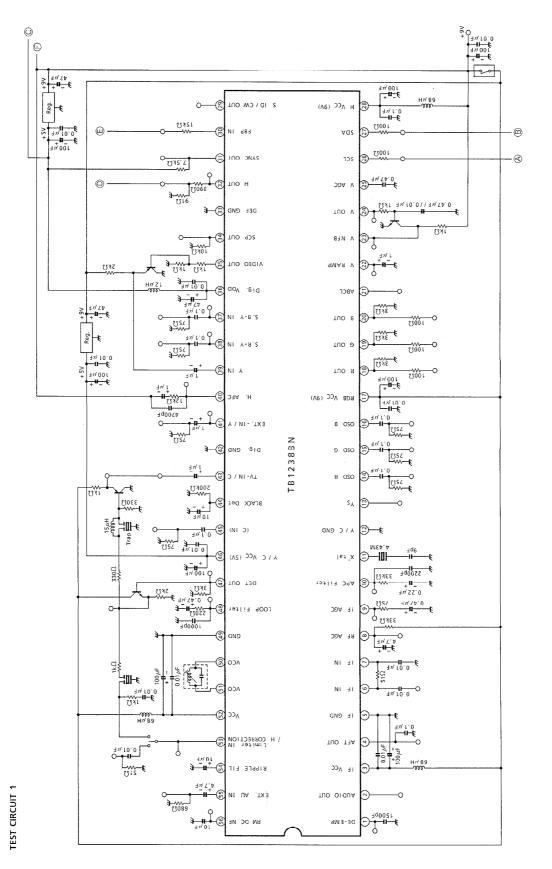
NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
D1	AFC Inactive Period /T50AFCOFF /T60AFCOFF	All : Preset	 (1) Input a 50Hz/60Hz composite sync signal into Pin 43. (2) Measure "T_{50AFCOFF}"/"T_{60AFCOFF}" at Pin 40. (cf. Fig.D1)
D2	H-OUT Start Voltage /VHON	All : Preset	 (1) Let Pin 3 / 17 / 52 / 36 / 46 be open. (2) Increasing Pin 28 voltage, measure the voltage at which H OUT pulse appears at Pin 32, that is "VHON".
D3	H-OUT Pulse Duty /WHOUT	All : Preset	(1) Measure t _{HOUT1} & t _{HOUT2} at Pin 32. (2) Calculate; "WHOUT" = t _{HOUT1} / (t _{HOUT1} + t _{HOUT2}) *100
D4	H-OUT Freq. on AFC Stop Mode /FHAFCOFF	AFC Gain : 11 Others : Preset	(1) Input a 50Hz composite sync signal into Pin 43.(2) Measure the H OUT frequency at Pin 32, that is "FHAFCOFF".
D5	Horizontal Free-Run Frequency /FH50FR /FH60FR	V-Freq : 10 / 11 Others : Preset	For V-Freq 10/11, measure the H OUT frequency at Pin 32, that is "FH50FR"/"FH60FR"
D6	Horizontal Freq. Variable Range /FHMAX /FHMIN	All : Preset	 (1) Connect Pin 40 to V_{CC} via a 10kΩ and measure the H OUT frequency at Pin 32, that is "F_{HMAX}". (2) Connect Pin 40 to GND via a 68kΩ and measure the H OUT frequency at Pin 32, that is "F_{HMIN}".
D7	Horizontal Freq. Control Sensitivity $^{/\beta}$ HAFC	All : Preset	 (1) Measure the Pin 40 voltage at which H OUT frequency is 15.734kHz, that is V_{H15734}. (2) Measure the H OUT frequency when Pin 40 voltage is V_{H15734} + 50mV / V_{H15734} - 50mV, that is F_{HHIGH} / F_{HLOW}. (3) Calculate; "βHAFC" = (F_{HHIGH} - F_{HLOW}) / 100


NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
D8	Horizontal Pull-in Range /∆FHPH /∆FHPL	All : Preset	 (1) Input a composite sync signal into Pin 43. (2) Decreasing the horizontal frequency from 17kHz, measure the frequency at which H OUT synchronized with Sync Out (Pin 31), that is FHPH. (3) Increasing the horizontal frequency from 14kHz, measure the frequency at which H OUT synchronized with Sync Out (Pin 31), that is FHPL. (4) Calculate; "ΔFHPH" = FHPH - 15734 "ΔFHPL" = 15625 - FHPL
D9	H-OUT Voltage /VHOUTH /VHOUTL	All : Preset	 (1) Measure the high level of H OUT at Pin 32, that is "VHOUTH". (2) Measure the Low level of H OUT at Pin 32, that is "VHOUTL".
D10	Horizontal Freq. Dependence on V _{CC} /∆F _{HVCC}	All : Preset	 (1) Measure the H OUT frequency when H V_{CC} is 8.5V/9.5V, that is F_{HVCCH}/F_{HVCCL}. (2) Calculate; "∆F_{HVCC}" = (F_{HVCCH} − F_{HVCCL})/1
D11	FBP Phase /PH _{FBP}	- All : Preset	(1) Input a composite sync signal into Pin 43. (2) According to the following figure, measure "PHFBP" & "PHHSYNC".
D11	H-Sync. Phase / PHHSYNC		(#43) a/2 PHFBP H.AFC (#40) FBP IN (#30)


NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
D12	Horizontal Position Variable Range /∆PHHPOS	H Position: 0/31 Others: Preset	(1) Input a composite sync signal into Pin 43. (2) Changing Horizontal Position from 0 to 31, measure "\(\Delta PH_{HPOS} \)" according to the following figure. (00) FBP IN (#30) (1F) \[\text{APH_HPOS} \] (1F)
D13	AFC-2 Pulse Threshold Level /VAFC2	All : Preset	 (1) Input a composite sync signal into Pin 43. (2) Decreasing the FBP high level, measure the DC level at which H OUT phase changes against Sync Out phase, that is "V_{AFC2}".
D14	H-BLK Pulse Threshold Level /VHBLK	All : Preset	(1) Input a composite sync signal into Pin 43. (2) Increasing the FBP high level, measure the DC level at which H blanking begins to work, that is "VHBLK".
D15	Black Peak Det. Stop Period (H) /PHBPDET /WBPDET	TEST : 00001000 Others : Preset	(1) Input a composite sync signal into Pin 43. (2) According to the following figure, measure "PHBPDET" & "WBPDET". 63.5 μs Sync IN (#43) H.AFC (#40) SCP OUT (#34) VBPDET 4.3V 0.0V
D16	Clamp Pulse Start Phase / PH _{CP}	TEST : 00001000 V Position : 001 Others : Preset	(1) Input a composite sync signal into Pin 43. (2) According to the following figure, measure "PHCP" & "WCP". Sync IN (#43)
3 10	Clamp Pulse Width /WCP		H.AFC (#40) SCP OUT (#34) PHCP WCP 4.3V

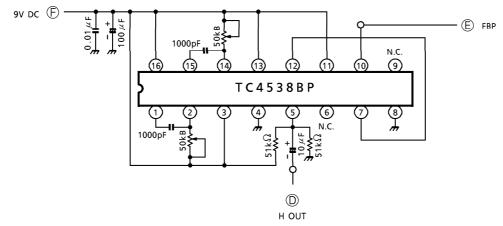
NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
D17	Gate Pulse Start Phase /PHGP	· All : Preset	(1) Input a composite sync signal into Pin 43. (2) According to the following figure, measure "PHGP" & "WGP". Sync IN (#43)
	Gate Pulse Width /WGP		H.AFC (#40) SCP OUT (#34) WGP 9V 6V 0V
D18	Sync. Output Low Level /VSYNCL	All : Preset	(1) Input a composite sync signal into Pin 43.(2) Measure the DC voltage of Sync Out low level, that is "VSYNCL".
D19	Vertical Oscillation Start Voltage /V _{VON}	All : Preset	 (1) Let Pin 3 / 17 / 52 / 36 / 46 be open. (2) Increasing Pin 28 voltage, measure the voltage at which V Ramp signal appears at Pin 22, that is "V_{VON}".
D20	Vertical Free-Run Frequency /FVAUFR /FV60FR	V-Freq: 00/01 Others: Preset	For V-Freq 00/01, measure the frequency of V Ramp at Pin 22, that is "FVAUFR"/"FV60FR".
D21	Gate Pulse V-Masking Period /T50GPM /T60GPM	All : Preset	 (1) Input a 50Hz/60Hz composite sync signal into Pin 43. (2) Measure "T_{50GPM}"/"T_{60GPM}" at Pin 34. (cf. Fig.D₂₁)
D22	V.Ramp DC on Service Mode /VNOVRAMP	MUTE : 11 Others : Preset	Measure the DC level of Pin 22, that is "VNOVRAMP".

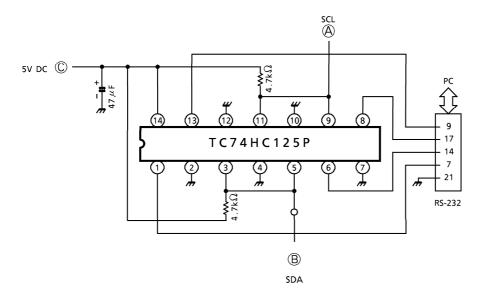
NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
(Ai /Fv /Fv D23 Ve (60 /Fv	Vertical Pull-in Range (Auto) /FVPAUL /FVPAUH	V-Freq : 00/01 Others : Preset	 (1) Input a composite sync signal into Pin 43. (2) For V-Freq 00/01, increasing the input vertical period from 220H by 0.5H step, measure the period at which V OUT signal synchronized with Sync out, that is "FVPAUL"/"FVP60L". (3) For V-Freq 00/01, decreasing the input vertical period from 360H by 0.5H step, measure the period at which V OUT signal synchronized with Sync out, that is "FVPAUL"/"FVP60L".
	Vertical Pull-In Range (60Hz) /FVP60L /FVP60H		
D24	Vertical Period on Fixed Mode /TV313 /TV263	V-Freq : 10/11 Others : Preset	For V-Freq 10/11, measure the vertical period at Pin 34, that is "TV263"/"TV313".
D25	V-BLK Start Phase / PH50VBLK / PH60VBLK V-BLK Width / W50VBLK / W60VBLK	· All : Preset	(1) Input a 50Hz/60Hz composite sync signal into Pin 43. (2) Measure "T50AFCOFF"/"T60AFCOFF" at Pin 40. (cf. Fig.D25)
D26	Picture Mute Period /W50PM /W60PM	TEST: 00001000 Others: Preset	(1) Input a 50Hz/60Hz composite sync signal into Pin 43. (2) According to a following figure, measure "W50PM" / "W60PM".



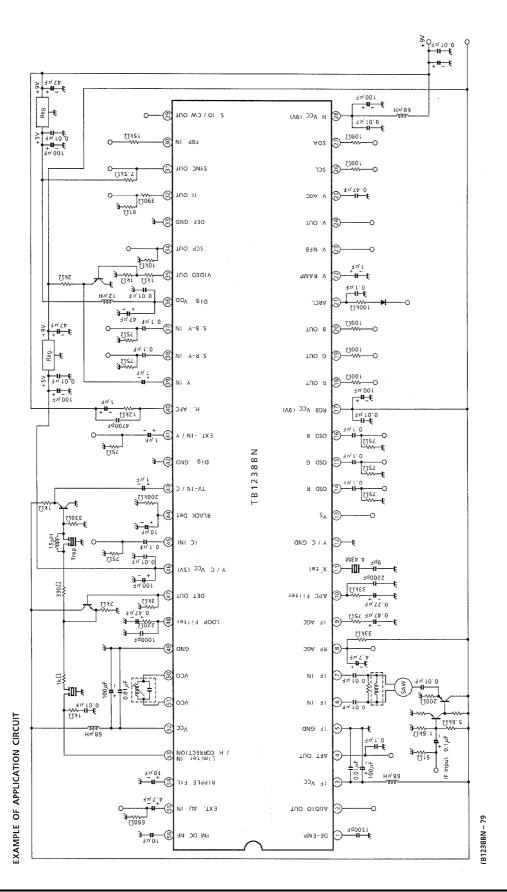
TB1238BN - 73

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
D27	Sand Castle Pulse Level /VSCPH /VSCPM /VSCPL	All : Preset	Measure "VSCPH" / "VSCPM" / "VSCPL" at Pin 34.
D28	Vertical Ramp Amplitude /VVRAMP	All : Preset	Measure the V Ramp amplitude at Pin 22, that is "VVRAMP".
	Vertical AMP Gain / GVAMP	All : Preset	(1) Let Pin 24 be open. (2) Changing the Pin 23 DC voltage, measure "VVOMAX" / "VVOMIN" / "GVAMP" according to a following figure.
D29	Vertical AMP Max. Output Level / VVOMAX		#23 DC
	Vertical AMP Min. Output Level / VVOMIN		$\Delta V = G_{VAMP}$ $= 20 log (\Delta V \# 23 / \Delta V \# 24)$ V_{VOMIN} $\# 24 DC$
D30	Vertical AMP Max. Output Current / IVOMAX	All : Preset	(1) Supply 7V to Pin 23.(2) Measure the Current from Pin 24 to GND, that is "IVOMAX".
D31	Vertical NFB Amplitude /VNFB	-V Size : 0/32/63 Others : Preset	 (1) Measure the amplitude of NFB V Ramp at Pin 23, that is "V_{NFB}". (2) Measure the amplitude of NFB V Ramp at Pin 23 for V-Size 0/63, that is V_{NFBMIN}/
	Vertical Amplitude Variable Range / <u>AVVRAMPH</u> / <u>AVVRAMPL</u>		VNFBMAX· (3) Calculate ; "∆VVRAMPH" = (VNFBMAX - VNFB) / VNFB*100 "∆VVRAMPL" = (VNFBMIN - VNFB) / VNFB*100

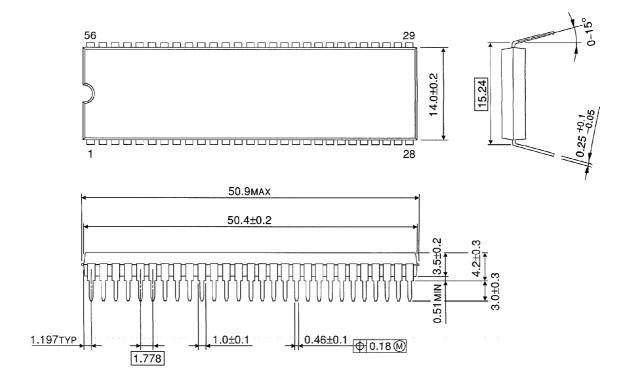

NOTE	ITEM / SYMBOL	BUS CONDITION	MEASUREMENT METHOD
D32	Vertical Linearity Variable Range /ΔVLIN1 + /ΔVLIN1 – /ΔVLIN2 + /ΔVLIN2 –	V Linearity: 0/8/15 Others: Preset	 (1) For V linearity 8, Measure V₁ (From center to max.) and V₂ (From center to min.) at Pin 22 according to a following figure. (2) For V linearity 15/0, measure V_{LIN1+}/V_{LIN1-} and V_{LIN2+}/V_{LIN2-}. (3) Calculate; "ΔV_{LIN1+}" = (V_{LIN1+}-V₁)/V₁*100 "ΔV_{LIN1-}" = (V_{LIN1-}-V₁)/V₁*100 "ΔV_{LIN2+}" = (V_{LIN2+}-V₂)/V₂*100 "ΔV_{LIN2-}" = (V_{LIN2-}-V₂)/V₂*100
D33	Vertical S Correction Variable Range $/\Delta V$ S1 + $/\Delta V$ S1 - $/\Delta V$ S2 + $/\Delta V$ S2 -	V S Corr. : 0/8/15 Others : Preset	(1) For V S Correction: 8, measure V ₁ and V ₂ at Pin 22 according to a figure of NOTE: D ₃₂ . (2) For V S Correction: 15/0, measure V _{S1+} /V _{S1-} and V _{S2+} /V _{S2-} . (3) Calculate; "ΔV _{S1+} " = (V _{S1+} - V ₁)/V ₁ *100 "ΔV _{S1-} " = (V _{S1-} - V ₁)/V ₁ *100 "ΔV _{S2+} " = (V _{S2+} - V ₂)/V ₂ *100 "ΔV _{S2-} " = (V _{S2-} - V ₂)/V ₂ *100
D34	V-AGC Current / IVAGCH / IVAGCL	V-AGC : 0/1 Others : Preset	(1) Connect Pin 25 to GND via a 200 resistor. (2) For V-AGC: 0/1, measure VVAGCL/ VVAGCH at Pin 25 according to a following figure. (3) Calculate; "IVAGCL" = VVAGCL/200 "IVAGCH" = VVAGCH/200
D35	Vertical Guard Voltage /V _V G	All : Preset	Decreasing the Pin 23 voltage from 5V, measure the voltage at which Pin 20 output drops to blanking level, that is "VVG".
D36	BGP Phase /∆BGP	BGP P : 0/1 Others : Preset	 (1) Input a composite sync signal into Pin 43. (2) Connect Pin 10 as the figure. 10 10kΩ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2


TB1238BN - 77

TOSHIBA TB1238BN


TEST CIRCUIT 2

Mono Multi Vibrator



I²C BUS Interface

OUTLINE DRAWING SDIP56-P-600-1.78

Unit: mm

Weight: 5.55g (Typ.)